
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMSBURG, VIRINtA-ETC(U)
1975 S M TAYLOR DAAK7O76O--0030UNLASSIFIED N

M EEEEEEElEEll
EIEEIIIEEEIII
-- EhEEEElllEE
ElhlllElllEllI
EEEEEEIIEEEEEE
EEEIIIIEEIIEI
EEEEEEEII/IIII.

I__DISTRIBUTIN_'r ATE,!A T_ A

Approved for public xeluuseo
Distribution Unli:.id,

SECOND LL RL

/%Th/l6Lc2§~z

U.S. ARMY
SOFTWARE
SYMPOSIUM

DTIC
ELECTE

SEP 161981 i
OCTOBER 25-27 1978 E9
WILLIAMSBURG. VIRGINIA D

SPONSORED BY

THE U.S. ARMY
SCOMPUTER SYSTEMS

COMMAND

-. NCLASS IF I ED,_.,.
SECURITY CLASSIFICATION OF THIS PAGE (Wlin Date Entered)

REPORT DOCUMENTATION PAGE \' COPEM ORM
I. EJ..QRT NUMBER. GOVT .SS 3 RECIPIENT'S CATALOG NUMBER

TIT4 A S ON ,
(and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

;econrd 1!S Army Software Symposium- ",) H i , Final - 25-27 October 1978

Virginia 6 PERFOR ING ORG. REPORT NUMBER

7. AUTHOR(") ; 4T0jB i a X.MZM ER(e)

Stanley M.11Taylor - DAAK7 0-78--'03(W

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

International Business Services, Inc.
1090 Vermont Avenue, NW Suite 1010
Washington, D.C. 20005 ' H

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. -REP6RT DATE

IS Army Institute for Research in Management 25-27 October 1978
Information and Computer Science (AIRMICS), 13. NUMBER OFPAGES

115 O'Keefe Building, GIT, Atlanta, GA 30332 854
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of tlhis report)

UNCLASSIFIED
IS.. DECLASSI FICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Repf /

DISTRIBUTION A DL , :.

rApp..v-Ac fol

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reveree side it neceesay and Identify by block number)

Functional System Requirements, Human Factors, Life Cycle Management,
Security, Softwwre Engineering Tools, Testbeds, Interoperability,
Tradeoffs, Graphics, Verification, Standardization/Commonality,
Survivability.

20. ABT'RACT (h'wtfuue a oee al&s Fi eceamn m andidenity by block number)

The following sessions were conducted during this symposium:

Functional Systems Requirements

Human Factors

Requirements I

Life Cycle Management
DD IFO 1473 EDITION OF I NOV 6S IS OSOLETE C / ,

SW U3 NICLASSIFIFD I P
SECURITY CLASSIFICATION OF THIS PAGE-(When Dores Entered)

UNCLAzgi rT r FIn
SECURITY CLAUIFICATION OF THIS PAGE(Ina. Data Xhteredt)

Security

Software Engineering Tools F Methods I

Requirements II

Patriot Software System

Testbeds

Software Engineering Tools & Methods II

Interoperability

Management Control Technology

Htardware/Firmware/Software Tradeoffs

Graphics

Formal Methods of Software Verification and Maintenance

Auto Test/Diagnostic Equipment & Software

Computer Architecture Standardization/Commonality

Reliability/Survivability

Accession For--

NTIS GRA&I
DTIC TAB
Unannounced

Justification

By

Distribution/

Availability Coes

Avail and/or

Dit Special

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whon Dato Entered)

SECOND

U.S. ARMY
SOFTWARE
SYMPOSIUM

C "..- ,. 181
OCTOBER 25-27 1978

WILLIAMSBURG. VIRGINIA Q -

SPONSORED BY
THE U.S. ARMYi

COMPUTER SYSTEMS
COMMAND

App "'I

SECOND U.S. ARMY SOFTWARE SYMPOSIUM

Williamsburg, Virginia

25-27 October, 1978

SPONSOR

UNITED STATES ARMY COMPUTER SYSTEMS COMMAND
(USACSC)

SYMPOSIUM CHAIRMAN SYMPOSIUM DIRECTOR

Dr. Stanley M. Taylor R. Peyton Brown - USACSC
AbeAdeen Proving Ground Integrated Solt=Ae RezeaAch 6 Ve-

vetopment WoAking Group

DEPUTY SYMPOSIUM CHAIRPERSON

Dr. John Staudhammer
Army Reearch Institute

SYMPOSIUM PLANNING COMMITTEE

Merton J. Batchelder James M. Jones II
U.S. Army ComputeA Systems Command U.S. Army Engineeu WateAway4

ExpeAiment Station

LTC Roy Busdiecker Stephen P. Kroll
Office o6 Msit. Chief of Staff Deputy Chief o6 Staff for Reseach
6o& Automation 8 Communication Devetopment and Acquiition

John M. Cole Sil Pelosi
CenteA 6o& Tacticat Compute Sciences CenteL for Tactical CcmputeA Science6

Allan H. Curry Dr. N. Radhadrishnan
U.S. Army Intitute in Management U.S. Army Engineers WatemWays
Information 9 Compuwte Science Expvriment Station

Jean N. Hooper Robert Rosen
Army Re4eaAch Institute Harry Diamond Lab6

Norman J. Taupeka
CenteA 6or% Tactical ComputeA Science

Proceedings Prepared/Delivered By

International Business Services, Inc.

Under Contract DAAK 70-78-D-0030

TABLE OF CONTENTS

TITLE PAGE

AGENDA ix

EXECUTIVE SUMMARY xix

SESSION SUMMARIES, ABSTRACTS & POSITION PAPERS 1

FUNCTIONAL SYSTEMS REQUIREMENTS

Chairman: Ray Ketchum

SESSION SUMMARY 1

Battlefied Systems AAchitecture
Dennis P. Mahoney 2

Batt e6ietd Automation Management Progtam 9
Dennis P. Mahoney

Army 8attlcjield InteLface Concept 12
CPT John Ratzenberger

HUMAN FACTORS

Chairperson: Jean Hooper

SESSION SUMMARY 23

A Review o6 Factor Which Influence Softjare
Devetopment PeA ounance 24

Jean Hooper

Human Factoru in QueAy Language 41
Lawrence M. Potash

IntevdciscipLny 16sue.6 in The Design of
Human-Computer Interfaces 46

Raymond C. Sidorsky

REQUIREMENTS I

Chairman: Dr. Edward Lieblein

SESSION SUMMARY 54

ComputeA - Aided Requirement6 Generation - An
Evat~uation 55

Carl G. Davis

iii

TABLE OF CONTENTS Cont'd

TITLE PAGE

An Approach to Requitementb De~in tion6 For
ReaL Tij e Sytem6 66

David Egli

Nut6 and BoLt6 o6 SojtwaJ'e Acquiition 80 K

Thomas A. Rorro

LIFE CYCLE MANAGEMENT

Chairman: MAJ Edward H. Ely

SESSION SUMMARY 89

Toward UndeutandiJng The SotwczAe Life
Cycte 90

Dr. Victor R. Basili

The Contingency Theory Approach to The 99
Sytem Life Cycte Management9

Dr. J. David Naumann & Gordon B. Davis

SECURITY

Chairman: LTC Robert P. Campbell

SESSION SUMMARY 107

Softwa&e SecuwLty 108
LTC Robert P. Campbell

The Pep zvttent od VeAenue Ketnev.ized
SecuAe Opero.tinq Syvtem (KSOS) 119

Dr. E. J. McCauley

KSOS Execu ive Summuay 134
Ford Aerospace & Communication Corporation

SOFTWARE ENGINEERING TOOLS & METHODS I

Chairman: Derek S. Morris

SESSION SUMMARY 147

The VepaOten-t o4 Vejen.6e Common PitogAamming
Lanquage Ptoject 148

Dr. Serafino Amoroso

iv

TABLE OF CONTENTS Cont'd

TITLE PAGE

An Expeimeta Application o6 The DoD
Common Language to Tetecomunicationd Sy5tem1
DVeign 156

Derek S. Morris

An Integ'i.ted Sytem o6 Too.6 to Support
The DoD Common Language 179

Dennis J. Turner

REQUIREMENTS II

Chairman: John Mitchell

SESSION SUMMARY 188

Devutopment4 S Probtem6 in So6twaAe
RequiWzement6 189

Dr. Pei Hsia & Bill Buckles

UaeA Experience With a Fomatty De6ined
Requ4Aement6 Language IORL 211

Charles R. Everhart

So 6tix.e Requbtement6 Engineering Methodotogy
(SREM) Cuuent (1978) Statu, 220

Mack W. Alford

Automated Analysis o6 Sy&tem Specijicationz 235
Larry A. Johnson, Paul B. Merritheu &
Daniel G. Smith

PATRIOT SOFTWARE SYSTEM

Chairman: Edward U. Lee Jr.

SESSION SUMMARY 259

TESTBEDS

Chairman: John M. Cole

SESSION SUMMARY 261

Emulation o6 TactiDcal ata Sys6tems in the
Teteptoce a i.ng VuZn CenrteA 263

John M. Cole

InteAacing C3 Facit.tie,6 to the AMpanet 277
Marvin Schwartz

V

TABLE OF CONTENTS Cont'd

TITLE PAGE

Sofoare, Vevetopment Suppowt System (SDSS) 299

Bernard Newman & Roy Mattson

SOFTWARE ENGINEERING TOOLS & METHODS II

Chairman: Dr. Mehdi Jazayer!

SESSION SUMMARY 315

CuArent Deveeopment6 in rogram Vvafication 316
Dr. Susan L. Gerhart

The Human Engineering o6 a System Design 331
EnvirLonment 6or the Microproceszot-Bazed System6

Charles W. Rose & Donald C. Hewitt Jr.

INTEROPERABILITY

Chairman: Dwaine B. Huewe

SESSION SUMMARY 379

InteropeAabity Tactical Automated Systems - 380
A Chattenge

Dwaine B. Huewe

MANAGEMENT CONTROL TECHNOLOGY

Chairman: Allan Curry

SESSION SUMMARY 396

Po4st Vep.oyment SoftwaAe Suppott for. Amy 397
Defense Systems

Ingrid A. Eldridge

A DecLsion - Aiding System FoLr So6tware 420
Devetopment Management

Donovan Young

A Buines Approach to Management and 425
Controe of the Systems Devetopment Process
L. T. Herrman

HARDWARE/FIRMWARE/SOFTWARE TRADEOFFS

Chairman: Dr. Serafino Amoroso

SESSION SUMMARY 460

vi

TABLE OF CONTENTS Cont'd

TITLE PAGE

A Tacticat AN/GVK - 12 Emutator 461

Edward Beach

Technology Upgrade o6 the Existing Systems 485
Peripheral6

Jeffrey Yohay & Martin Wolfe

A Case Study o6 the Softwake/Firmware Devetopment 495
6or a MicAoptoceszsing - Based ComputeA

James E. Scott

GRAPHICS

Chairman: Dr. N. Radhakrishnan

SESSION SUMMARY 517

Notes on Graphic Standads 518
Dr. Bertram qerzog

IntrAactive Graphics 526
James M. Jones

Th.ee imfnsionat GeometAy Generation 540

With a Ptacticat Application
Fred T. Tracy

Coherence Concepts in ComputeA Syntheized 562

Reae Tine Visptays
Dr. John Staudhammer

FORMAL METHODS OF SOFTWARE VERIFICATION AND MAINTENANCE

Chairman: Norman J. Taupeka

SESSION SUMMARY 580

A Structure 6or Devetopment Verification and 581
Validation Softuae Systems

Jon C. Jervert

Vefication £ Validation o6 Tactical Systems 623
Charles R. Lindsey & Joseph W. Doria

So6 tAre Testing at the System Leve2 641
J. Gary Nelson

vii

TABLE OF CONTENTS Cont'd

TITLE PAGE

AUTO TEST/DIAGNOSTIC EQUIPMENT & SOFTWARE

Chairman: Milton Tenzer

SESSION SUMMARY 665

Opat - A Modern Language 6or Tet Progamming 666
Helmuth Kaunzinger

Automatic GeneAation o6 Test Programs In Atla 682
Noah S. Prywes

Some Issues Retated to ComputeA System 695
Built- In- Teat
J. B. Clary & A. R. Jai

COMPUTER ARCHITECTURE STANDARDIZATION/COMMONALITY

Chairman: Frank E. Ward

SESSION SUMMARY 710

Life Cycte Cost AnatysZ6 o6 Intruction-Set 711

AchLitectuAe StandaAdization 6ot Military
ComputeA-Baz ed Sqstems

Dr. Harold S. Stone

A Proposed System o6 Bu6es 6or the 751

Mityta/ty ComputeA Famity
William E. Burr

Evaluation o6 Altnative Compter ArchitectuAe: 777

An Overview o6 Three Studie,6
William Dietz

RELIABILITY SURVIVABILITY

Chairman: Dan Hocking

SESSION SUMMARY 790

Adaptive Teting 791

Ray L. Stone

APPENDIX

ATTENDEE LIST

viii

THE SECOND U.S. ARMY SOFTWARE
SYMPOSIUM

October 25-27, 1978
Williamsburg, Virginia

AGENDA

TIME EVENT PLACE

WEDNESDAY, OCTOBER 25

Noon-6:00 PM Registration West Gallery

1:30-5:00 PM Microprocessing Jamestown
Workshop

Dr. James Gault
Dr. Wesley Snyder

North Carolina State University

THURSDAY, OCTOBER 26

8:00-11:00 AM Registration West Gallery

8:30-10:00 AM OVERVIEW Jamestown
Welcome Address

BG Leonard J. Riley

INTRODUCTIONS

Dr. Stanley Taylor
Symposium Chairperson

The Delene System
Softwate Management Ptogram--

A Balance Between
Management and Technology

KEYNOTE SPEAKER: Barry C. DeRoze
Manager of Advanced Systems

TRW Defense and Space System Group

ix

TIME EVENT PLACE

Strtategy 6o& Management

Defense System CompteA Re6ouces

KEYNOTE SPEAKER: H. Mark Grove
Acting Assistant for Defense System Software
Office of Deputy Undersecretary of Defense

(Acquisition Policy)
Directorate of Materiel Acquisition Policy

10:00-10:30 AM BREAK

10:30 AM-Noon PLENARY SESSIONS

e FUNCTIONAL SYSTEMS REQUIREMENTS Yorktown

SESSION CHAIRPERSON: COL. Ray Ketchum
TRADOC

Army Battlefietd Automation Architecture

Major James H. Helberg
Dennis P. Mahoney

USACACDA, Fort Leavenworth

Army Battle~ietd Interface Concept

Major M. W. Robinson
Captain John T. Ratzenberger
USACACDA, Fort Leavenworth

Technique for Controlling Ptotifeation

Automation on the Batttef6ied

Major Richard D. James
Dr. Edward R. Fowler

USACACDA, Fort Leavenworth

* HUMAN FACTORS Jamestown

SESSION CHAIRPERSON: Jean N. Hooper
Army Research Institute

Human PeAormance in SoftwoAe Development

Jean N. Hooper
Army Research Institute

Human Factoru in QueAy Language

Lawrence M. Potash
Army Research Institute

x

THE SECOND U.S. ARMY SOFTWARE
SYMPOSIUM

October 25-27, 1978
Williamsburg, Virginia

AGENDA

TIME EVENT PLACE

WEDNESDAY, OCTOBER 25

Noon-6:00 PM Registration West Gallery

1:30-5:00 PM Microprocessing Jamestown
Workshop

Dr. James Gault
Dr. Wesley Snyder

North Carolina State University

THURSDAY, OCTOBER 26

8:00-11:00 AM Registration West Gallery

8:30-10:00 AM OVERVIEW Jamestown
Welcome Address

BG Leonard J. Riley
INTRODUCTIONS

Dr. Stanley Taylor
Symposium Chairperson

The Defen6e System
Software Management ProgAam--

A Balance Between
Management and Technology

KEYNOTE SPEAKER: Barry C. DeRoze
Manager of Advanced Systems

TRW Defense and Space System Group

ix

TIME EVENT PLACE

I66uLe4 in Human - Compte. InteAaction

Raymond C. Sidorsky
Army Research Institute

Noon-l:30 PM LUNCH Main Dining Room
Deli Buffet

1:30-3:00 PM PLENARY SESSIONS Locations to be

listed in West Gallery

. REQUIREMENTS I

SESSION CHAIRPERSON: Dr. Edward Lieblein
CENTACS

Computer Aided Requementt Gner'ation
- An Evaluation

Carl G. Davis
BMD Advanced Technology Center

An Approach to ReqwiLementz De6inition
FoA Reat-Tnme System

David Egli
U.S. Army Communications Research

and Development Command
Center for Tactical Computer Systems

Software Engineering Division
Fort Monmouth

Nat and Bolts o Softwae Acquisition

Thomas A. Rorro
U.S. Army Electronics Research

and Development Command
Beta Joint Project Office

Integration Division

e LIFE CYCLE MANAGEMENT

SESSIONl CHAIRPERSON: Edward H. Ely
AIRMICS

Towotd Undeutanding the SoftwAe Life Cycle

Victor R. Basili
Department of Computer Science

University of Maryland

Modeting's Rote in Deteunining
Software System Comptexity

Thomas G. DeLutis, Ph.D
Department of Computer
and Information Science
The Ohio State University

xi

TIME EVENT PLACE

Contingency Theory Approach
To

Sy6tems Li~e Cycte Management

J. David Naumann
&

Gordon B. Davis
University of Minnesota

* OPERATING SYSTEMS SECURITY

SESSION CHAIRPERSON: LTC. Robert P. Campbell
DAMI-AM

The Department of Defense
Kernelized Secute OpeAatingj Sy6tem

(KSOS)
E. J. McCauley

Ford Aerospace and Communications Corporation

* SOFTWARE ENGINEERING TOOLS & METHODS I

SESSION CHAIRPERSON: Derek S. Morris

The Vepatment o6 Defene
Common Progamnming Language Project

Serafino Amoroso
CENTACS

Fort Monmouth

An Expetimental Apptication
o

The DOD Comon Language
to

A Telecommunications System Des6ign

Derek S. Morris
CENTACS

Fort Monmouth

An Integrated System o6 Tooz
to Support the DOD Common Language

Dennis J. Turner
CENTACS

Fort Monmouth

3:00-3:30 PM BREAK

3:00-5:00 PM PLENARY SESSIONS CONTINUED

xii

TIME EVENT PLACE

* REQUIREMENTS II

SESSION CHAIRPERSON: John Mitchell
AIRMICS

Vevetopment6 and Pxobtema
in

Softwaxe Requirement6

Pei Hsia &
Bill Buckles

UseA ExpeAience
with a

FoAiazm y Defined Requitement6 Language
(IORL)

Charles R. Everhart
Teledyne Brown Engineering

So>tware Requirement6 Engineering Me-thodolog y
(SREM)

M. W. Alford
TRW Defense and Space Systems Group

Automated Analysis o6 System Specificationz
Dr. Larry A. Johnson
Dr. Paul B. Merrithew
Mr. Daniel G. Smith

LOGICON, Inc.

e PATRIOT SOFTWARE SYSTEM

Edward U. Lee, Manager
Patriot Software Development
Missile Systems Division

Rayethon Company

* TEST BEDS
SESSION CHAIRPERSON: John M. Cole

System Validation Division
CENTACS

Emutation o6 Tacetca2 Data Sytem6
in the

Tet~epocessing Deeign Centex

John M. Cole
CENTACS

Inte)Aacing CS3 Facititie.6
to the Atpanet

Marvin Schwartz
CENTACS

xiii

TIME EVENT PLACE

Softwoe Development Support Sytem
(SVSS)

Bernard Newman
Roy Mattson

CENTACS

9 SOFTWARE ENGINEERING:
TOOLS AND METHODS II

SESSION CHAIRPERSON: Dr. M. Jazayeri
AIRMICS

and
The University of North Carolina

Cwtent Peveopment6 in Program Vefijication

Susan L. Gerhart
Information Sciences Institute

University of Southern California

The Human EngineeAing
of a

Sy6tem Design Environment
jot

Miropocezzor-Ba6ed Sy6tem.6

Charles W. Rose
Donald C. Hewitt, Jr.

Case Western Reserve Univeristy

6:00-7:00 PM ATTITUDE ADJUSTMENT HOUR

7:00-9:00 PM BANQUET Jamestown

* INTRODUCTION

Dr. John Staudhamer
Deputy Symposium Chairperson

The ChatUenge o6 So6twae Pevetopment

BANQUET SPEAKER: MG Clay T. Buckingham

FRIDAY, OCTOBER 27

8:30-10:00 AM PLENARY SESSIONS Locations to be

listed in West Gallery

a INTEROPERABILITY SESSION

SESSION CHAIRPERSON: Dwaine B. Huewe
Director

Center for Systems Engineering and Integration
CENTACS

xiv

TIME EVENT PLACE

* MANAGEMENT CONTROL TECHNOLOGY

SESSION CHAIRPERSON: Allan Curry
AIRMICS

Post Deployment So6tware Support
fot Amy Defense Systems

Ingrid A. Eldridge
Systems Validation Division

CENTACS

A Decizion-A&cLng Sys6tem

Softwa'e Devetopment Management

Donovan Young
AIRMICS

A Buziness Approach to Management
and

Contol of the System6
Development Process4
L. T. Herrmann

Manager
Systems Analysis and Development

Shell Oil Company

* HARDWARE/FIRMWARE/SOFTWARE TRADEOFFS

SESSION CHAIRPERSON: Dr. Serafino Amoroso

Software Engineering Division
CENTACS

A Tactical AN/GVK-12 Emulatot

Edward J. Beach
Systems Validation Division

CENTACS

Ter-hnotogy Upgtade

Exi6ting System PeriphvwLs

Jeffery S. Yohay
and

Martin I. Wolfe
Software Engineering Division

CENTACS

xv

I

TIME EVENT PLACE

A Cue Study o6 the
Softwtae/Fimware Deveopment

for a
toprocessot-B ed Computert

James E. Scott
Missle System Software Center

U.S. Army MIRADCOM
Redstone Arsenal

e GRAPHICS

SESSION CHAIRPERSON: Dr. N. Radhakrishnan
COE

GRAPHICS STANVARDS

Bertram Herzog
Director

University Computing Center
University of Colorado

GCS AND GRAPHICS Standardization
in the

U.S. Army Courps of Engineer6

James M. Jones II
Research and Development Software Group

ADP Center

Thiee Vimensional Geometry Softwae Group
with a Puactica Application

Fred T. Tracy
U.S. Army Corps of Engineers

CoheAence Concepts in Computer Synthesized
Re a-Time Visplays

John Staudhammer*
U.S. Army Research Office

*(On leave from North Carolina State University)

10:00-10:30 AM BREAK

xvi

-I

TIME EVENT PLACE

10:30-Noon PLENARY SESSIONS

* TESTING THROUGH FORMALIZED METHODS
OF REQUIREMENTS AND PROCEDURES

SESSION CHAIRPERSON: Norman J. Taupeka
Chief

Systems Engineering Division
CENTACS

A Structurke fot Devetoping Verifiable
and

Validation Softwae Systems

Jon C. Jervert
Systems Engineering Division

CENTACS

Verification and VaLidation

Tactical Systems

LTC. Charles R. Lindsey
and

Joseph W. D'Oria
CORADCOM

Software Testing at the Sys6tem Level

J. Gary Nelson
Headquarters

U.S. Army Test and Evaluation Command

* AUTOMATIC TEST AND DIAGNOSTICS

SESSION CHAIRPERSON: Milton Tenzer
CENTACS

OPAL - A Monde~n Language fot Test Programming

Helmuth M. Kaunzinger
Software Engineering Division

CENTACS

Automatic Genta~tion o6 Test Progtams in Atla6

Noah S. Prywes
Professor of Computer Science
University of Pennsylvania

Some Issue6 Retated to ComputeA Sy6tem
Buit-in-Test

J. B. Clary
A. R. Jai

Research Triangle Institute

xvii

TIME EVENT PLACE

0 COMPUTER
ARCHITECTURE/STANDARDIZATION/COMMONALITY

SESSION CHAIRPERSON: Frank E. Ward
CENTACS

Life-Cycte Cost Analyzsh o6 InLtruction-Set
Achitecture StandaAdization For. Mitta'y

Comput-Bazed Systems

Harold S. Stone
University of Massachusetts

and
Aaron Coleman

U.S. Army CORADCOM

A Proposed System o6 Buses
For the Mytitq Compute. Family

William E. Burr
U.S. Army Communications

Research and Development Command
Fort Monmouth

Evaluation of
Attnatie ComputeA AkchitectuAes

An Ovewiew o6 Three Studies

William Dietz
Department of Computer Science

Carnegie Mellon University

* RELIABILITY/SURVIVABILITY

SESSION CHAIRPERSON: Dan Hocking
AIRMICS

MUTATION ANALVSIS: Recent Progress

Dr. Richard DeMillo
School of Information and Computer Science

Georgia Institute of Technology

Adaptive Testing

R. L. Stone
General Research Corporation

Noon FORMAL END OF SYMPOSIUM

Noon-3:00 PM OPEN FORUM Spencer's Annex

xviii

EXECUTIVE SUMMARY

By

Dr. Stanley M. Taylor
Symposium Chairman

The Second Software Symposium, sponsored by the US Army Computer Systems
Command via the Army Integrated Software Research and Development (ISRAD) Work-
ing Group, was held on 25-27 October 1978 in Williamsburg, Virginia. The ISRAD
Working Group, established in 1974, having representatives from development
agencies which are performing computer software research and development, and using
1gencies, particularly Program Managers' Offices, etc., were invited to partici-
Ptelin working group meetings to provide requirements guidance and to identify

proU ems from the users point of view.

The objectives of.the.-1SR-4orking Group ,include the following:

0 To identify Software Research and Development Goals which
satisfy the needs of the using agencies.

* /To respond to the software needs of Army Project Managers and
Systems Developers by concentrating on software development

and maintenance problems.

" To identify unnecessary duplication of effort and gaps in
Research Programs which need to be addressed in ongoing and
planned R&D efforts.

* To ensure that Software Research and Development is made
visible and addressed separately from other R&D projects.-,

0 To provide the Army focal point for coordinating oftware
Research and Development.)

* To serve as a forum for information exchange on Software
Research and Development, and to ensure that results of
Software Research and Development efforts are disseminated

to potential users.

This Symposium series rovid e n of the many vehicles utilized by the ISRAD
Working Group in the accomplish ent of each of these objectives.

The Army's Second Software Symposium was a successful continuation of
the precedents set in the objectives for the first symposium held in May 1977,
namely:

* Provide recurring formal and informal meetings of the members of

the ISRAD Community -- managers, developers, and users -- with
emphasis on an appropriate environment for informal dialogs which
establish mechanisms for continuation of technical exchanges
between members of the community.

XiX

NINE=

" Present recent developments in the Software R&D Programs -

including particularly those areas which have received little
or no emphasis in current programs.

" Develop an ISRAD Community awareness.

" Provide an access to the ISRAD R&D programs.

The Symposium Organization Committee, under the aegis of the ISRAD Work-
ing Group, met approximately eight times over a period of fourteen months to
develop the agenda, determine attendees, select speakers and design the format
by which to process the content of the two-day meeting. The format of the
Symposium was tailored to highlight the DOD Software R&D Technology Plan
(September 1977). However, several areas not addressed by the DOD plan,
but which were deemed by the ISRAD Working Group to be important enough
to be included, were incorporated into the final agenda. The additional
program areas are concerned with Security, Human Factors, and Graphics.
These latter areas represent particular areas which were largely ignored
in the Technology Plan, but it is the recommendation of the ISRAD Working
Group that they should be included in further evolutions of that Plan.

The two-day Symposium was preceeded by a special four-hour micro-
processing workshop entitled "Microcomputer Tutorial -- The View Looking
Down", presented by Professors James Gault and Wesley Snyder from North
Carolina State University. This workshop proved to be extremely popular
as well as informative to those able to attend it.

The Symposium was organized in a series of plenary sessions and a
series of parallel technical sessions in order to cover the broad spectrum
of topical areas selected for this year's agenda. BG Riley, Deputy Command,
USACSC, made the welcoming address, identifying the above-mentioned objectives
and introduced the Symposium Chairman, Dr. Stanley M. Taylor of Ballistic
Research Laboratory, ARRADCOM/APG, Maryland. Dr. Taylor, in turn, introduced
the two keynote speakers, Mr. Barry DeRoze, TRW, formerly with the DDR&E of
DOD, and Mr. Mark Grove, his replacement.

It should be noted that the choice of keynote speakers was in consonance
with the general theme of the Symposium. Mr. DeRoze traced the evolution of
establishment of the DOD Defense Systems Software Management Program, and the
resultant evolution of the requirement for centralized program monitorship
within services which led to the development of the Army ISRAD Working Group
and its R&D Program, as the Army response to this requirement. As one of the
principal authors of the DOD Plan, Mr. DeRoze presented the background behind
the plan as well as his perception not only of its impact on specific defense
systems and on industry policies, practices and procedures, but also presented
an assessment of application of the plan, from both the government and industry
viewpoints. Emerging issues of standardization and microprocessor management
were identified.

Mr. Grove confirmed the intent of the DOD to continue close monitorship
of DOD Software R&D activities and the need for such a program to provide
DDR&E with backup data for Congressional justification of R&D programs in
this broad area of technology development. Mr. Grove noted that practically
every significant modern defense system is reliant upon digital computation

xx

elements or subsystems for either 3its native operation or its integration
into the tactical, strategic or C I environment. Consequently, a major
fraction of the acquisition costs of modern systems is going for the
associated embedded computer resources and the similar fraction of the
logistic support cost is devoted to this element of any given system. He
noted that DOD has established a policy initiative with DODD 5000.29 which
mandates the use of higher order languages (HOL) for preparation of defense
system software for embedded computer resources. The objective is to get a
grasp on the estimated $3 billion annual expenses for software and to improve
the availability and modifications/update/turnaround times. DODD 5000.31
takes the policy a step further and restricts the selection of allowable
HOL's for future systems to a manageable few from the hundred or so now in
use.

Mr. Grove noted that there is almost universal acceptance of the need
for improved discipline in the development, acquisition and support of
embedded computer resources, but these new policy initiatives have met the
not unexpected noticeable but tractable resistance always experienced by
changes in policy. The next step in the strategy is via DODD 5000.xx, to
exercise similar policy initiative to explore follow-on in the area of
computer architecture. Mr. Grove emphasized that the message of these
policy directives is a simple one: Optimum decision on a per-system basis
do not necessarily lead to either the best or most effective force/system,
when the full life cycle is considered. In general, Mr. Grove noted, the
principle of the use of prudent management discipline across the total DOD
program with respect to the totality of embedded computer resources appears
sound. Mr. Grove further noted that it is his expectation that the DOD
Software R&D Technology Plan will remain a living document and continue to
evolve as experience dictates.

MG Buckingham, Commander, USACSC, made the banquet address, high-
lighting the future requirements of meshing of communications and data
processing and further noted that the areas of technology which underpin
the Software R&D requirements of the Army and DOD are in a most difficult
transition period, from that of what has been largely initial and necessary
discovery type research to one of a more disciplined nature. He challenged
the Army R&D community to make a 'quantum jump' in efforts to convert pro-
gramming from an art to more of an engineering science -- particularly in
the applications area of interest to the developers of Army and DOD weapons
systems.

SUMMARY OF FINDINGS

Presentations evoking the most interest were the plenary sessions on
Security, Human Factors, Graphics and Life Cycle Management.

a Security: The session highlighted the need for Army users to
develop detailed security specifications for their systems in
order that technological design can be tailored to their re-
quirements. (The DDR&E Technology Areas did not at the time
of the Symposium include security in its areas of emphasis.
However, the need and interest within the Army exists and,
accordingly, this session was a significant part of the agenda).

Xxi

" Human Factors: The contents of this session focused on factors
influencing performance, especially productivity, in software
development. Prescriptive aspects of project management such
as team organization and use of well-defined software develop-
ment techniques. It was suggested that, within ISRAD, multi-
disciplinary working groups be formed to determine human inter-
face requirements early in the system development cycle.

* Graphics: This session presented graphics work in two areas that
are pertinent to the Army mission. The first area concerned inter-
active computer graphics applications in 3-D geometry generation
and display. One presentation described a graphics software
package that provides an engineer with the capability of generating

and editing three dimentional structures. Another, by Dr. Staudhammer,
described a display device and supporting software for the display
of color and black and white three-dimentional objects directly
from a mini-computer to studio-quality television. The second
area covered the necessity of developing a set of standards for
graphics software.

" Life-Cycle Management: Several aspects of this session reaffirmed
the findings and recommendations of the Second Software Life
Cycle Management Workshop. Topics put forth and discussed here
included a call for construction of standardized definitions,
terms, and classifications or taxonomies. A systematized view
of the life cycle structure was presented and linked to the use
of automated management tools.

SUMMARY OF RECOMMENDATIONS

The following are consensus recommendations expressed by the Symposium
leadership, participants and attendees. In line with the general objectives
of the ISRAD Working Group, these recommendations should reflect on and have
impact on potential future state-of-the-art of the ISRAD Program. In the
future, the Army should:

" Expand upon the thesis of MG Buckinghamn's challenge to accelerate
the development of software and programming skills from an art to
more of an engineering science.

" Include the concept of networks and their attendant problems in
future research programs, as recommended by MG Buckingham.

" Conduct a Human Factors review to cover human/machine user inter-
action and also language design.

* Analyze the role of the user (frequ~ently the Project Manager)
in protecting his interest during rapid technological growth --

that is, how to keep the technological process from subverting
the needs of the users, while at the same time providing as
much of the new technology for his requirements as is feasible.

0 Study ways of cost reduction in the field of software engineering.

Xxii

" Emphasize meshing of communications technology requirements
with the software development.

" Enhance compatibility of software R&D among various Army
organizational elements.

Identify problems in estimation and development of resource
requirements and testing validations procedures as applied to
management information systems.

" Identify problems in estimation of life cycle costs over the
entire life cycle of the proposed system -- include training
costs as well as resource requirements to accomplish life cycle

maintenance.

* Identify problems with interoperability between various systems
which must be integrated in any overall battlefield environment.

Finally, it may be stated that the Symposium was an unqualified success
in meeting its objectives. That is, the dialogue between various components
of the development community and the user community within the Army did take
place. We trust that the technical and programmatic exchange will continue
on an informal basis until the next Symposium.

xxiii

SOFTWARE E. Marie Smith of International FBusness
S YMPOSIJ~ Servk (es welkorfes nlew dtendcee to the

registration area,

Dr. Stanley Taylor, Symiposiumn
Chairperson and Mr. Mert Batchelder of
USA(CS(discuIss up~omin g events of the

Sympium~LII partiu pants, lean Hooper,
Norm Taupeka and Ray Sidorsky,
examinle the agenda.

xxiv

lean Hooper delivers her

%% Ili(1 IlltILICMl C S()ttwa're
Dc)evkymcrlelt FPtrturnllar) e."

Attendees in a general se~ssion.

xxv

MG Clay T. Buckingham,
(oiiiildditi~ (Ceneral of LISA SC,

%dS OWy MIqJUet Speake r.

' MG Buckingham ans %.r,

Dr. John Staudhammer, [)VIputy
Syrtnpw umn (hai rpero n

Plannring~ C ()Ilfittev 11) 1,e

!LTC Roy Busdliecker (hit with
MIG Buckingharna~fter his bdMIIuet

xxvi

FUNCTIONAL SYSTEMS7 REQUIREMENTS

COL Ray Ketche4n

TRA DO C

SESSION CHAIRPERSON: COL Ray Ketchum

TRADOC

SESSION SUMMARY

This session highlighted activities underway within the computer
development community to describe the architecture and environment within
which Battlefield Automated Systems will operate. It also addressed
TRADOC (Army) efforts to control proliferation of battlefield systems and
described their relationships (interface requirements).

The first paper (Army Battlefield Automation Architecture) was
by Major James H. Helberg and Mr. Dennis P. Mahoney. Its relevance was
to describe for the Symposium the approach to developing an automatic
architecture as a part of the overall battlefield system.

The second paper (Army Battlefield Interface Concept) was by
Major M. W. Robinson and Captain John T. Ratzenberger. Its relevance was
to describe for the Symposium the study of the interface/interoperability
requirements among battlefield automated systems and the relationship of
the study of automation architecture and system development.

The third paper (Techniques for Controlling Proliferation of
Automation on the Battlefied- was by Major Richard D. James and
Dr. Edward R. Fowler. Its relevance was to inform the S)mposium of the
Army's methodology of controlling the proliferation of automation on the
battlefield.

Army Battlefield Automation Architecture

Major James H. Helberg
Mr. Dennis P. Mahoney

USACACDA, Fort Leavenworth

1. An automation architecture is conceptually unconstrained by
systems, organizations, or procedures unless automation was
considered in their development. Traditional frameworks may
be modified considerably by an automated systems network.
Therefore, a framework must be defined in which automation
can be supportive of corps objectives. Basic to describing
such a framework is the definition of information require-
ments. This will lead to a description of information flow
and suggest the rationalization of certain functions within
and among functional systems. A basic sequence of questions
must be answered. CACDA is taking steps to define the func-
tional information requirements as well as the information
flows.

2. To achieve a practical automation architecture, as well as
meeting the immediate need for automation to support the
field, it is necessary to field certain BAS although they do
not fit into an architecture and then bring a comprehensive
architecture on the scene later. To begin this process, es-
sent ial interfaces are being defined by CACDA in the Army
Battlefield Interf ace Concept.

3. Essential to architectural development is the inclusion of
certain operational design criteria, the most important of
which is standardization. Lack of standardization is a
major problem preventing development of an automation archi-
tecture. Interoperability, CONOPS, security, RAM, and other
design criteria depend on standardization in the areas of
hardware, software, data elements, etc. The Army is embarked
on several actions to address standardization.

-2-

I SRAD
BATTLEFIELD SYSTEMS ARCHITECTURE

Mr. Dennis P. Mahoney
Battlefield Automation Management Directorate

United States Army Combined Arms Combat Development Activity
Fort Leavenworth, Kansas

Within the past several years, there has been a dramatic increase in
attempts to apply automatic data processing technology to problems of military
command, control, communications, and related functional areas.
This increase and the resulting rapid development of ADP systems has caused
problems in compatibility and interoperability to become potential roadblocks
to effective use of automation on the battlefield.

The purpose of this paper is to describe ongoing efforts to develop an
architecture for battlefield automation as a part of an overall systems
architecture and to relate it to other parts of such a systems architecture to
include information, communications, and management.

The term "systems architecture" is defined by the U.S. Army as follows:

SYSTEM ARCHITECTURE - The generalized description and portrayal of a
functional system composeof several interacting/interoperating subsystems
arranged in such a manner as to satisfy the requirements stated in an overall
concept.

When the Army speaks of systems with respect to an architecture, it
commonly refers to information, automation, communications, and management,
all working from some standardized foundation. Although there may be other
minor considerations with respect to systems, these are considered to be the
four major elements in a systems architecture.

In order to allow development of a systems architecture, certain questions

must be answered. These might be summarized in the following list:

1. What jobs must be done?

2. Where are the jobs done?

3. What information is needed to do the job?

4. What is information flow pattern on the battlefield?

5. What should be the architecture for integration of functional
systems.

6. Where and how should automation be applied?

It has been the experience of the Army too often to have dealt primarily
with question six (6) without completely having answered questions one (1)
thru five (5). From these questions, it may be perceived that efforts to
apply and integrate automation on the battlefield hinge on two areas not

-3-

specifically dealing with automatic data processing (ADP).---those being
function and information.

To set the stage for this discussion, a convenient reference framework
will first be established. In order to achieve tactical units objectives, the
commander of each unit and his staff must perform certain basic functions. He
must see the battlefield, plan the operation, allocate resources, fight the
battle, and sustain the force. These functions can be arrayed in a matrix
with the battlefield functional systems currently used by the U.S. Army
Training and Doctrine Command (TRADOC) in the Battlefield Automation
Management Program (RAMP). These functional systems are maneuver, field
artillery, air defense artillery, air/ground, engineer, electronic warfare,
intelligence, communications, command and control, logistics, and
administration. Each center or school within TRADOC has been charged with
developing functional system concepts for each of~these functional systems.

With the five commander and staff functions arrayed on the vertical axis
and the eleven battlefield functional systems listed horizontally, the way
automated systems are generally applied to the battlefield at the present time
can be described. This approach, no matter how functions and functional areas
are described, basically automates current manual procedures but does not
provide for the exchange of information between the functional systems, nor
does it provide for integration of functions across the battlefield. The
result is a large number of stand-alone ADP systems, many of which support
similar functions in different functional systems.

In order to make such an approach work, extensive interoperability between
the automated systems involved is required. Unfortunately, virtually every
system has its own data elements, language, applications, hardware, and so on.
Interoperability is, therefore, almost impossible without significant
expenditures for translational devices or so called "black boxes.'

A better approach might be to integrate like functions across functional
areas/systems. This means that similar functions would be rationalized and
users in any of several functional systems would have access to the same ADP
applications in support of their functions. There are several advantages to
this approach: It minimizes the number of computers on the battlefield; it
rationalizes the development of functional applications; it simplifies
interoperability; and it minimizes the burden on funds, people, and
communications. Practical problems in communications, technology, doctrine,
and organization, however, make this integrated functional approach, at best,
a long-term goal.

Thus, two broad problems must be addressed: What can be done now, and
what can be done over the long-term to achieve an integrated automation
architecture? The first thing that must be done is to recognize current
limitations and live with them. While it is widely recognized that a complete
systems architecture is needed as soon as possible, it must also be recognized
that such an architecture is not available now. The first increment of
automated systems fielded will not be an integrated, interoperable,
multi-functional architecture. It will be a series of nonstandardized

systems which, while perhaps not optimum, provides assistance with some of the
pressing problems which exist right now.

The second thing required now is to take positive action towards achievement
of a battlefield automation architecture. Recalling the questions raised
earlier, these must be answered in about that order to make possible an
orderly progression towards such an architecture.

In order to begin, it is necessary to refer back to the matrix described
earlier. By adding a third dimension, that of echelon of command, a figure to
operate as a tool for identifying information needs on the battlefield can be
built (figure 1).

FUNCTIONAL INFORMATION REQUIREMENTS

10A /
Com STM M"lA on ClEN ITWM CUMUIC LO ADME

SUSTAIN

Figure 1

These needs are described in terms of input/output information for every
functional area at all echelons, corps and below. This will then serve as a
baseline for determining the various paths over which information can travel
from one point to another in any combination of commander and staff function,
functional area, and echelon and ultimately lead to an architecture for
applying automation to the information flow on the battlefield. Thus, the
first four questions from the list are addressed, and the Army can proceed
with the application of automation to enhance its ability to process and
distribute information within a battlefield automation architecture.

Battlefield automation architecture as a subset of a total systems
architecture is defined as " a series of integrated battlefield automated
system networks characterized by interface/interoperability, continuity of
operations, security, RAM, and multi-functional processing all of which are
largely achieved by standardization."

It is important to realize that such networks may cut across traditional
frameworks of organizaiton, branch, and echelon. In a purely conceptual
framework, an automation architecture is unconstrained by systems,
organizations, or procedures which are not designed expressly for the
automated environment. This requires that a close look be taken at all these
factors when designing the automation architecture. The purpose of all Army
architectural effort is to determine how the Army can move from where it is
now towards the ideal, or at least an environment where automation is
rationally applied to enchancment of battlefield effectiveness and does so at
the least cost.

As was expressed in the definition of automation architecture, certain
characteristics are essential to a network of integrated battlefield systems.
The Army calls these operational design criteria (OC).

The operational design criteria for ADP s ystems in the Army are
interface/interoperability; continuity of operations (CONOPS); security;
reliability, availability, and maintainability; and standardization. Each of
these criterion is, by itself, a major area of concern to users, developers,
and commanders at all levels and must be addressed at every stage of the
development cycle. Additionally, they are closely related so that
requirements for each must be evaluated for the effects on the others.

While each criterion is important, one may hold the key to the Army's
ability to address the others. That one is standardization. From the Army's
point of view, lack of standardization is the major problem area associated
with automation architecture development in the U.S. Army. It prevents any
real progress being made in interoperability without the use of elaborate
translational measures, as well as complicating, beyond probable solution, the
measures to assure continuity of operations under a variety of conditions.
Security of systems and data bases is also complicated by the variety of
standards now used, although the netting of automated systems in a
comprehensive architecture presents its own set of security problems.

The most obvious major problem area associated with a lack of
standardization is the reliability, availability, and maintainability (RAM) of
hardware for a large number of unique systems under battlefield conditions.
One survey, conducted by the U.S. Army Communications Research and Development
Command, provides some insight into the magnitude of the problem. This survey
predicted that by the late 1980's the total population of battlefield
computers in only the Army may exceed 135,000 computers of all types. Numbers
of this magnitude makes it clear that the RAM problem will be practically
insurmountable without standardization.

More subtle, but no less perplexing, are the problems of software support
and maintenance. Software support for the U.S. TACFIRE system alone calls for
about 100 personnel and $7M annually. Similar burdens are implied for every
automated system fielded. Obviously, there is a serious resources problem.
Doctrine and organization for post deployment software support must be
examined. Standardization is the only way to make adequate support achievable.

What is being done to address automation standardization?

-6-

To address the problem of data element standards, the U.S. Navy has
developed a data base package for management of data element dictionaries
called the record association system/standard data element system for use by
all battlefield automated systems proponents and developers. If successful,
it will provide a means by which data element standardization can be managed.
This is a key consideration in the ability to exchange information between
automated systems.

In the area of hardware standardization, the Army is working with the
other services towards the development of a military computer family and its
associated software to provide for compatibility of procedures, as well as
commonality of hardware, for all battlefield automated systems. The magnitude
and importance of this project was illustrated earlier when we discussed the
numbers of computers projected onto the 1980's battlefield. The key to the
approach is one that defines common physical characteristics, connector
compatibility, and standard input-output functions rather than one of single
sources for equipment.

Progress is being made in the areas of message format and language.
Format standards must be continuously and rigorously applied to insure that
the message can be understood even when all the other interface elements are
present. The Department of Defense is directing an interservice program to
address this problem called the "Joint Interoperability of Tactical Command
and Control Systems" (JINTACCS).

Development of a common high-level language called DOD-i is also
underway. There are numerous reasons why a high order language must be
developed and agreed upon.

Obviously, commion computer language makes possible common operating
systems and applications programs, thus permitting continuity of operations
and rationalization of applications.

More critical, though, is the problem of computer programmers. A study by
Texas Instruments, Inc. has predicted that, given current programming
methodology, there could be a shortage of as many as 10 million computer
programmers in the U.S. by 1985. The use of high order language is a major
step to alleviate this shortage by increasing programmer productivity.

Two standardization related areas with which the Army must better come to
grips are those of integrated logistics support and source data automation.
We need to reexamine our doctrine for integrated logistics support (ILS) in
the area of training, supply, and maintenance in order to support battlefield
automated systems. In an environment where cross-attachment of units will
probably be necessary, we must be able to provide logistical support in
automation as in other areas. Training, supply, and maintenance
standardization must be addressed to provide the ability to support attached
units effectively.

In addition, we must develop compatible systems and procedures for what we
call source data automation, that is, those means by which information is
originally inserted into the automated system network. These systems and
procedures must be standardized throughout the battlefield in order that we
might be capable to input data to a variety of different systems when required.

-7-

IL-

In summary, it remains for the Army to commit itself to solving these

problems now (it will cost much more later) in order to make the gains
in the

effective application of combat power which can result from the fielding
of a

series of integrated networks of battlefield automated systems---a battlefield

automation architecture.

-8-

I SRAD
BATTLEFIELD AUTOMATION MANAGEMENT PROGRAM

Mr. Dennis P. Mahoney
Battlefield Automation Management Directorate

United States Army Combined Arms Combat Development Activity
Fort Leavenworth, Kansas

The purpose of this paper is to describe the Battlefield
Automation Management Program (BAM'P). The Army fully intends to
capitalize on automation. It provides us a means to change the odds
in a potential war in which we will probably have to fight outnumbered
and outgunned by the enemy. However, initial efforts towards
automation of the battlefield have encountered difficulties.

In April 1977, at Fort Hood, Texas, Tactical Automation Appraisal
II took place. Two major issues emerged. First, there was no single
manager in charge of battlefield automation and second, there existed
no guiding concept for battlefield automation management.

As a result, the -Vice Chief of Staff of the Army (VCSA) directed
the US Army Training and Doctrine Command (TRAOOC) to establish a
single focal point to manage battlefield automation within the
following guidance, that of developing a philosophy and a methodology
to manage automated systems development, which will control
proliferation of computers on the battlefield. From this guidance
emerged the BAMWP philosophy which is to optimize fighting capability.

With this background, the Combined Arms Center proceeded with
development of our methodology model. This model uses three basic
inputs to an evaluation process which results in a specific
recommulendation regarding the development of each battlefield automated
system.

The management of battlefield automated systems is complicated
somewhat because the Army currently acquires its automation capability
under two different regulations, Army Regulation (AR) 18-1 and AR
1000-1. Thus, before implementing the methodology, it was necessary
to merge the life cycle phases of each. The result is the set of
categories identified as I, II, or III which are Concept/Definition,
Validation/Development and Production/Installation. This enables us
to track a system from concept to fielding if systems are procured
under either regulation.

In implementing our methodology, we require the proponent of a
system to provide a series of inputs. The first, the Battlefield
Functional System Concepts, are documents prepared by each of the
eleven battlefield functional proponents identified in the systems
architecture presentation. They describe, as an example, how the
field artillery, or maneuver, functions are performed on the
battlefield. Their orientation is conceptual and functional, as
opposed to being driven by echelonment or equipment. This document
provides BAMP analysts insight into the basic actions performed by the
functional system, and explains how the system will assist the
commnander with his requirements to- see the battlefield, plan his

-9-

............

operations, allocate his resources, fight the battle and sustain his
forces. Our second stream of inputs are the information shortfall
statements, also submitted by the battlefield functional proponents.

An information shortfall is that portion of the total known
information requirement which is currently not being fulfilled. The
proponents described each of their shortfalls as either a void, a
condition where the information is not available, or as a deficiency.

If the shortfall is a deficiency, they described it in terms of a
problem in either timeliness, accuracy or resolution. Resolution, in
this case, means that information may be available in a timely manner,
with a high degree of accuracy, but still does not portray the desired
picture.

The shortfalls evolve from the functional concepts mentioned above
as expressions of information required to perform missions or tasks on
the battlefield. The first two inputs just discussed provided the
jumping off point in our evaluation of automated systems. The
evaluation actually began with the submission of our third input -

the battlefield automated system description.

This document, also prepared by the functional proponent,
describes in detail a fielded or proposed AOP system. Examples of
four battlefield automated systems are the Corps Tactical Operations
System (CTOS), Army Terrain Information System (ARTINS), Standoff
Target Acquisition System (SOTAS) and Mobile Army Ground Imagery
Interpretation Center (MAGIIC). The system description tells how the
battlefield automated system is functionally integrated, what
shortfalls it addresses, and it describes the systems resource
requirements in terms of dollars, people and communications.

From these three inputs, we have a foundation for evaluating
battlefield automated systems. The concept describes the arena in
which a system will operate -- the shortfall describes the need -- and
system description ties it all together. Thus, the integration thread
can be carried from concept to actual fielding of any proposed
automated system. Using these inputs we filter each proposed
battlefield automated system through the system evaluation process.

Initially, we insure the proposed battlefield automated system
meets minimum operational design criteria. The system is carefully
checked for standardization, which is critical due to the number of
systems under development. Specifically, standardization is the key
to success in the next two areas shown, which are interface!
interoperability and CONOPS, or continuity of operations in the event
a system is shut down for any number of reasons. The reliability,
availability and maintainability of the system is analyzed as is the
systems proposed degree of security.

If the system meets those OC requirements, it is further
evaluated to determine its performance, resource burden and payoff.
Proposed battlefield automation systems capabilities are evaluated to
determine if they satisfy information shortfalls. Next, the percent
of shortfall satisfaction is reviewed and, finally, the impact on

operational effectiveness for the proposed battlefield automated
system is analyzed.

Next, the system is evaluated with respect to burden on US Army
resources and are quantified in terms of dollars, people and
communications. Specifically, its total cost, in dollars, throughout
the acquisition life cycle is estimated. All costs, to include
Research Development Test and Evaluation (RDT&E), Other Procurement,
Army (OPA), Operations and Maintenance, Army (OMA), which includes
civilian costs, and Military Personnel, Army (MPA) dollars, are
compiled.

The burden in people is analyzed to determine impact on
operations, maintenance and training. Both direct costs, such as
systems operators and post deployment software support personnel, and
indirect costs, such as vehicle operators and maintainers, are
included in this assessment.

The systems communications requirements are screened to assess
their impact. Because of the burden that battlefield automated
systems place on US Army communications resources, it is essential to
determine whether new technology is required, additions are needed in
the form of equipment capability, additional load is placed on current
communication systems, or if there is no discernable impact on our
current communications systems.

Lastly, the payoff evaluation is determined by assessing the
overall net benefit to the Army in terms of information shortfall
satisfaction versus the dollars, people and communications costs. In
addition, key factors will be highlighted with respect to potential
acquisition and operating problems, such as personnel operator
qualifications and factors relating to the previously mentioned
operational design criteria.

Upon completion of this process, which occurs three times at
various points in each system's acquisition life cycle from concept
through fielding, the final recommendations are made. The
alternatives are accelerate, continue, terminate, modify or rejustify.

To provide some appreciation of the magnitude of the BAMP, there
are approximately 70 fielded or proposed hardware and software
battlefield automated systems. Each of these systems is to be
evaluated through the Battlefield Automation Management Program.

Army Battlefield Interface Concept

Major M. W. Robinson

Captain John T. Ratzenberger

USACACDA, Fort Leavenworth

1. The Army Battlefield Interface Concept (ABIC) is an ongoing
procedure and iterative document for identifying, classifying,
describing, and consolidating all interfaces among Battlefield
Automated Systems (BAS). While ABIC1978 addresses only Army
BAS at corps level and below, future cycles will extend the

A'TC to include joint and allied systems at all echelons.

2. Under the ABIC, BAS are studied to determine functional infor-
mation needs and outputs and the methods of information trans-
mittal. This review also encompasses the methodology and re-

quirements of the Battlefield Functional System Concept, and
Information Shortfalls and the BAS description. Each BAS is
compared to all other BAS and all matching inputs and outputs
are documented as potential interfaces.

3. The objectives of the ABIC are to:

a. Provide an objective automation architecture.

b. Promote interoperability and standardization.

c. Rationalize redundant sources and requirements.

d. Provide general and detailed guidance to system and
material developers.

-12-

ARMY BATTLEFIELD INTERFACE CONCEPT
(ABIC)

John T. Ratzenberger, CPT, U.S. Army
Battlefield Automation Management Directorate

U.S. Army Combined Arms Center
Ft. Leavenworth, Kansas

The purpose of this paper is to tie together the previous two
papers - Systems Architecture and the Battlefield Automated Management
Program - to show how the Army is moving toward an automation
architecture.

An automation architecture is a series of integrated Battlefield
Automated Systems characterized by interface/interoperability,
continuity of operations, security, RAM and multi-functional
processing; all of which are largely achieved by standardization.
From this definition, we should lock on two key concepts-
Interface and Interoperability - as they are central topics of this
paper.

An interface is a boundary or point common to two or more
Battlefield Automated Systems or other activities where exchange of
data takes place. There are three types of interface:

- Manual extraction, transmission and entry of data from one system
to another.

- A remote I/O device connected online to one system at the
processing site of another.

- And, an automated exchange of information directly between the
central processors of two or more systems, with or without
operator assistance.

Interoperability is the capability of Battlefield Automated
Systems to directly exchange data in a prescribed format, and to
process the data exchanged. By definition, interoperability is
achieved only by an automated interface.

Automated systems must interoperate to the fullest possible extent
due to the sheer volume - both quantity and frequency - of data to be
exchanged on the battlefield. The fragmented system development, the
lack of interoperability, and the effects thereof, have been described
in the previcus papers. Although the problem had been addressed for
many years by a series of meetings and studies, no viable solutions
were found - chiefly due to doctrine changes, static procedures,
and cumbersome documentation requirements. The clear need to simplify
procedures was addressed at a 30 August 1977 meeting at the Combined
Arms Center, when both users and developers jointly proposed a dynamic
procedure to identify interoperability requirements.

As a result of this meeting, HQ Department of the Army issued
guidance for the Army Battlefield Interface Concept, or ABIC, in
November 1977. This was to be an iterative document, updated yearly
as new systems emerged and requirements changed. Training and

-13-

Doctrine Conmmand, as the combat developer, was given responsibility to
maintain and upgrade the ABIC based on Army-wide input. Army Materiel
Development and Readiness Commiand, as the principle materiel
developer, was given responsibility for the engineering of approved
interfaces to meet user requirements.

The purpose of the ABIC is five-fold:
- Create a simple mechanism for HQDA to approve and fund

interface and interoperability needs.
- Assist the materiel developer in funding of hardware, software

and communications to support specific links.
- Provide a document which identifies requirements for

interoperabil ity of automated systems.
- Provide guidance to the proponents to promote interoperability

and standardization.
- Last, but most important - provide a comprehensive and objective

automation architecture supporting the whole corps battlefield.

The scope of the ABIC is broad, encompassing all Army systems
interfaces at corps and below - provided they have an approved Letter
of Agreement between the combat and materiel developer - and will be
fielded by 1985. Further, all interfaces with Army systems in
echelons above corps and with joint, allied and NATO systems will be
included. Growth is provided by incrementing the fielding date by one
year with each iteration.

The analysis of each system relies heavily on data provided by the
proponent. This data describes the system in general, the interfaces
with other systems, by type, echelon and area, the interfaces by
functional application, and the information exchanged. Each of these
will be described using notional examples to illustrate the complexity
of the problem.

First, the system description gives a statement of the mission and
fielding date. This places the system in perspective on the
battlefield and in time. Then the system is described in terms of,
essentially, the physical characteristics of the interfaces.

Systems interfaces, as shown in the Figure 1, tell who will
exchange data and how. For example, "A" and "E" exchange data via a
remote terminal located at "E"; "C" and "D" exchange data via an
automated link. "B" and "D" might exchange data - not directly, but
through another system. "A" could be an executive system - receiving,
storing, and distributing data from a number of smaller, subordinate
systems. Note that subordinates can and do exchange data directly.
More than one executive could be in the network - this is illustrated
by making both "A" and "0" executive systems. A prime example of this
might be to make "A" a division command system and "D' a division
artillery system.

Interfaces classified by echelon of employment show who owns and
operates the system, as illustrated in Figure 2. Comparing figures 1
and 2, note how the five systems have grown to seven as two of the
systems - "A" and "C" - are employed at different echelons. Note also

the modification of interface requirements as illustrated by systems
O"8", "C" and "D". Systems "C" and "D"~l interface directly only if they
are both employed at division level - and "B" and "CI" interface
directly only between battalion and brigade levels. It can also be
seen that the division level system "A"l must interface with its
counterpart at corps.

Interfaces classified by geographical area of employment
show the comm~unications requirements to support the interface, as
shown in Figure 3. The prime example to note here are systems "A" and
"E" which are corps systems by echelon, as shown in Figure 2, but
system "E" is employed well forward *in a battalion area.

Interfaces are next described by their functional *application.
Functional applications show the type of data exchanged in terms of
basic military information needs such as enemy situation, friendly
situation and supplies on hand. Figure 4 (above the dash line) shows
two systems exchanging information about enemy forces. For example,
commiand system "A" sends data on enemy forces to up-date the target
list in artillery system "B". After the target has been attacked,
system "B" sends the results back to "A" to update the enemy
situation. Many systems are multi-functional as ehown by the entire
Figure 4. In this case, artillery system "B" also provides commnand
system "A" with ammno useage data to update both the friendly situation
and the ammno supply picture.

The last thing looked at is what information is exchanged
in relation to the functional application, as shown on in Figure 5.
In this case, the functional application exchange is broken down into
specific data elements. The data sent (denoted by "S") or received
(denoted by "1R"), depends upon~ what the system has available or
requires. For example, commiand system "A" designates a target to
artillery system "B" by pr-oviding data elements describing the subject
(such as "fire mission"), the unit size (such as "company of
infantry"), the activity of that unit (such as "moving in the open"),
the date and time they were seen, and the location. "B" would return
the results of the engagement by reporting appropriate data elements,
to include updating any changed data for the enemy situation.

Now that we have seen what information we have to work with,
the analysis process will be described. Each system is looked at in
terms of the approved systems requirements and information shortfalls,
as discussed in the BAMP paper, to see if the system fulfills corps
automation objectives. During this analysis, certain questions are
posed:

- What are the minimum data exchanges necessary for effective
system operation?

- Can system efficiency be augmented by data exchanges?
- What data must be exchanged to satisfy the commnanders information
requirements?

- Can the system provide the data?
- Can the system absorb the data?

In the end, all Battlefield Automated Systems are compared to each
other and all matching inputs and outputs are documented. This
becomes the ABIC product, a document showing - in system by system
pairs - a graphic portrayal of all interfaces, a presentation of
information exchanged, and supporting rationale for each interface and
exchange. The ABIC is used as a requirements document for HQDA
approval of interfaces, as supporting info for the materiel
developer - and most importantly, to define the corps automation
architecture.

During the first iteration of the ABIC, many insights into the
paths and pitfalls facing an Army automation architecture were
gleaned. These fall into the broad categories of fielding dates,
executive systems, software, data base management, standardization, and
continuity of operations.

Fielding dates impact in two ways. First, when many systems are
fielded at the same time, and second, when systems in a network are
fielded at different times. When many systems hit the field at the
same time, there is a massive increase in data exchanges.
Communications and processors in a network must be able to handle this
increase - without an unacceptable degradation of performance. To
minimize the problem, systems must be well designed and data base
management techniques must be up to speed before-hand. Major changes
to software after the fact are too expensive to be a viable solution.
Differing fielding dates cause other problems as there may be
significant gaps in a network. Cost and operational need must be
compared to decide if interim links must be created of if certain
links can be delayed. This must be done before fielding as it is
cheaper to design interim links into a network than make fixes
afterwards. Another aspect of this is continuity of operations -
alternate plans must be made now to back-up a network or system if the
designated back-up system is not yet fielded.

Executive systems are the best example of the massive increase in
information exchanges within a network upon fielding. Again, data
base management techniques must be well in hand to ensure the
executive systems can handle their mission. Due to their size and
complexity, the information to be used must be pinned down early to
avoid expensive fixes. On the other hand, due to the key role of the
executive systems, it is best to concentrate upon them as it will be
much cheaper to change a few executives than a lot of subordinates.

Software must be well-designed and tested from the start - the
cost of changes is expensive in both time and money. It must also be
designed for ease of maintenance after fielding. Software is really
no different than a tank - if it breaks down, it must be quickly fixed
to restore operational readiness. The ability to do this,
particularily in terms of people and money - is already one of the
biggest questions in the automation architecture scheme.

Standardization of hardware, software, data elements and
procedures - just to name a few aspects - is the key to an automation
architecture although not the total solution. However,

-16-

standardization for its own sake is not the answer - the future must
be planned for to avoid the prohibitive cost of changing horses in
mid-stream.

Data base management techniques are of prime importance due to the
volume of data involved. The dual capability of automatic and on-line
file maintenance must be built-in to prevent the volume of information
from degrading the system. A viable network management and control
scheme and the decision to use centralized or decentralized data bases
must be balanced by the CONOPS requirement to reconstruct data bases
quickly.

Continuity of operations is the most critical aspect of an
automation architecture. As the Army becomes more automated, the less
it can revert to manual operations for back-up. Types and methods of
back-up must be identified and integrated into planning and
development from the start. In a combat operation, the ability to
restore a command and control system to operation quickly may spell
the difference between victory and defeat. Additionally, it must also
be known if a system can back-up another without degrading the
performance of either or both - and whether or not subordinate systems
can function without the executive.

As CONOPS is the ultimate tie-in of all other topics, one thing
must be made clear. These wartime systems are being designed and
tested in peacetime. It may not be possible to completely simulate
the intensive demands combat will place on a system or network - but
there may not be time to do a better job later.

It is unfortunate that development times, defense considerations
and the need to employ certain systems as soon as possible hinder a
logical fielding plan. The ABIC is an attempt to pin down interface
requirements and provide a comprehensive automation architecture for
coordinated development. Upon its success rides the future of Army
automation.

-17-

-18-

LiL

Li L,

LJ

egg

1-4

-20-

I~r r . ..

I
'I

I
I

I

-I

I

I

U

C,,.

-22-

HUMAN FACTORS

Jean N. Hooper

ARI

HUMAN FACTORS

SESSION CHAIRPERSON: Jean N. Hooper

Army Research Institute

SESSION SUMMARY

The Human Factors Session at the Army Software Symposium was
focused on two areas where human performance is critical to system
operation--the roles of the human as system developer and as system user.

General issues in the design of computer systems to facilitate
human-machine interaction were addressed. Clearly, there is a need for
cooperation between system developers and human factors specialists to
develop interface guidelines that transcend specific systems.

Use of interactive query language systems by naive users to store,
manipulate, and retrieve information is becoming more widespread in the
Army. Human factors issues in the design and use of query languages were
discussed.

Software development is widely recognized as a costly, often
error-prone activity which contributes to system unreliability. Recent
research on the performance of the individual software developer have been
reviewed with the goal of improving the efficiency and accuracy of the
programming process.

-23-

Human Performance in Software Development

Jean N. Hooper

Army Research Institute

Software development is well recognized as a costly, labor-
intensive activity. Improvements in the software development process
must focus on the performance of the individual programmer in writing
code; unfortunately, it is only recently that the individual's perfor-
mance has been examined. Different metrics of nerformance (e.g., lines
of code, errors, product quality) were discussed, and research on
programmer performance will be summarized. Concluding remarks addressed
possible means of improving the performance of the individual software
developer.

-24-

A REVIEW OF FACTORS WHICH INFLUENCE
SOFTWARE DEVELOPMENT PERFORMANCE

Jean N. Hooper
US Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333

Software production is widely recognized as a costly, error-prone,
labor-intensive activity. Many factors which influence the performance
of the professional software developer have been identified through
controlled research and project audits. Literature in this area will be
reviewed to identify factors affecting software development performance,
especially productivity. This analysis will be used to generate pre-
scriptive suggestions useful to project management personnel in optimizing
performance.

Some of the factors which have been found to influence the performance
of the software developer are shown in Table 1. These factors can be
grouped into five categories:

3. Project factors, such as program type and complexity;

b. Environment factors, such as turaround time;

C. Programming tools and methods;

d. Management factors, such as programmer team organization; and

e. Personnel factors, such as experience.

This list is not intended to be exhaustive; clearly, just in the area of
personnel factors, there are many more such as motivation and skill
level.

Project Factors

The effects of project factors on performance are summarized in
Table 2. Both Brooks (74) and Zelkowitz (78) cite similar figures of
productivity, measured in lines of code (LOC) per year, for software
projects of different types. The most difficult type of software is a
control program, with productivity rates of about 600 LOC per year. For
systems programs, the productivity rate goes up to around 2,000 lines of
code per year, an increase by a factor of three. Applications programs
are generally written at a rate of 6,000 lines of code per year, roughly
a ten-fold increase in productivity over control programs.

Brooks (74) has also offered information on the effect of project
complexity on project cost. Note that he uses cost, and not some other
metric of performance as his measure, but in the context of his report

-25-

cost -.an be roughly equated with productivity. He has determined four
different levels of complexity, with level 1 the simplest and level 4
the most complex. A level 1 program, at the simplest level, is produced
for the author's own use; Brooks assigns this a cost factor of one. The
next level of complexity is a programming system, which is a generalized
and documented program, and is three times more costly to produce than
an "own use" program. A programming product, at the third level of
complexity, is one which requires integration of components, costing six
times more than a level 1 program. At the highest level of complexity
is the programming systems product which requires everything--it must be
generalized, documented and integrated, and costs nine times as much to
produce as a level 1 program. Thus, according to Brooks (74), complexity
of the program can produce a nine-fold increase in cost.

Project size is another factor which influences productivity.
Johnson (77) audited sixteen software projects and concluded that over
three times more debugged, implemented, and documented source code was
produced per year on small projects. Unfortunately, he neglected to
define "small" and "large" projects, thus providing little quantitative
information on project size.

In addition to the factors of program type, complexity and size,
the required interaction among system components also influences productivity.
Brooks (74) notes that projects with high interaction requirements have
lower productivity rates.

Environment Factors

The computing environment is another area which may influence the
performance of professional programmers (see Table 3). Sackman et al.
(68) studied the performance of professional programmers using time-
sharing and "simulated batch" systems. The simulated batch system had
a fixed turnaround time of two hours. No significant differences were
found between the timesharing and simulated batch conditions on any of
the performance measures. This can be attributed to the large individual
differences in performance which were observed; the individual differences
exceeded differences due to the programming environmen~t. The authors
then transformed the scores to reduce the variance ani useL' programmer
coding skill as a covariate; in this analysis, a significant difference
was found in debugging time, with lower debugging time for programmers
using the timesharing system.

Turnaround time, and not the use of batch vs. timesharing, may be
the factor which influences performance. This is supported by the
failure of Sacknan et al. (68) to find significant differences on most
of the performance metrics employed despite statistical reduction of
individual differences. In the Sackman et al. research, the turnaround
time for the "simulated batch" system was very short, and was not variable.
Rarely are such conditions found in a batch system. Oliver (78) has
noted that turnaround time is a factor influencing performance; installa-
tions with short turnaround times have higher productivity rates.

-26-

Management Factors

Management factors which influence performance are summarized in
Table 4. The organization of programmer groups is a factor studied
extensively by Scott (73) and Scott and Simmons (75). These researchers
developed a communications model of team organization based on the
analogy of a programming team to a multiprocessor communications network,
with a single instruction multiple data stream (SIMD) organization.
Inputs to the model consist of an activity profile and productivity
level for each member of the programming group. The activity profile is
the percentage of time the programmer spends in productive, personal,
and communications activities; these figures are based on empirical data
(see Scott, 1973 or Scott and Simmons, 1975, for additional information).
A scaled productivity value was the output of the simulation using this
model.

Scott (73) and Scott and Simmons (75) simulated the productivity of
three different programming group structures, shown in Figure 1. From
left to right, these will be referred to as the subteam, traditional,
and egoless structures (Weinberg, 1971). With identifical activity
profile and productivity inputs for each of the three structures, the
egoless and substeam structure groups were significantly more productive
than the traditional team structure. No significant differences in
productivity were found between the subteam and egoless structures.
Scott (73) attributed the lower team productivity of the traditional
organization to an information bottleneck caused by the position of the
manager of the team. In the other two organization structures, the
information flow was distributed across team members.

Using the same model, Scott (73) investigated the effect of team
size on the productivity of the traditional group structure. Starting
with a three member group, performance of the team was simulated, and
team members were added in increments of three up to a total group size
of eighteen. The simulation confirmed that there is a point beyond
which the addition of personnel provides no increase in group productivity.
The productivity increased with the addition of personnel up to a group
size of twelve; beyond that point, there were no significant gains in
productivity with increased group size. This findings may be related to
Brooks' Law (74): adding more personnel to a late software project
makes it later, due to the communication and training requirements
placed on the personnel already assigned to the project. In Scott's
simulation, it is likely that the information bottleneck observed in the
traditional team organization reached a critical level with a group size
larger than twelve. Unfortunately, Scott did not investigate the effect
of group size on the other two organization structures.

In a third simulation study employing the communications model and
the traditional team structure, Scott (73) investigated the effect of a
highly productive individual on group productivity. Productivity of the
group was higher when the productive individual was a group member than
when such a person was placed in the role of group chief. Once again,
this is attributed to the communication requirements imposed on

-27-

the team chief which reduce productive time, especially in the case of
the traditional team structure used in this simulation.

Weinberg and Schulman (74) performed two experiments to investigate
the effect of explicit project goals on performance. In the first
experiment, two groups of professional programmers were assigned identical
programming problems. One group was given the goal of maximizing efficiency
of the program, while the other group was given the goal of minimizing
development time to completion of the program. Performance on the task
was measured as the number of runs to completion of the program and
execution efficiency. Weinberg and Schulman found that the objective
was achieved at the expense of the other measure. The group with the
efficiency goal minimized execution time but required a greater number
of runs, while the fast development group produced the program more
quickly but execution time was much longer.

In their second experiment, Weinberg and Schulman (74) studied the
performance of six three-member groups. Each group was assigned a
primary goal of minimum core used, minimum execution time, output readability,
program readability, minimum statements, or minimum programming hours;
each group chose a secondary goal from the same list of six goals. Per-
formance was measured directly for all attributes except readability,
which was judged by ranking of solutions by experts.

Weinberg and Schulman (74) report a clear influence of the primary
goals on performance. Some goals were found to be incompatible, such as
execution efficiency and program readability; in particular, core and
execution optimization goals were found to conflict highly with other
goals. Programming groups maximized performance on the primary goal
attribute when faced with incompatible multiple goals. Note that
programmers can make tradeoff decisions when given explicity ranked
goals.

Programming Tools and Methods

The tools and methods used on a software development project alsc'
clearly affect performance. A summary of these factors is shown in
Table 5. Both Brooks (74) and Oliver (78) compared the effect of language
level on productivity, finding that productivity, measured as lines of
code produced per man month, remained constant regardless of language
level. From a psychological point of view, this is reasonable if each
line of code or instruction is considred a conceptual unit or chunk.
Despite the fact that line-by-line productivity is relatively constant,
Brooks estimates that effective productivity increases by 5 times when
higher level languages such as FORTRAN are used instead of assembler
language. This is because fewer lines of code are required in a higher
level language to accomplish the same process.

The use of modern programming practices such as structured programming

techniques also has been found to dramatically increase productivity.
Based on project audits at IBM, Baker (75) estimates that full implementation

-28-

of structured programming techniques can y~ield a 50% increase in
productivity, measured in bytes of code produced per man month. Full
implementation of structured techniques includes use of the Development
Support Librarian, Top-Down Development, Structured Coding, and Chief
Programmer Teams. In two comparable aerospace projects on which the
experience level of the personnel was equivalent, the use of the Develop-
ment Support Librarian alone increased overall productivity by 50%.
Baker (75) also compared productivity rates of two other aerospace
projects. On one, the Development Support Librarian was the only technique
used; on the other, the Development Support Librarian, Top-Down Design
and Structured Coding were all employed. The personnel on the second
project produced roughly twice as many bytes of code per man month.

While clearly IBM's experience with structured programming techniques
has yielded impressive productivity gains, it may not be this specific
set of techniques that is responsible. It may be that any structuring
and formalizing of the methods and approach to software development
would yield significant improvements in productivity.

Programmer Factors

Programmer experience, especially experience in the specific applica-
tion area, is another factor which has been found to increase productivity
(Scott and Simmons, 1974). A particularly interesting result was found
by Youngs (74), who investigated the effect of programmer experience on
error frequency. Novice programmers were compared with "professionals,"
defined by Youngs as persons who had earned money programming. It is
certainly reasonable to assume that the level of expertise of the "professionals"
differed considerably.

Youngs' (74) results are especially interesting because they are
somewhat counterintuitive; professional programmers committed more
logical errors than novices. Logical errors were defined as errors in
the algorithm to solve the problem which produced incorrect program
output. Youngs also found, as might be expected, that professional
programmers made fewer total errors and required fewer runs to achieve a
correct program.

Multifactor Research

Scott (73), in addition to his simulation research on programming
group organization, used multiple regression techniques to determine
influences on project-level productivity. Two large software development
data bases, from SDC and PRC, were used. Total lines of object code
produced over the total man months of the project was the dependent
variable; the order in which the eight most significant independent
variables were entered into the equation is shown in Table 6. This
order represents the proportion of variance of the dependent variable,
productivity, which was accounted for by the independent variable. Thus,

-29-

the most significant factor was frequency of operation of program, which
is related to Brooks' levels of complexity. The plus and minus symbols
to the right of the independent variables indicate their relationship to
the dependent variable. A "+I +" indicates that an increase in level of
the independent variable causes an Increase in level of the dependent
variable, productivity. In general, this list of factors influencing
performance is consistent with the factors summarized above.

Additional confirmation of the influence of these factors is found
in another research study by Scott and Simmons (74), who used the Delphi
technique to achieve expert consensus on factors influencing project-
level productivity. After two rounds, subjective agreement was achieved
on factors influencing implemented object instructions per man month.
On a fifteen point scale, from -7 to +7, the factors with the highest
median ratings, indicating greatest positive effect on productivity, are
shown in Table 7. These factors are much the same as those already
a'ddressed, with the exception of the addition of task allocation factors.
Urfortunately, variables having a highly negative effect on productivity
were not reported.

Implications and Conclusions

The factors identified which influence performance were summarized
in Table 1. Clearly, some of the factors, especially project and
environment factors, are beyond the control of project management.
However, prescriptive conclusions may be generated from an examination
of factors that may be manipulated at the management level. These
conclusions and recommedations are shown in Table 8.

First, always choose the highest level language that will satisfy
the requirements of the problem. The use of a high level language not
only increases productivity, but enhances product maintainability and
transferability.

In selecting a programming group organization, communication bottle-
necks should be minimized by using some structure other than the traditional
team organization. The subteam structure used by Scott avoids communica-
tion bottlenecks and also seems to minimize the communication requirements
placed on each team member. Also, to maximize group productivity, a
highly productive individual should be assigned as team member, not team
leader.

Individual task assignments should minimize the routine interaction
and communication between team members. When possible, task assignments
should consist of functionally independent modules. In addition, of
course, task assignments s'~ould be explicitly documented and communicated
to the individual.

At the project management level, the explicit statement of goals
and ranking of priorities will maximize performance on the primary goal
and allow for reasonable product performance tradeoffs to be made.

-30-

Well-defined practices such as structured programming techniques should
be implemented to improve productivity. Furthermore, the project manager
should avoid the impulse to overload a project with personnel. Brooks
Law (74) still holds: in addition to reaching a point of diminishing
returns with an increase in personnel, productivity on a late project
may be impaired. Finally, design and code walkthroughs should be
implemented in a non-threatening manner, without representatives from
management, in order to detect logical and other errors which may elude

the individual programmer.

-31-

References

Baker, F.T. Structured programming in a production programming environment.
In Proceedings, International Conference on Reliable Software. SIGPLAN
Notices, 1975, 10 (6), 172-185.

Brooks, F.P., Jr. The mythical man-month. Datamation, 1974, 20 (12),
44-52.

Johnson, J.R. A working measure of productivity. Datamation, 1977,
23 (2), 106-112.

Oliver, P. Examining programming co ;ts. Computer Decisions, 1978, 10 (4),
50-52.

Sackman, H., Erikson, W.J. and Grant, E.E. Exploratory experimental

studies comparing on-line and off-line programming performance.
Communications of the ACM, 1968, 11, 3-11.

Scott, R.F. A computer programmer productivity prediction model.

Unpublished doctoral dissertation, Texas A&M University, College
Station, TX, 1973.

Scott, R.F. and Simmons, D.B. Programmer productivity and the Delphi
technique. Datamation, 1974, 20 (5), 71-73.

Scott, R.F. and Simmons, D.B. Predicting programming group productivity--
a communications model. IEEE Transactions on Software Engineering,
1975, SE-I, 411-413.

Weinberg, G.M. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold Company, 1971.

Weinberg, G.M. and Schulman, E.L. Goals and performance in computer
programming. Human Factors, 1974, 16, 70-77.

Youngs, E.A. Human errors in programming. International Journal of
Man-Machine Studies, 1974, 6, 361-376.

Zelkowitz, M.V. Perspectives on software engineering. ACM Computin

Surveys, 1978, 10, 197-216.

-32-

z U)

~ 0/) Z

cn z C-0 U -
WL (D ".. Z 0 I

U) > - C/) 0: <

L~) U) C/) <~I

I- - <w I- <~ *i < 0
Ui C:) - _j - =) < C

< F- W0 L LL Z C3 H-
w L-)C:) Z 0 z

LL- L- 0 z X: 0 z
0D 0 U) 0 0 -Z

M - L-~) o CD J W
- m Z W H- - -I Li

X: wL z LL z CI- < iF- w) z z
E 0D < LU N Wi Z U) WL W

< <L X: w - ix -L -

=D CD cn Q -w L z - X w w:
0 U) C X D 0 i U/) 0- 0

I V .) c:) CI - LuJ LUJ

CL

-J

-F

LL

cx F-

F- a- (n
LL. (n 0 z

z >- -1 0
V C) WL -

- > I-
LL ul

S0- H0 V) wL
C) Ui- >)
I l 0- w U- U) LUl-

E- N 0 Z Hm CD (D
>0 - 0 Z - Z l

L- - L-) - W F- -- Z

X H- Z Ui 0 M H- < 0
< <Li w < a- ul =Z

w U) = n w D U) <~
CD C -11 a ul 0 C~L i U L Z

0 0 0 WH L-) < wZ lw z -i wL -
0l Q- Cl LL - LuJ 0 HxH

-33-

U 0
0 0 0j

4j0.4

01 w '41 4 0
UU 0ju

o3 c 04 v0 caC
4.4 0 . 00 m4 10

0.4. 0 0. 04.0

0 0. .44.0 1.~U'
v 6 w 41 .0 cc 0AOO 00 0 u 0

.0 0.0. 0 00 0.4.

b4 w C00 . t
o. 004 00 0 .00 0
S. 0 0 '1 v0. 0 000 OK

0 m~2 14 0c 04...0 0
CL 4 I4 I 4

1 .4 .0 4.4.

0 0 0 0
044 . -,0 00

0 C0 0 o 00 -a
0 >1 00 Lww "

01 0

to 40 w~ 0

0. 04 '. 00
00 0 0

0.-4 v-4 ~ 0 v0

1100 00> 04

v Z. =.4 0 ul
0 01.0

0)
) 0 4

w

00
$44

0

0

AA

l-

00
0 . ~ 0 0 0

*0

CI.

OD 0 0

K 0 000bo I
0~ ~ 9: g:r.04K

0. U U 00

CL0 0 0 0 4 .

4..- a 4 CL 0L

0000o 90

0 o 0 0>
w. w. w. r. to

-34-

0 w- 0

0- -04

a 0 ~
4-o = -0p
> 0 w 0 1.

0 W~4...

IV U 04 0., 00 a

o: 0O02 0w
4., r. . C 0 r
I.' '- - -4=o 0 'o m.C x -

0 040 a Z w
0

W0-4 0
2.4 u 5 *a 0 1- w

u 4) 0 1- 1

1. C 0 0 0

0 0 4C O
4- $C-I44>b C

0w -. O-10O 4,

U4 ~ ~
0 V.cj/ ~ :

S

r
uC

w 60

- U-

-5-0

w. . 0 u 4
0 .) W4. 0 r0 CL "

ow o- 0 00
r 00 0.f 0) 0

u0 0 a) "00 03-
00 :3 w3 >. 40 0

w. bo 0 03 w -

o0 w0
a 000 r- 113-
4.. w 00 cc0 0 40. 4 0)o 0 ,> 0 0.Ca 00

r *.0 003, ,

.0 0 1. 000
0 go p,- 40) r0 aO 00 a4-

4-a CL.- 03
. 0 . a0. >1 91 00> r...

04 lo~0 - m'A
.0 r4r. W w-0 1- -4 wr- 4~~~ C.4 - 0 E.004 0 c

0~~~ be434 0~J ' .. 0 - z
w.- 030 0.a0~o . o -

0 00

03 0

w 4-0 0 Y)
r. 00000-40 0 0 0 E E x 6-

4) -. 3.0 -43.0 w3. OD m3 V m...
41 0 0 00 03 r 0 .01T
r3 r0 r- -4' c3 c 0 03'
w 030. 30 4) 000

0 W0 . 4) E Ea . cca W.0 0 0 - cc
4040 4-30 4-0 .) 00z00- 00

w CL0 -aC00 00C 0 &14300 0

44 .- 0 -440 E-. 00 00 . 0
0 n Q0.' w0.' 30 0 04.00 0 -

0 03 ~ 400~.0 t

00

0. to b
0 0 0

0 40 0 30 00

00 3 0 0 0 m0

w 4 0 0 0 -4'.
0 0 vU

0 0 04

0. .0 0

W -00

0'
0 w' w' 0 0

w0 0 a a m .00

-36

- - - - -----
_ _ _ _

FIGURE 1

SUBTEAM TRADITIONAL EGOLESS

EXPERIMENTAL TEAM STRUCTURES USED BY SCOTT
(73) AND SCOTT

AND SIMMONS (75)

-37-

0 0~~4~

'l W.4 .-4 44 (A 00

CL. 4.4 c0 to 0 >
0 00 4 1 0.A0c0r

04 oe 0) 04 0

W4 44 0'4 0 cfl404
0 .- 4 v >C: 0 o,'4 > m 4
u w4 4-4 X4 ' " w 0 c

04 @0 444 0 m~ v0Wu
44 0 U0 0 00'U.-a u

0) .40 0-.044
0 W0 44 w. ale 13

I0 m4 u> > m 0J'4/ 4U- 00
a4 r4 I0.4 m.0 04 0 44 0

0 00 444444 U 444

o o44U u ~ >4 4444
U 04040 =@ 0V 0 $-E =00

>4 V. 4- QU 0'4 0

.- 4 3 -44 44. 4.44 40.

4)44
000

44 V
44 .0 .0

C000

(A 00

00
.00

441

4 144

.0I '0
-4 441 0 l I W

>4 CL 0) 0
0 444 "AJ3 :

604 0 j t

0 0c

44 4-38-

TABLE 6

Order of Independent Variables Entered into Regression Equation

1. Frequency of operation of program + -

2. Programmers assigned + -

3. Elapsed time required for development + -

4. Use of low level language + -

5. # Analysts assigned + -

6. % of I/0 instructions + +

7. Average programmer experience + +

8. Complexity of application + -

9. Response time required of program + +
(from batch to real-time)

Adapted from Scott and Simmons (75)

TABLE 7

Factors with Greatest Influence on Productivity

ME DIAN

1. Quality of external documentation (prior to RATING
task assignment) (6)

2. Programming language (5)

3. Availability of programming tools (5)
(e.g., utilities, traces & dumps)

4. Programmer experience in data processing (5)

5. Programmer experience in functional area (5)

6. Effectiveness of project communications (5)
(completeness of task assignment)

7. Independent modules for task assignment (4)

8. Use of well-defined programming practices (4)

Adapted from Scott and Simmons (74)

-39-

TABLE 8

Conclusions

Language

- use highest level possible

Team Structure

- use subteam or egoless structure

- assign highly productive individual as team member,

not chief.

Task Assignments

- Divide tasks to minimize intercommunication

- assign functionally independent modules

- explicitly document and communicate assignment

Management

- explicitly state goals and rank priorities

- avoid overloading project with personnel

- implement design and code walkthroughs

- use well-defined practices and methods

-40-

Human Factors in Query Language

Lawrence M. Potash

Army Research Institute

Development of interactive query language systems that approach
use of natural language in flexibility and power and employment of such
systems by the Army makes a review of human factors considerations in de-
velopment of these systems highly desirable. Human Factors considerations
in development of query language systems were discussed under the topics:

a. Query language

b. Symbols or vocabulary used in query language

c. Supportive, pacing and general features of man/computer

dialogue

d. Types of users employing the system.

Some human factors research undertaken at USARI relevant to these topics

had also been briefly discussed.

-41-

HUMAN FACTORS IN QUERY LANGUAGE

Lawrence M. Potash

U.S. Army Research Institute for the
Behavioral and Social Sciences

Alexandria, Virginia

The development of interactive query language systems that approach
use of natural languages in flexibility and power and the employment of
such systems by the Army (for example GIMII used in ASSIST) make a review
of relevant literature desirable.

This paper is concerned with query "languages" that have syntax that
is more than an elementary "fill in the blank" or picking Out appropriate
terms from a hierarchical list. Examples of query statements in such
syntactical' languages are shown below:

SQUARE: EMP ("50")
FORMAL NAME DEPTNO
LANGUAGES

GIMII: FROM EMP WITH DEPTNO EQ "50" LIST NAME 4

NATURAL
LANGUAGE ENGLISH: Find the names of employees in Department # 50.

A qzuery language system is more than just the basic query language.
Adequate description must also include supportive features ("help"
clarification Dialogue, error feedback, etc.), pacing devices, (confirm-
atory signals, attention signals, etc.), and the user population for which
the system is intended.

This literature review synthesizes experiments, theoretical and des-
criptive literature relating to query language. Relevant literature is
summarized in terms of a) syntax, b) symbols or terms used in query lan-
guage, c) supportive, pacing, and general features of the man-computer
dialogue, d) types of users employing the system. The literature review
on which this paper is based is nearing completion and is quite long.
Rather than trying to condense the entire review into the written equi-
valent of a 20 minute presentation, I am listing some of the more major
conclusions and suggested areas for future research in terms of the four
dimensions previously described. Before listing these conclusions, one
generally applicable, perhaps somewhat disappointing, cautionary note
is that MOST CONCLUSIONS OR ASSERTIONS THAT ARE FOUND IN THE LITERATURE
ARE THE RESULT OF USER EXPERIENCE AND/OR "REASONABLE" OR LOGICAL EXTEN-
SION OF SUCH EXPERIENCE.

-42-

Currently, a large body of research literature which could serve to pro-
vide Human Factors guidelines for query language development DOES NOT
EXIST. The remainder of the paper cites some of the more important
conclusions derived from the literature survey.

QUERY LANGUAGE SYNTAX

Some Conclusions

o Advantages of natural language syntax ("english") are limited
training requirements and flexibility. Disadvantages of natural lan-
guage are imprecision and difficulty of implementation.

o Disadvantages of using natural language are diminished when the
domain of subject matter is highly constrained.

o System "comprehension" of query language ranges through key
word recognition systems such as ELIZA (which can be made to give the
appearance of english comprehension) through formal query languages
(as per example), which are relatively limited in range of procedures,
syntax, "meaning', and their domain of competence, to truly generative
comprehension in which the system can analyze a natural language input
using internal knowledge of the subject domain and reasoning capability
to generate its own questions, problems or solutions. Only a few
generative systems exist and all have a very restricted domain of com-
pet ence.

" In future systems using voice input for natural language, the
users should be given incentives for being precise and concise.

" Use of logical and arithmatic operators may result in high
error rates (indicated in some but not all research literature).

Some Suggestions For Future Work

o Cost benefits analysis including experimentation to delineate
conditions for advantageous use of natural language.

o Investigate use of logical and arithmatic operators embedded
in different query languages and employed by different user populations.

o Comparison between different approaches to formal query lan-
guage such as QUERY BY EXAMPLE, SEQUEL, SQUARE, GIMII under variety of
conditions and user parameters.

o Assessment of an interesting alternative to truly generative
systems, use of systems that employ task related information to aid
the user.

-43-.

SYMBOLS OR TERMS USED IN QUERY LANGUAGE

Some Conclusions

o Controlled vocabulary can facilitate searches once vocabulary
has been learned.

o "Inverted glossary" with system displaying legal control terms
after user inputs terms can aleviate learning requirement of controlled
vocabulary.

o Ujser codes should suggest what they represent (i.e., letters
making up acronyms rather than arbitrarily assigned letters or numbers,
etc.).

o Experimental work indicates that simple truncation is an effec-
tive abbreviation technique but much more research needs to be done.

o For natural language, a relatively small vocabulary is probably
satisfactory for most purposes when the subject matter handled by the
system is not too broad.

Some Suggestions For Future Work

o Research on category definition and selection of most effective
labels or retrieval terms.

" Maximizing abbreviations to best represent terms they stand for.

" Effects of restricted vocabulary on use of natural language in

realistic man-computer dialogue settings.

SUPPORTIVE, PACING, AND GENERAL FEATURES OF MAN COMPUTER DIALOGUE.

Some Conclusions

o Tolerance for delay in system response is related to perceived
difficulty of problem (10 sec for relatively small computations to 10
min for long problems).

o Tolerance of delay is enhanced by pacing devices, i.e. (con-
firmatory signals, attentional signals, cueing signals, status displays).

o Error -control program advantageous (entry preparation display,
editing facilities, variable spelling approximations, flexible error
description feedback, system error monitoring).

o Error messages should not

1) be humoureous or overly friendly (it "wears thin").

2) Use wording that implies fault on part of user.

-44-

o Error messages should communicate

1) where error occured

2) what error is

3) ways to recover from error (or where to find relevant
information.

o CRT displays permit more rapid communication, are less noisy,
allow user errors to be corrected more easily than teletypewriters.

Some Suggestions For Future Work

o Work could be undertaken to determine how support require-

ments differ for different types of query language such as natural ver-
sus the more popular types of formal language.

TYPES OF USERS EMPLOYING SYSTEM

Some Conclusions

o Distinction between dedicated operator, casual operator, and
intermediary operator.

o When casual users employed

1) system should not be difficult to learn or have many

new operations

2) feedback should tell user exactly what to do

3) system should not place short time limits on user's
response (pressure effect)

4) have terminal in private rather than public area
(fishbowl effect).

o When casual and dedicated users employ system it should be
flexible (i.e., layers of language, detailed error feedback for casual
user, abbreviated feedback for dedicated user, etc.).

o Where a keyboard is used by unskilled typist, function keys,
minimal character recognition, etc. may be helpful or intermediary
operator with typing skills could be employed.

o Users with programming background may use less English like
formal languages more accurately.

Some Suggestions For Future Work

o Field concerning interaction of system with user characteris-
tics relatively "wide open" for empirical study as contrasted with
induction from "previous experience" or deduction from "reasonable
assumptions".

-45-

Issues in Human/Computer Interaction

Raymond C. Sidorsky

Army Research Institute

Human Factors needs help from other disciplines if it is to
rise above ad hoc "solutions" as each man/computer interface is developed.
Other disciplines are in the same boat. Means must be devised to enable
interdisciplinary discourse within a context that is broader than the
specific system for which the team is assembled. Modes and mechanisms of
man/computer interaction that transcend specific systems must be identified
and characterized by interdisciplinary Working Groups. Macros, tasks
modularization, logical operators, retroactive error recovery and other

candidate topics have been discussed.

-46-

INTERDISCIPLINARY ISSUES IN THE DESIGN OF
EFFECTIVE HUMAN-COMPUTER INTERFACES

Raymond C. Sidorsky
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

The thrust of my remarks is to make a plea for greater interdisciplinary
interaction in the system design process. I shall also discuss a possible
mechanism for increasing such interaction within ISRAD.

The Human Factors community needs help from other disciplines if it
is to rise~ above ad hoc solutions as each man-computer interface is
developed. In almost every case human factors specialists are faced with
trying to make the best compromise within a very narrow range of options
left open to them. I realize that the design of any complex system
requires a large number of compromises and tradeoffs with respect to
such factors as physical layout, electronics, software, user requirements,
system architecture and so forth. However, the other disciplines can
always hope that whatever the problems, the "user" will be able to cope
with the situation and make the system work at a level which, if not
ideal, is at least sufficient to justify the development of the system.
When the system is fielded we in the human factors business usually find
ourselves trying to make the best of a bad situation. After we have
done our thing, we are often left with the feeling that although we have
helped alleviate the immediate problem, we have not developed a body of
knowledge that can guide us in developing future systems. Each system
turns out to be a special case. Slide #1l illustrates this situation.
Each of the three Human Factors experiments shown here was concerned
with a different kind of user problem encountered in the operation of
an automated tactical data processing system such as TOS, TACFIRE,
ASSIST, etc.

The first deals with the problem of the restricted vocabulary and
nomenclature involved in human-computer discourse. Nystrom and Gividen
at the ARI Ft Hood Field Unit observed that TOS users were consistently
misclassifying tactical data messages. A message classification coding
schema based on a letter-letter-number schema appeared to be the proximate
cause. An analysis of the structure and content of TOS messages followed
by empirical performance measurements led them to device a four letter
coding schema. The new schema significantly reduced the number of
misclassified messages and was more satisfying to the users.

The process of transforming raw information, e.g., spot reports,
into computer acceptable form is another recurrent problem in tactical
data system operations. Strub compared operator performance under
four conditions, viz., on-line versus off-line entry and verified (by a
second operator) versus non-verified message composition. Performance
measures of speed and accuracy indicated that the on-line verified
procedure was significantly superior to the other methods.

-47-

Finally, Fields, et al. evaluated four methods of inputting data.
Speed and accuracy of performance in using standard typing procedure was
compared with typing plus error correction, typing plus automatic completion
of entries and light pen selection of entries from CRT displayed "ns"

Menu selection proved to be the most effective.

Each of these studies is a good example of a well designed, carefully
controlled empirical evaluation of alternative configurations at the
human-computer interface. They provided valuable information to help
resolve critical problems in the design or operation of particular
systems. But only under exceptional circumstances will it be feasible
to extrapolate these findings to future systems. The problems have been
presented to the human factors specialists in a way that makes the
development of general principle and/or guidelines extremely difficult
if not impossible.

My purpose is not to try to pass the buck or to deliver an apologia
for any real or imagined failings of Human Factors. The low level of
user performance obtained with many systems is not the result of a
conspiracy to give human factors types a hard time. Instead it appears
to be the result of an inability of various team members to communicate
and interact with each other at a level that transcends the specific
requirements of the system for which the team has assembled. The basic
problem exists for all members of the design team, not just human factors.
All of the team members appears to view the situation as one in which
their freedom of action is unduly constrained by the inflexible, unalterable
requirements of other team members. But I think these seemingly unalterable
"trequirements" may be more apparent than real. Their origins may lie in
the natural defensiveness of the members of each group striving to
minimize the complexity of their problem and/or in the erroneous assumption
that some desirable feature is well beyond the state-of-the-art of a
companion technology. That is, they don't ask for a new capability
because they assume it couldn't be delivered. Whatever the cause, in
many cases the result is a design decision based on too little information
about its effects and implications. Now everybody knows that "better
communication"~ is needed in almost every sphere of human activity. So
what else is new?? I intend my remarks to be more than a mere exhortation.
So I will try to describe some actions that could be taken by members of
ISRAD to help all of us to achieve more effective system design and
operation.

The method I propose is an adaptation of the Delphi Procedure that
has been used successfully for technological forecasting. I feel the
Delphi technique may provide a means for developing a mode of discourse
that will enable more constructive dialogue among system design team
members. Two kinds of Delphi-type working groups are needed. The first
stage Working Group (or Groups) would be tasked to define or identify
system operations or processes for further analysis. To be useful, the
operations or procedures selected would have to be general enough to
transcend specific system constra-nts but at the same time not so general
or vague that they can only be discussed at a philosophical level.

-48-

Second stage Working Groups would then be set up to pursue the topics
defined by the first stage Working Group(s). The objective of these
second stage groups would be to try to determine--using iteration,
feedback, anonymity and other Delphi procedures-the practical limits
that can be achieved in utilizing or improving various processes or
procedures associated with information processing systems. An open,
frank discussion of the needs, limits and capabilities of each component
technology--in a non-threatening Delphi atmosphere--would go a long way
toward dispelling the many myths, fears and misconceptions that frequently
impede the system design process.

The following are some possible Working Group topics. These topics
are offered not with firm conviction as to their utility but merely as
illustrations of the approximate level of abstraction of the variables
to be analyzed. All have a human factors focus but are contingent upon
an integrated effort of all members of the system design team for their
resolution. I'd like to discuss each of these topics briefly.

DATA ENTRY MACROS.

The first item, Data Entry Macros, are to be distinguished from
Procedural Macros utilized by programmers. The term macro is used here
to refer to the sort of shorthand notation used to represent groups of
computer instructions that comprise a sequence of logically interrelated
operations upon some variables of interest to a system user. For example,
as shown in the next slide (Figure 3) a typical request from a commanding
officer to the G-2 staff might lead to a query statement requesting the
computer to:

r"access the ENSIT file and print the time, location and direction

of movement of all enemy patrols observed in area XYZ."

Using macros, the operator need only enter:

M7, patrols, XYZ

that is, only three eittries versus 12 in the original statement.

Thus, the operator need only enter two or three items of information
to supplement the large number of entries made automatically by the
computer. This would inevitablv reduce input and logical errors, increase
the speed of data entry and retrieval and promote more effective communica-
tion between the system user (e.g., G-3, G-2) and the interface (keyboard)
operator.

Macros are potentially a great boon for the system user, especially
for the entry or retrieval of recurrent messages or queries. Indeed, the
macro approach may be the key to a conceptual breaktrhough in the barrier
between the user and the data base by allowing the user to tailor the
input/output process to the specific needs of the current situation.
However, much of the potential value of the macro approach will be lost

-49-

if macros are not developed in a manner compatible with the behavioral
characteristics of the user population. Experience has shown that the
cognitive and mnemonic burden imposed on the TOG staff and the terminal
operators by poorly organized data base structures is very high. The
haphazard or casual use of macros will not prevent high error rates, low
productivity and user antagonism. The full benefit of data entry macros
will be obtained only when all members of the system design team are
aware of their properties, operation, advantages and limitations, etc.
The team members involved include those responsible for defining user
requirements as well as software, hardware, system architecture, human
factors and other technical specialists.

The implications of a number of the general aspects of macro design
and use must be carefully analyzed if the maximum benefits of macros are
to be realized. This includes consideration of such questions as:

Universal versus locally generated macros. A library of macros to
accomplish common, more-or-less universal entry and retrieval operations
must be defined and standardized. However, cautior is needed to insure
that over-standardization does not inhibit the ability of users to
devise individualized macros to suit their local circumstances. The
factors involved in the trade-offs between standardization and flexibility
require careful, coordinated analysis by all system de~ign team members.

Macros within macros. As experience is gained with macros, it will
become apparent that basic macros can be aggregated to create higher
order macros. The development of higher order programming languages
(PL-1, Fortran, etc.) is perhaps an appropriate analogy. Since higher
order macros may provide the key to minimally constrained human-computer
interaction, care must be exercised to avoid premature standardization
on processes or procedures that will inhibit an optimum approach to
higher order macros.

Non-stationary population. One obvious fact of life facing us in
the development of macros is that the pool of potential users of any
system contains individuals who vary widely in skill and/or experience.
Furthermore, a given individual changes from novice to expert as a
function of practice. The developers of data entry macros-basic as well
as higher order--musc take into account these skill/experience differences
and provide sets of macros that will accommodate the entire range of
user skill/experience levels. In other words, any set of macros currently
under development that does not provide for simultaneous use by novices
and experts is seriously flawed.

LOGIC AND LOGICAL OPERATORS.

Boolean algebra expresses truth in a particular way. It enables us
to express and keep track of the relationship between sets and variables
in a way that is very useful in the design and operation of switching
circuits and computers. Unfortunately, it doesn't correspond particularly
well with the way people analyze and keep track of things. With special

-50-

effort, some people can be trained to view the world in Boolean terms.

But only a small number of people can do it and the effort involved is

enormous. Some way has to be found to make computers understand people

rather than forcing people to adapt to a non-conventional mode of thought

and discourse. The use of data entry macros discussed earlier may be

one mechanism. For example, although the term Macro 7A, xx, a might imply

different logical operations to a human and a computer, the result

produced by the computer will satisfy the request of the user. Here the
situation is somewhat analogous to the use of ideographics for communication

by Chinese. The speech of a Cantonese is unintelligible to a resident of
Peking and vice versa. However, they can communicate with ease via the

mutually understood written characters. In any event, the problem of

logic and logical operators caanot be solved by specialists in the

relevant technologies working in isolation. An integrated, concerted
effort is needed.

TASK MODULARIZATION.

Even a cursory observation shows that many of the procedures employed
in the operation of various automated systems are basically similar.
Yet from the operator's perspective each system is a new situation with

little carryover or transfer from the other systems. Take terminology,
for instance. One gets the impression that system designers, like the
Weather Bureau naming hurricanes, use a different combination of assigned
names for each new system. "Get" is alternated with retrieve, fetch,

obtain, bring, call, etc. Similar clusters of synonyms are used for
operations such as "store" or "list" or "transfer" or other common
operations. The number of combinations of the half dozen or so synonyms

for the dozen or so most frequently used operations is in the billions.
We seem to be determined to use every one of them. It may be too early
to establish absolute "standards" for terminology but a measure of

consistency would go a long way toward making computer systems more
approachable to Army users.

A similar situation exists with respect to message formats. Every

formatted message contains a common set of elements and operations,
e.g., orginator, addressee, data file designators, operating instructions,
subject(s), actions taken by or affecting the subject(s), administrative
details (security, precedence, serialization), etc. Arranging the
messages in a consistent sequence would greatly increase the speed and

convenience with which military users/operators could interact with a
data processing system upon first encounter.

Consistent termii gy and message formats are somwhat elementary
examples of task modula.ization. The concept can be extended to encompass

dynamic processes associated with human-computer operations as well.
F-,r example, the underlying processes involved in setting up a data file
-r ,f retrieving a sub-set of the information in a data file are functionally

.i-- ir regardless of the subject matter contained in the file. Yet
*~ .xisting system requires a different configuration of operations

:ro-edures for executing such functions as data entry, file set-up,
Srttrieval, data transfer, etc.

-51-

Although the use of standardized "task modules" might reduce system
flexibility somewhat, the loss would probably be more than compensated
for though reduced operator error and training time. However, a valid
determination of the net trade-off of all relevant costs and benefits
would require inputs from all of the disciplines involved in the design
and operation of computerized information processing systems.

This brings me to the main point of my remarks, i.e., what has all
this to do with ISRAD? The notion of a Delphi procedure for coordination
of technological know-how has some obvious plausibility when considered
in the abstract. The virtue of developing various sorts of "standards"
and "modules" is universally recognized along with motherhood, apple pie
and Old Glory. However, I believe that the ISRAD group has some character-
istics that make it well suited as a medium through which various trans-
systems modes and mechanisms of operation can be identified and standardized.

These characteristics include the presence of a critical mass of
personnel in all of the relevant technologies. There are probably 10 or
more engineers and scientists back at the office for each of the 200 or
so people here today. Not many organizations can muster this much

talent across such a wide range of disciplines.

ISRAD is mission oriented. That is, although we represent many
different technologies and organizations, we all share a common-goal; to
design and produce information systems that will help the US Army accomplish
its overall mission. This esprit de corps is a valuable asset in
interagency and interdisiciplinary cooperation.

Non-profit motivation. Because we are not concerned with the
commercial implications of data processing systems we are not constrained
by consideration of industrial secrets, market protection, product
obsolescence and the like. We can exchange information freely and base
decisions on criteria that serve long range national goals.

The ISRAD group encompasses a wide spectrum of technologies. The
entire gamut of system design specialis, e.g., military (user) require-
ments analysts, electronic engineers, computer designers, programmers,
human factors, cost analysts, production engineers, etc., are available
within ISRAD or are readily accessible to it.

For the most part, ISRAD agencies deal with the application of
developed technology. The Army's primary concern is to field systems
whose technological soundness and reliability are proven. Thus, we need

not be preoccupied with making sure that our "standards," macros, task
modules, etc., can accommodate esoteric or untested techniques being
investigated at the laboratory level.

All of these characteristics taken together make ISRAD an ideal
group to undertake an interdisciplinary approach to the functional
standardization of terminology, data entry macros, logic systems, task
modularization and other modes and mechanisms of human-computer interaction.

-52-

REFERENCES

Nystrom, C.O. and Gividen, G.M. Ease of Learning Alternative TOS Message
Reference Codes. Technical Paper No. 326, US Army Research Institute,
Alexandria, Va, September 1978.

Strub, M.H. Evaluation of Man-Computer Input Techniques for Military
Information Systems. Technical Research Note No. 226, US Army Research
Institute, Alexandria, Va., May 1971. (AD 730 315).

Fields, A.F., Maisano, R.E. and Marshall, C.F. A Comparative Analysis of

Methods for Tactical Data Inputting. Technical Paper No. 327, US
Army Research Institute, Alexandria, Va., September 1978.

-53-

REQUXR2ENTS I

Dr. Edtoard LiebZein

CENTACS

REQUIREMENTS I

SESSION CHAIRPERSON: Dr. Edward Lieblein

CE NTAC S

SESSION SUMMARY

It has become clear that inadequate approaches to software/system
requirements development have contributed more to the high cost and poor
performance of software than any other area. This is especially true in
the domain of embedded computer systems where the software is not readily
separable from the hardware. Inadequate specification of initial require-
ments may be carried through several levels of "requirements engineering"
before they are detected, and in many cases, such problems are not detected
until the project has reached the programm~ing, integration and test, or
even the operational phase. The relative cost to correct a specification
or design error increases significantly when such errors are discovered in
later phases of the project.

This session explored the complex area of software/system require-
ments from several viewpoints. The first paper described experiences with
respect to application of the Software Requirements Engineering Methodology
(SREM), a computer-aided approach to definition and analysis applicable to
real-time systems. The second paper discussed a hierarchical decomposition
methodology that takes requirements through various stages including formal
specifications of requirements "modules". The decomposition of requirements
for a secure real-time tactical executive was described as an illustration
of the approach. The third paper addressed the issue of software require-
ments from the viewpoint of the project manager who is concerned with the
specification of software in the Request for Proposal for an embedded com-
puter system and management control for software development throughout
the contractual effort.

-54-

Computer-Aided Requirements Generation
An Evaluation

Carl G. Davis

BMD Advanced Technology Center

The application of the computer as an analysis tool in the
requirements definition phase of system development has been demonstrated
through the application of the Software Requirements Engineering Methodology
(SREM) to a wide variety of projects. This paper discussed conclusions
drawn from experiences with SREM and suggested research directions to
further enhance the requirements definition process.

-55-

COMPUTER-AIDED REQUIREMENTS GENERATION--AN EVALUATION

Carl G. Davis
Ballistic Missile Defense Advanced Technology Center

Huntsville, Alabama

Introduction

The Software Requirements Engineering Methodology (SREM) was developed as an
integral part of an overall software development approach, entitled the Software
Development System (SDS) [1]. SREM was developed to significantly improve the
capability to develop requirements for a data processing subsystem when system-
level definition had been given. This system was designed for problems inherent
in software development for Ballistic Missile Defense (BMD) systems and was
sponsored by the Ballistic Missile Defense Advanced Technology Center (BMDATC),
Huntsville, Alabama.

SREM was developed during the period of 1974 to 1977 and evolved through
experiences gained and requirements derived from application to a successive
set of complex problems. The approach has thus been verified through experience
during the development process. This paper will describe the experiences
gained in evaluation of SREM and discuss the evolving nature of requirements
engineering at BMDATC.

SREM Description

SREM was developed as an approach to aid in the generation of BMD data proces-
sing subsystem requirements. It consists of a combination of languages,
analysis tools, and procedures designed to allow effective statement of require-
ments and to eliminate or reduce known error sources [2,31 (Figure 1). Require-
ments are stated in the machine analyzable Requirements Statement Language
(RSL). The requirements may be stated interactively or in a batch mode and
are checked for consistency with previously entered data and for completeness
of description via automated analyzers. Structure is provided through R-NETS,
which form a path-oriented description of the system. The requirements descrip-
tion is stored in a relational data base, which is accessed through a flexible
retrieval system. Computer-aided simulation generation allows rapid evaluation
of the dynamic nature of the stated requirements. Upon the completion of
static and dynamic validation, the requirements are documented using automated
aids. Early structuring and analysis provide for rapid feedback to the system
designer.

SREM also includes procedures, steps, rules, etc., for the development of
requirements. Cost and scheduling models have been developed that enhance the
ability to estimate the impact of the requirements phase of software develop-
ment. The control and management of the methodology are interwoven and based
upon the defined tools and techniques, allowing greater efficiency and accuracy
in management information.

-56-

z --.

uu
04

0 o,
0wZ

z 0

0. 00j L

;A-
4.'u

L

Lu 4c40_

LU 0

2 z 0
0-0

LU 4

LU~ 0i04L, cc
I m 4

00

t w
coo0 r C-7 c0

'A th U-
ul 2z C LLLL)~~~4w caw UL

Z AL
CL

04z n z
w m 0 0

1-d W I- LU 4
4t - j WU0

w 0 ul 4-57--

Requirements Structure

The specification of the structure of processing steps in RSL is through the
element R-NET [4]. Each R-NET details the response of the system to particular
stimuli through defining the sequence of ALPHAs (processing steps) to be
followed to generate changes in system state and responses to the environment.
When all of the required steps are completed, the R-NET processing terminates.
The sequence of ALPHAs is specified by giving a graph model of the sequence in
a structure declaration associated with the R-NET. A sample R-NET showing
both graphical and textual form is shown in Figure 2. The flow structure of
an R-NET consists of nodes and the arcs that join them. Five types of primitive
nodes may be placed at any point on the structure (e.g., and/or nodes).

Requirements statement Language (RSL)

The language, RSL, is designed to allow a description of problem- rather than
solution-oriented attributes and contains primitives for specifying structure
in terms of processing flows, data, processing actions, and timing and accuracy
requirements. Informative and descriptive material and management-related
information may also be specified. RSL is an extensible language since certain
primitive concepts are initially built in which can then be used to define
additional complex language concepts. The primitives are elements, attributes,
relationships, and structures. From these, a nucleus of concepts has been
evolved through usage which, to date, has proven sufficient. The concepts of
this baseline language consist of 21 element types, 21 attributes, 23 relation-
ships, and 2 types of structures. Future users of the language can easily add
to the nucleus by means of the extension features provided by REVS.

Analysis Tools

REVS is an integrated set of tools used to support the definition, analysis,
simulation, and documentation of software requirements. A key concept of REVS
is that all requirements are translated into a central data base called the
Abstract System Semantic Model (ASSM). The RSL statements themselves are not
stored in the ASSM. Instead, they are translated into representations of the
information content of the requirements statements. This provides an efficient
and flexible means of maintaining a large software specification in a relatively
small computer data base.

The ASSM is a relational data base providing a common source for all require-
ments analysis, modeling, and documentation. The commonality of all data
ensures lisat any combination of extractions from the ASSM at any time (e.g., a
document and a simulation) will be mutually consistent. That consistency is
essential to asserting that the requirements modeled in validation of the
specification are equivalent in every sense to those written in the requirements.

REVS provides the mechanisms for entry of data into the ASSM as well as trans-
lation and interactive graphics, and a powerful set of tools for analysis
termed Requirements Analysis and Data Extraction (RADX). Translation is the
process of converting RSL statements into the ASSM information, where the

-58-

R-NET START R-NET: SAMPLE.
STRUCTURE;

INPUTJINTERFACE 11
VALIDATIONLPINT VI
ALPHA A

INPUTJNTEFACESELECT ENTITY-.CLASS IMAGE SUCH THAT (Y- Z)

ALPHA B
FOR EACH FILE HISTORY RECORD

VI -- VALIDATION-POINT 00OSUBNET C END
AND

ALPHA D

A ALPHA CONSIDER DATA STATUS
IF (READY)

ALPHA E
MAGE O NTRAY

SENTITY SELECTION OR PH FNEAY
END

~--- AND"END
"AND"IF (X,5.0)

ALPHA G
VALIDATION-POINT V2
OUTPUTJINTERFACE 01

" CONSIDER OR" OR (X -5.01

ALPHA H

HISORYOUTPUU-NTERFACS 02
HISTORYAND ALPHA J

FOR EACH--- F + STATUS ALPHA J
TERMINATE

READ NOT-READY OTHERWISE
EVENT 0

E F END TERMINATE

END

SUSET-'-I C+ a-- "OR" REJOIN

& "AND" REJOIN

V2 H TERMINATE

OUTPUT...INTERFACIE

Figure 2. R-Net Description

-59-

source of the statements may be cards, card images on tape, or keyboard entry
f rom a terminal.

Interactive graphics are provided through a software package executing in
conjunction with DataDisc Anagraph color graphics consoles to provide ASSM
entry and documentation. It permits entry of structures and referenced elements
in a manner parallel with the translator and may be used in conjunction with
translation in an operational environment. Significantly, this allows the
user to attribute graphical information to his structure, both for multicolor
display on the Anagraph and for documentation via CalComp plots.

Information held in the ASSM may be selected for output using RADX. This tool
is responsive to user direction in selecting either a re-creation of the
information translated into the ASSM, or the formatted abstraction of that
information in a user-defined HIERARCHY. The combination of these features
allows complex selections to be effected, so that all information needed for
documentation and that essential to configuration management can be abstracted
from the system without the encumbrance of irrelevant data. Since all data
abstractions are drawn from a common ASSM (and since that data base is con-
firmably consistent within itself), even redundant assertions in data extractions
are absolutely consistent with one another.

Both static and dynamic analysis are provided by REVS in order to determine
the internal consistency of the ASSM as well as its dynamic character. Static
analysis is performed in RADX, which examines the data connectivity through
the requirements to determine that the laws of logic and the conventions of
the language are fully satisfied throughout. Some forms of completeness
testing are also accomplished, determining, for example, that constants are
provided as required; the scope of completeness testing is largely at the
discretion of the user, since he may define extensive static analyses through
RADX commands to supplement those inherent in the system.

Dynamic testing is accomplished by exercising the requirements against a model
of the environment in which the system is to execute. Such simulations are
provided by an automated simulation builder and a software package supporting

its execution. Two different levels of simulation are supported: analytic,

in which high-fidelity models of the environment and explicit performance
measures are provided; and functional, in which the connectivity of the system
is validated with nonanalytic models.

Status

The REVS system has been implemented on the Texas Instruments Advanced Scienti-
fic Computer both at the BMDATC Advanced Research Center (ARC) in Huntsville,
Alabama, and at the Naval Research Laboratory in Washington, D.C. In addition,
it is hosted on the CDC 7600 in Huntsville, Alabama, and at ?IDAC, Huntington
Beach, California, and the CDC CYBER 74/174 TSS at TRW, Redondo Beach, California.
The REVS software consists of 50K lines of PASCAL and FORTRAN code. With the
overlay structure, REVS requires approximately 220K words to execute, including
I/0 buffers, stack, and heap space.

-60-

man"

The methodology procedures have been documented, and research on this phase of
the development has been completed. Experience is now being gained through
the use of this methodology within the BMD community. The application of SREM
to the distributed environment is being investigated.

Methodology Evaluation

The evaluation of any methodological approach for the development of software
is an extremely difficult task within itself [51. This difficulty is compounded
as one considers measuring the effectivness of a phase of development such as
requirements engineering, which has significant impact but relates only indirectly
to the final product. Evaluation against a standard would be highly desirable
but one does not exist. The "evaluation by doing" approach is usually limited
by the dollars required to define, implement, test, and evaluate a system of
sufficient complexity to demonstrate success. In addition, measurables during
the experiment must be carefully chosen to allow effective evaluation and
comparison. The double-blind or latin square approach to experimental evalua-
tion helps very little in this area since the learning curve effect tends to
warp results. Finally, since we are dealing with such a labor intensive
activity, it is difficult to separate the inventive capability of the engineer
from the effectiveness of his supporting tools. A good engineer supported by
an excellent technology may exhibit the same character as an outstanding
engineer supported by an average technology. With these views in mind, the
SREM technology was evaluated with a light toward obtaining as much information
about its character and capabilities as possible through a combination of
evaluation and experimentation. The evaluation approach took the form shown
in Figure 3 and consisted of an evaluation of effectiveness against known
errors, evaluation of methodology capabilities, and an evaluation by doing.
Effectiveness data have been generated for each of the areas [6]. Particularly
noteworthy is the large reduction in requirements errors (Figure 4) being
propogated to the next development phase.

The utility of SREM in requirements development has been demonstrated on a
wide variety of projects [7,8]. These range from small problems designed to
exercise one aspect of requirements development to large systems reflecting
portions of defense systems. SREM has been 'lso used in several roles for a
wide variety of customers. Primary usage has been in a verification role, to
verify a specification for the purpose of identifying problem areas, or in the
role of defining new or expanded requirements capabilities. SREM was applied
to the redefinition of requirements for the improved HAWK/TSQ-73 system [9].
This activity resulted in a complete test to the highly complex air defense
arena. Assessment led to the identification of improvements that will increase
SREM effectiveness.

The results of exposing SREM to divide user environment are summarized in the
following paragraphs:

0 Computer-aided requirements generation is extremely valuable in the
reduction of commonly occurring requirements errors.

-61-

ABIALIITY TO

DEMONSTRSCAIB ALLNERO

QULIYCAPABILITY TO RF

REQUREMNTSDESRIB AS

OFTYPRSORS

DEMANTATE ANALYSISM

ACACUURECOSIN

CHNEUINS

DEMONSTCONTROLI

Fiur 3. ProoNofEAiniLE

APPR-62-

'I)

05 LL
4.Z JC

OD uj 4

JW
IllLA

am cc 4

m n -

* 0

*0

-4 0

00)

ai

w L
zz

0L 0

(IlIWSW.LL 1 INZ~~~d)SIO3U~lD0

-63-z

ADA14~ .. INTERNATIONAL BUSINESS SERVICES INC WASH'INGTON OC F/O 9/2
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMS URGo VIRfINIA-ETC(U)
1978 S M TAYLOR DAAK7-78O--0030UNLASSIFIED N

*nuumnnuuuuu
EEEIIEEEIIIII
lEEEEEEElllEEE
IIIEIIIIIEIIEE

" The computers required to host the support software are generally
high-speed machines. The amount of checking and analysis required
currently doesn't lend itself to small machine application.

* Even on large machines (e.g., CDC 7600 computers), a complex require-
ments statement may result in a data base that exceeds memory size.
Simulations also soon exceed available storage. In addition, running
times for complex searches through large data bases become costly in
terms of complex time.

* SREM aids greatly in adding structure to requirements. This structure
forces early consideration of the implication of data processing
within an overall system context.

* The RSL has proven adequate to express requirements over a wide
variety of projects. Extensions to the language identified have
been within the capabilities of the uxtension features.

" Simulation for dynamic verification of requirements has proven
effective, but additional capability and greater tie-in with the
design phase would prove useful.

* Management and control of requirements development using SREM has
been enhanced by the discipline of the computer as an in-line develop-
ment tool. However, the improvements are a matter of personal taste
and are not quantifiable.

SREM represents a giant step forward in the effective utilization of the
computer as a development tool. Ongoing efforts are resulting in improved
efficiency of operation and extensions have been identified which will allow
its application to distributed data processing.

Acknowledgements

The thoughts presented on SREM have evolved over a number of years as part of
the SDS development and reflect the views and contributions of a large number
of people. Specifics on SREM are from documentation supplied by TRW Defense
and Space Systems, Huntsville, Alabama.

References

1. C. G. Davis and C. R. Vick, "The Software Development System," IEEE
Transactions on Software Engineering, January 1977, Vol. SE-3, No. 1.

2. M. W. Alford, "A Requirements Engineering Methodology for Real-Time
Processing Requirements," IEEE Transactions on Software Engineering,
January 1977, Vol. SE-3, No. 1.

3. T. E. Bell, D. C. Bixler, and M. E. Dyer, "An Extendable Approach to
Computer-Aided Software Requirements Engineering," IEEE Transactions on
Software Engineering, January 1977, Vol. SE-3, No. 1.

-64-

4. M. E. Dyer, et al., REVS Users Manual, SREP Final Report, Vol. II, TRW
Defense and Space Systems Group, Huntsville, Alabama, August 1977.

5. C. G. Davis, "Requirements Problems in Large Real Time Systems Development,"
INFOTECH, State-of-the-Art Report, Structured Analysis and Design, 1978.

6. M. W. Alford, et al., SREM Experimental Results, TRW Defense and Space
Systems Group, Huntsville, Alabama, 27332-6921-025, 1 June 1977.

7. M. W. Alford, "Software Requirements Engineering Methodology (SREM) at
the Age of Two," Proceedings COMPSAC 78, Chicago, Illinois, November 1978.

8. R. C. Slegel, "Applying SREM to the Verification and Validation of an
Existing Requirements Specification, COMPSAC 78, Chicago, Illinois,
November 1978.

9. P. H. Browne, Jr., G. C. Hitt, and R. W. Smith, Utilization of SREM in
IHAWK/TSQ-73 Requirements Development, TRW Defense and Space Systems
Group, Huntsville, Alabama, 27332-6921-034, September 1978.

-65-

An Approach to Requirements Definition
For Real-Time System

David Egli

U.S. Army Communications Research
& Development Command

Center for Tactical Computer Systems
Software Engineering Division

System requirements do not magically appear. They are derived
from various requirement inputs, iteratively sorted, and hierarchically
structured such that the system requirement definition can be understood.

The Tactical Executive provides the foundation from which a
family of Secure Real-Time Tactical Operating Systems (TACEXEC) for com-
puterized weapon systems could b~e realized. The TACEXEC provides an
illustrative example of requirement definition methodology down to the
modular level.

-66-

AN APPROACH TO REQUIREMENTS DEFINITION

FOR REAL TIME SYSTEMS

David Egli

US Army Communication Research and Development Comand
Center for Tactical Computer Systems

Software Engineering Division
Fort Monmouth, New Jersey

I. Introduction

System Requirements do not magically appear. They are derived from various
requirement inputs, iteratively sorted, and hierarchically structured such
that the system requirements definition can best be understood.

The Tactical Executive (TACEXEC) providcs an illustrative example of
requirement definition methodology, down to the modular level.

11. Background *

Traditionally, when the Army developed a new computer weapon system, the
contractor was not required or encouraged to use any existing software
previously developed. This led to the proliferation of many (170 systems)
Ad-hoc, non-secure and unmanageable systems. This was the result of not
having an all encompassing design philosophy which would provide the basis
for a library of proven software programs, common across a spectrum of
applications. The greatest cost saving could be realized in the area of
Secure Realtime Tactical Operating Systems.

The Tactical Executive provides the foundation from which a family of
secure Real-time Tactical Operating Systems could be built. The paper
describes the requirement definition stage and a summary of resulting
system design.

III. TACEXEC Requirement Definition

The TACEXEC requirements were derived (Figure 1) from the integration of
three requirement sources: Tactical Mission Requirements, Tactical
Application Requirements, and TACEXEC Project Requirements. The require-
ments were then ordered based upon what level of the weapon system
hierarchy they best could be met (Section D). Summary of the input require-
ments are tabularized in Figure 2.

-67-

A. Tactical Mission Environment Requirements

Modern Army computer weapon systems are required to function under the
most hostile conditions twenty-four hours a day. The system must be
capable of defending itself against sophisticated attacks by a techni-
cally oriented enemy using probabilistic and crypto-analytic approaches,
while defending itself from within against error prone application
mission software, hardware failures, and "friendly troops" entering
incomplete system commands and erroneous-'information. At the mission
level, security threat monitoring, reliability, physical overrun, and
processing speed I- a major consideration in all tactical computer
systems and thus was a major factor in the tactical mission requirements.

B. Application Software Requirement:

Tactical military systems for computerized communications, command-and-
control guidance, surveillance, and target acquisition applications are
generally characterized as consisting of a combination of critically
time-constrained "real-time tasks which directly interact with the mission
environment, "oreal-time" tasks which support the system operationally. and
"1non-real time" tasks which provide system diagnostics and maintenance
capabilities. The typical tactical system includes provision for:

1. The acquisition of data from sensors, operators, external data
links, etc.

2. The integration and compilation of this data into a data base to
provide detailed information structures (tactical situation descriptive
parameters).

3. The processing of these information structures for more precise
quantitative descriptions of the tactical situation.

4. The distribution of data and/or control information for sensor
and weapon, activation and operation. This includes the dissemination of
information for display of the tactical situation for operators and users
or transmission of data to remote systems.

5. System access control, authentication, and audit trails capability.

C. Tactical Executive Project Requirements:

The intent of the project was to develop a set of operating system
primitives (Kernel) upon which a family of Tactical Operating Systems
could be developed for supporting military application software. The
TACEXEC was therefore required to be machine transportable, application
independent, efficiently realizable using a Higher Order Language (HOL).
A major concern was that the project requirement's would not impact the
TACEXEC requirement goals. It later turned out to be the inverse case.

-68-

MISS ION
ENVIRONMENT

TACT ICAL

APPLICATIONS

REQUIRMENTSTACEXEC

TACEXEC INTEGRATOR REQU IREYENT S
PROJECT

FIGUPF 1 TACEXEC REQUIREMENT DEFINITION

-69-

Tactical mission environment requirements

Reliability

Security/Protection

Capable of running in degraded mode

High computational throughput

ContinuOUS operation

Application software requirement

Real-time/near real-time tasking

Access control

Support multi-processor systems configuration

Multi-level secure communications/ADP

Reliability

Drive non-standard military devices

Protection/isolation of tasks

Threat monitoring capability

Exception handling

Audit trails

Support data Base Management Systems

Project Requirements

Machine independence (CPU, I/0 devices)

Application independence

Efficient realization of design

Implemention using HOL

FlGtRE 2 Summary of Input requirements
-70-

Tactical executive requirement definition

Real-time/non real-time tasking

Provably secure: Multi-level security model

Guarantee of service

Support family of real-time execution

High reliability

Support multi-processor configuration

Support process coordination

Support multi-processing

Support virtual memory

Support non-standard military I/0 devices

Support Primitive File system

Machine independent

Application independence

FIGURE 3 Summary of TACEXEC requirements

-71-

D. Requirement Decomposition

The first pass is to isolate the common requirement set. These requirements
will be met by the lowest abstract machine levels, (TACEXEC, Kernel). The
second pass and subsequent passes isolate similar requirements into category
sets (family operating systems). These form the middle abstract machine
levels. The remaining form the upper abstract machine requirement set.
Tactical systems do come in several flavors therefore requiring a family
of operating systems. However, the family could be built from one Kernel
(TACEXEC). It is therefore necessary to make one/several last requirement
pass(es) defining the boundary between middle/Kernel abstract machine levels.
The TACEXEC requirement (Figure 3) will be met by each of the five abstract
machine levels described in section V.

Since requirements change in the real-world, only those abstract machine
levels relating to the requirements changes will be affected.

IV. Security Requirement for TACEXEC

In the TACEXEC we wish to enforce a restriction on the way information
may be passed from task to task. The particular restriction of interest
is called Multilevel security. Each process has associated with it a
CLEARANCE and a CATEGORY SET. The system has a fixed finite number of
clearances that are totally ordered by the relation "less then." For
example, the Clearance CONFIDENI'L is less than SECRET, which is less
than TOP SECRET. For convenience, clearances are represented as
integers.

The definition of the multilevel security model can be stated simply.
For any fl and f2 in F: where fl,f2 are functional references in
domain F, K and I are the security and integrity levels respectively.

fl-v f 2 a- K(fl) <= K(F2) AND I (Fl) >= I (f2)

This simply states that if there is any possibility of information
transmission between two function references, then the transmitting
function reference must have a security level less than or equal to
that of receiving function reference, and the receiving function
reference must have an integrity level less than or equal to that of
the transmitting function reference.

In other words, information can only flow upward in security or remain
at the same level, or only flow downwared in integrity or remain at
the same level.

-72-

.6

The formal specifications for the TACEXEC were written in SRI International
specification language SPECIAL. The security model was confined to two
modules READ-ALLOWED, WRITE-ALLOWED and enforced in following five TACEXEC
modules.

virtual memory
file system
user/system I/0
dispatcher
Synchronization primitives

An example of the formal specification of secure requirements module
READ-ALLOWED and WRITE-ALLOWED is given in Figure 4. The following
SPECIAL nominclature is as follows:

M equal

<= less than or equal
>= greater than or equal

t such that
* implies

comments

-73-

The definitions consist of: abstract data type and Boolean Algebra and

is beyond the scope of this paper.

TYPES

clearance: (INTEGER i | 0 4 i and i (= maxclearance);
category set:
(VECTOROF BOOLEAN cs LENGTH (cs) = number of categories);

accesslevel:
STRUCTOF(clearance security_clearance;

categoryset security categories;
clearance integrityclearance;
categoryset integritycategories);

PARAMETERS

INTEGER max-clearance $(the highest clearance),
number of categories,

DEFINITIONS

BOOLEAN read allowed(accesslevel subjectal, object al)
IS subject al.securityclearance
>= objectal.security_clearance

AND subject al.integrity clearance
4= object al.integrity__clearance

AND(FORALL INTEGER I 1 0 di AND i 4= numberof catergories:
(objectal.securitycategories Ei)

> (subjectal.securitycategories Eiu)
AND (subjectal.integritycategories t i])

ohjectal.integrity_categories Ci]))$

BOOLEAN WRITE-ALLOWED (access-level subject al, abjectal)
Is READ-ALLOWED (objectal, subject al);

FIGURE 4
-74-

V. TACEXEC DESIGN REQUIREMENTS

A. Real Time Behavior

The intent of TACEXEC is to be responsive to the needs of tasks. For real
time tasks this need is related to tasks being served within a certian time
frame. Among the tasks that might be served by TACEXEC is a scanning radar,
delivering signals at regular intervals. Another task could be a fire control
system, that requires extensive service only in bursts. Message transmission
is another task, that is typically of low criticality except that there night
be a maximum delay that is acceptable for the transmission of a message. Each
of these tasks poses different needs on TACEXEC leading us to three classes
of tasks: interative, demand, and background.

How does the system guarantee service requirements, particularly for the
interactive and demand tasks? That is, how is it assured that the systen
loading is sufficiently low such that the service needs will be met, but
not too low so as to preclude the inclusion of additional tasks that could
be handled. A scheduling algorithm was developed that can accommodate maximum
loading of the system. However, the processing time required for this
scheduling algorithm most likely precludes its use in any real time system.
On the other hand, if a scheduling algorithm based on tasks priority -- an
easily implemented algorithm -- is used then the system can be loaded such
that in excess of 60% of the time slots will be guaranteed to be available
for task processing.

B. Functional Capability

In general, the interface (Figure 5) provided by a real time operating system
need not be as powerful as that for a general purpose time-sharing system
(e.g., Multics). However, a real time operating system is intended to execute
collections of interacting programs and should have sufficient functionality
to realize some reasonably complicated subsystems. The TACEXEC provides the
following features at the user interface.

*virtual memory consisting of address spaces and segments

*a file system

processes

*synchronization primitives

-75-

U) w)
U) U)

'-4 OU)0

u) U) u 4)

0W GD0

w u ,IQ
coV V) I $4

*I =DJ :3 E u w

L~ 0 GD4 *,4.OG
$40~ >Ud

-4 GC'3o U I >0)) wDOV"

1-4 w .1 14"0 o -

V) W I0.. Q) 0DG =GD0= 0 C "
Ln Q) -4 www-4 u uu Ai0 m

M w w ww m u En V)U)) (n u :t

U)
:3 41J U)

GD U -1 41 cn 41 ci

>D 0) GD 04(U 00

>) >

a)) a) ,4u u u 6

40 4Ji

U 4 'j 4j Ca 0
4J-1 -4 > E V) ".

CD w C) 0 40 Q

U)LUnL W- 0 C; W r-JI

;~ D wD GD GD Ln ceL)w

w w Er= m-H 4-1
6V V 000 GD 14-. w G

III 14400 .

4) wODCGE Q)G

-4 -4 Q) 00 0GDG

>>

'-4

a))
.6 m a

Cda V0Q
4)11 o -4 0

k w 0 c

.. Lr4

Conspicuously absent from the system are: directories, linkage sections,
support for procedures, among other things that are in Multics. It should
be noted that these later facilities would be built out of the TACEXEC
facilities providing the bases for a family of realtime operating systems.
(Thus, TACEXEC can be viewed as a kernel out of which a family of operating
systems could be constructed).

C. Efficiency

As indicated above, a classic principle underlying an operating system is
the efficient management of resources (cpu, disk, main memory, etc.). In
a real tire operating this principle is in conflict with, and of secondary
importance to the guaranteeing of service to tasks. In particular, the
efficient management of tasks often introduces nondeterminism such that
accurate performance prediction is not possible. Fortunately, the critical
tasks (iterative and demand) typically require little memory and cpu time
for each execution. Also, there is little sharing of I/O devices in a real
time environment. Thus, such tasks can be given total access to all needed
resources of the system for the short time required for execution. Also,
if the program and data for these tasks is retained in main memory, then it
is possible to guarantee (by proof) that the service needs of these tasks
are met. This characteristic of the tasks led us to the decision that the
virtual memory system is to be totally resident in main memory.

There are other issues regarding the efficient realization of TACEXEC. A
high level language is desirable for casing the burden of implementation and
to aid in portability. However, there are important features of a high level
language that relate to the efficient implementation requirements.

In addition, there are efficient hardware support for certain functions is

required for a real time system, e.g., context switching.

D. Security

TACEXEC is intended for an environment where multiple users have simultaneous
access to the system, and wish to be assured that their information is not
available to certain other users -- on an accidental or intentional basis.
That is, the system is not to be a vehicle for the erroneous handling of
information. For a military application, the multilevel security model seems
appropriate (Section IV). In this model, each user has a clearance and a
category set; the cartesian product of clearances and category sets define
a partial ordering of security levels. The values for clearance are the
conventional classificationsz UNCLASSIFIED, CONFIDENTAIL, etc. The categories
represent an orthogonal restriction, and include such "controls" as NATO, ATOMIC.
The model requires that information stays at the same security level or flows
upward.

-77-

The model also includes integrity which provides additional restrictions
on the flow of information. For example, based on the security restriction
alone, there are no limitations to the "upward" transmission of information.
That is, the model does not prevent the "destruction" of a SECRET document
by an UNCLASSIFIED user. The inclusion of integrity places limitations on
such modification.

E. Provability

TACEXEC has been designed to be provable, in partucular by a mechanical
(computer program) program verifier. The main properties of concern here
relate to security and guaranteeing that tasks will receive the promised
service. Other properties, also of interest, relate to guaranteeing that
the user interface operations provide the intended functional behavior.

The development of system according to SRI International's Hierarchial
Development Methodology (HDM) is accomplished in stages. For example, in
the specification stage, each of the system modules (a module is provided for
each "facility") is formally described by a specification. In~ the implementa-
tion stage, the operations of each module are implemented by a program. A
proof is associated with each stage. For example, it is possible to prove
that the multi-level security model is satisfied by the specifications of
the modules of the user interface of TACEXEC. It is also possible to prove
that the guarantee of service property is satisfied by the user interface
specifications. Separate proofs can demonstrate that the programs are correct
with respect to the specifications.

This separation of proofs serves to simplify the overall proof process, as
any useful decomposition of effort should do. In addition, it limits the
amount of reproving that must be done as the system evolves. For example,
a change to the implementation (possible to install TACEXEC on a different
processor) does not require any change to the specification proof if the
specifications are left intact.

F. Portability

No real time operating system can be totally portable. In order to achieve
efficiency, there will alway be machine-specific code. The Army's ccncern
was to produce a system where the amount of effort required to move TACEXEC
from a machine on which it is successfully executing to another machine is
small.

-78-

Much of the ef fort involved in developing a system is associated with
"design". In general, design is concerned with deciding what a system
is to do, avoiding details on how it is done. In HDM, the initial stages
are concerned with design, while the later with realization. The output
of these early stages is a set of specifications for the modules and a
precise description of the structure of the system. These can serve as
the design for TACEXEC independent of the hardware on which it executes.

Furthermore, a system developed according to HDM is usually designed as
a hierarchy. (The TACEXEC hierarchy consist of five levels). Typically,
the modules of the upper levels are implemented by software, the middle
lEvels by a mixture of hardware and software, and the lower levels by
hardware. Thus, even the implementation affords a measure of portability,
in that many of the programs will remain intact in going from one hardware
to another.

-79-

Nuts & Bolts of Software Acquisition

Thomas A. Rorro

U.S. Army Electronics Research & Development Command
Beta Joint Project Office

Integration Division

The Government is a major consumer of computer software. The
trend in system development is to Imbed computer resources in all tactical
systems. The manager of these systems must understand the limitations of
computer software in order to effectively manage its development.

The expanded flexibility and capabilities of software make it
desirable for use in tactical systems. At the same time, however, these
attributes amplify human inefficiencies and create potentially grave prob-
lems in systems development.

The "Nuts & Bolts of Software Acquisition" address the cause of
software development problems and provides a "'cookbook' approach of their
resolution. Top down design methodology is applied to system development.
The elements of a software development contract are described in detail.
In addition, the critical aspect of schedule which enforces the top down
approach is described.

-80-

NUTS AN4D BOLTS OF SOFTWARE ACQUISITION

Thomas A. Rorro

Introduc tion

Congratulations, you've been selected to develop a new system for the
US Army. The first questions to be asked are: What is it?, and How does
it fit into tactical scheme of things? Unfortunately, the more people you
talk to the more diverse the answers become. The only thing that's for
sure is that the system contains a computer and it will be better than what the
troops have now.

There is one more thing for sure. "'you are headed for big trouble if
you're not careful!" There is hope however; and the intent of this paper is
to demonstrate that your problem can be solved by simply applying common
sense. In fact, software acquisition is as simple as A, B and C.

1. The Roots of All Evil

A. Flexibility.

Before the advent of computer technology, all system functions were
implemented in hardware. This technology severely limited the complexity
of the system functions which could be performed. Simplicity permitted the
design to proceed without the need for rigorous controls. Hardware develop-
ment by this method is efficient. The problem comes when a less than rigorous
controls are applied to software development.

The computer and its software provide the system designer with a new
flexibility. Changes can be made with the stroke of a pen. But, the error
in a single instruction cause the system to fail. The problem does not lie
with the computers interent flexibility. It lies in the designers inability
to completely describe his design and to communicate with the user. The
computer's flexibility simply amplifies this defect to the point of severe
consequence. The situation can be likened to the building of the biblical
tower of Bable.

B. Doctrine

There are two key elements in any system. The first is the mathematical
functions which it performs. And second, is the doctrine which defines its
use.

In the past, a system was developed in response to a users need. The
developer applied the available technology and produced a system which
implemented the mechematical functions required. The system was then
presented to the user who created the doctrine. These processes were not
completely independent but the interplay between the user and developer
were minimal.

The advent of computer technology completely changed this relationship.
The computer is capable of implementing both mathematics and doctrine. The

two step process of mathematical system development followed by doctrine
development is now a single process. Because of this, the interplay
required between the user and developer has grown exponentially. And with
this growth comes the risk of fielding a syste which is neither mathematically
sound nor meets the users needs.

C. Creativity

The flexibility and doctrine capabilities of the computer provides the
system architect a new opportunity to be creative. In the past, he could be
alone in his portion of the design and exercise creativity to the limits of
the technology. Now, the architect must share the system development with the
user. They must work together and be creative in their own area of expertise.
There is, therefore, a firm requirement for a formal design mechanism.

In the alternative, as men learn the system problems they begin to
exercise creativity. Often, this begins before they have completed the
learning process. As time passes, the developers become creative users and
the users become creative developers. Before long and with some luck, they
will each have reinvented the wheel.

D. Maitenance

Perhaps the last, but by far the most important phase of the system life
cycle is deployment. Once the system is in the hands of the troops, they are

s ure to find hundreds of previously unimagined ways to make it fail. It is the
responsibility of system developers to provide support documentation for the
deployment phase which will provide for system maintenance.

The flexibility provided by the computer results in the requirement for
detailed documentation. At some point in the development cycle it will have
to be procured. The question is; When?

2. Most for the Money

In order to have a successful system, the developer must properly deal
with the issues of flexibility, doctrine, creativity and maintenance. Timely
documentation can provide the necessary elements to resolve each of these
issues.

The documentation represents a complete description of the system. As
such, it can be of great value in coordinating the efforts of the developer
with the desires of the user. It can provide a formal mechanism f or the design
and the visibility to implement rigorous design controls. The technique of
applying documentation to this end is called top down design. A significant
factor of this approach is the cost which is born early in the development
cycle. Essentially, the cost of documentation is the same regardless of when
it is performed. The benefit of top down design is its ability to deal with
tht, issues of flexibility, doctrine and creativity at little additional cost.
As such, it represents the most for the money.

-82-

3. Top Down Design

In general terms, top down design is simply the development of a system
starting with the broadest definitions and working to the minute'details.
It is necessary to partition this effort so that measurable milestones are
available. Taking industry, developer and current procedure into account;
a three tier system has proved best.

The first tier is the functional description (A level specification).
This document is produced by high level personnel with significant user
interaction. The final document should be meaningful to everyone affiliated
with the development.

The second level of development is the Input/Output and mathematical
description (B level specification). The user is concerned with the Input!
Output and in particular with the man-machine interface. The engineers and
scientists are concerned with the mathematics as well as the cohesive aspects
of the system.

The third tier of development is the implementation (C level specifica-
tion). This document is of prime concern to the programmers with only minor
involvement of the engineers and scientists. The C specification contains
a description of the system in detail including the listing of the software
pr ogran.

4. The Carrot and the Stick

There is the age old problem of getting what you want when you want it.
In order to insure that system development is proceeding smoothly, the
developer needs both visibility and control.

Visibility is achieved through the documentation. As each level is
completed it is reviewed by all parties. Formal concurrence represents
the completion of that major milestone. It is appropriate to tie payments
and awards to successful completion of each level of specification. Thus
the incentive of on-time performance and a quality product is provided.

A system is not built until the software is programmed. But effective
programming cannot begin before the B level specification is complete.
Control can be achieved by restricting the programming through a contractual
stop. A statement to the effect that "programming shall not commense in
any form prior to receipt of an authority to proceed release from the
Government" will provide the required control. This release should be granted
incrementally as each draft C level specification is produced. The control
aspect of software development is critical to its success. It is imperative
that the authority to proceed release be given only after the design is
complete. To allow programming prior to this point is to invite disaster.

5. Contractual Elements

The implementation of top down design and the required controls involves
several elements. These elements include the specifications, design reviews,

-83-

testing, and a software warranty. Each of these elements is explained in

detail in the paragraphs which follow.

A. The A Level Specification

Software design and development must start from the top. Generation of
the A level specification begins shortly after contract award. It is the first
in the series of software design documents which describe the system in pro-
gressively greater detail. The A level specification breaks the system into
its main functional arejs. The requirements of the Request for Proposal (RFP)
are reflected in this document. The A level specification provides a complete
system description including both accuracy and functional requirements.
Written properly, the A level specification could replace the RFP and any other
pertinent government documents. The document is designed to be relevant and
completely understandable to the highest level user and developer personnel.

The A level specification represents the contractor's understanding of
the system and its requirements. The delivery of the A level specification
represents a critical milestone in the development. As such, a design review
is required.

B. Functional Design Review

The Functional Design Review (FDR) is the mechanism by which the
government and contractor reach agreement on the requirements and capabilities
of the system. The results of the review are incorporated into the A level
specification and the document is formally approved by the government. At
this time the A level specification is subject to formal configuration
management controls. The A level specification becomes the baseline for
development of the B level specification.

C. B Level Specification

Now begins the detailed design of the system. The function breakdown
of the A level specification is further divided into the modules of the B
level specification. The function and capabilities of each module is
specified with appropriate references to the requirements of the A level
specification. The main function of the B level specification is to provide
the complete mathematical description of the system. There is no separate
design process. The development of the B level specification is the system
design process and the B level specification is the documentation of the
design.

The B level specification is an important and detailed document. It
is made up of two volumes. Volume I consists of four parts: the User's
Manual; the Operator's Manual; the System Outline; and the Preliminary
Data Base Specification. The System Outline section is a system overview
description of the entire software system without delineating to specifics
of each independent module. The User's and Operator's manuals provide a

-84-

IF~ 1

concrete description of the man-machine interface at a time convenient to
provide orderly input to the system implementation (C level design phase).
The Preliminary Data Base Specification raises the issue of orderly data
management. It is a preliminary specification because all the problems
will not surface until the C level design begins. However, since orderly
information flow is essential to an efficient software design the Preliminary
Data Base Specification is a valuable asset to the B level system design.
Volume I of the B level specification is of interest to both the user and
developer and should be carefully reviewed by both.

Volume II of the B level specification is the detailed description
of the system and its modules. It consists of the specifics of each
program and is prepared in accordance with Appendix VI of MIL-STD-490
supplemented by Appendix VI of MIL-STD-483.

Volume II of the B level specification is the critical document for
review by the developers software and system specialists. All the major
design decisions have been made and should be evident in this document.
Its completion is a major milestone in the software development effort.
A preliminary design review is held to resolve any discrepancies between
the B level specification and the A level requirements.

D. Preliminary Design Review

The function of the Preliminary Design Review is to provide a mechanism
f or the government and contractor to reach agreement on the final system
configuration. The results of the review are incorporated into the B level
specification. The B specification is then submitted for government approval.
Formal configuration control of the B level specification can begin at this
time. There is an option however, to allow the contractor additional
latitude by requiring only limited configuration management. Under this
approach changes can be made by the contractor to the B specification. He
is required to inform the government of all changes. Since government
approval for all changes is not required, the cost implications can be
minimized. This technique must be carefully considered in the light of
system development status and the risk factor must be carefully weighed.
The completion and approval of the B specification sets the stage for detailed
design and coding to begin.

E. The C Level Specification

The modules defined in the B level specifications are further decomposed
and arranged to provide for efficient mechanization in the computer. Numerical
techniques are used and trade-off analysis is performed to implement efficiently
the rerquirements of theB level specification. The result of this analysis is
a partial C level specification. A Critical Design Review is held for each
partial C level specification. This review allows the government to insure
compliance of the C level implementation with the A and B level requirements.

Approval of the partial C level specification represents the authority
for the contractor to start coding. The listing of the code, the test results
together with the partial C level specification combine to create the complete
C level specification.

F. Critical Design Review (CDR)

The CDR allows the government a final point for review and control of
the design before it becomes a software program. All the fine details of
the module under review are available. The problem areas should be visible
to government software system analysts. Close coordination between the
government and the contractor should provide for cost effective solutions to
the problems which are uncovered.

G. Preliminary Qualification Tests

The completion of the C level design and implementation of each nodule
will proceed at different rates. Since the modules are defined to be
independent a method of incremental testing is appropriate. The PQT is the
test performed on each module. The order of testing of the modules is defined
in the PQT plan. The optimum PQT method is to build up the system by testing
the new module with all previously tested nodules. This method provides
controlled system integration and testing. When all modules have been tested
and integrated the Final Qualification test is performed.

H. Final Qualification Tests (FQT)

The FQT is the system test. This test is performed in a two stage process.
Due to the expense of field testing a simulation test environment is recommended
for the initial stage. Upon successful completion of simulation test the
contractor is permitted to begin the second stage; field testing. The results
of both simulator and field testing are then documented and the system is
delivered to the government.

I. Physical Configuration Audit (PCA)

The government inventories and accepts all contract deliverables at
the PCA. There is no reasonable method to completely and accurately audit
the software. The government is assured of its quality by his previous
careful review and participation in the design process. The PCA should be
only a formality which consummates the government's efforts during the term
Jthe contract.

J. Software Warranty

Since validation is not practical, the government should require the
contractor to warrant the software. The software warranty will require the
contractor to fix and document software problems which occur during a period
of time after government acceptance. The warranty period may also be of

-86-

value as a means of educating an independent government agency in the
system's software maintenance procedures. This method provides the
government with insurance against problems which are not uncovered in the
sterile test environment.

K. Validate and Verify (V&V)

It is important to provide check and balances on any software
development. V&V represents a method to insure the quality of the software
product and the documentation. The cost of V&V can be astronomical if
carried to extreme. Experience indicates that the cost of each uncovered
error grows exponentially. A practical approach to V&V is to set aside a
small sum of money for an independent contractor. If his efforts are
fruitful continue the process. When the cost of his effort exceeds the
useful result the V&V effort should be terminated.

L. Schedule

The software development process of the A, B and C level specification
is serial. Within each level, however, parallel development of the individual
modules can be performed. This allows the contractor to apply manpower in an
efficient manner but preserves focal points in the design.

In the ideal case, the contractor effort should be suspended after each
submission until government review and approval is accomplished. This
provides the government with positive control of the software development.

If the contractor is allowed to begin the next phase of development
before the previous phase is approved the monitoring process becomes more
tedious. Basically, the government makes the assumption that there will be
no major problems with the contractor's software development. This is a
function of the software abilities of the contractor, and a careful analysis
of the risk is recommended before selecting this approach.

An example of a software development schedule is displayed in Figure 1.
The time allotted for each development will depend on the nature of the
system and the technical information furnished by the government.

6. Summary

There is an old adage "You get what you pay for." It is as true now as
ever and highly applicable to software acquisition. There are no magical
short cuts. The best way to approach the problem is through an orderly, step
by step procedure. By this approach, a development can run for a year or
longer without demonstratable hardware. It is a tough course to follow with
all the pressures to get the job done. Now, stick to your guns. The top down
approach is the only low cost, low risk method. It represents the difference
between success and failure.

-87-

FI'

-88-

LIFE CYCLE MANAGEMENT

MAJ Edward H7. Ely

AIRMICS

LIFE CYCLE MANAGEMENT

SESSION CHAIRPERSON: Edward H. Ely

AIRMICS

SESSION SUMMARY

Preparation for future software life cycle management planning
requires serious contemplation of those factors which comprise the entire
life cycle process. Dr. Victor Basili (University of Maryland) began
the session by reviewing several life cycle elements in an attempt to
provide a better understanding of such life cycle factors. Included were
reviews of the roots of data collection; an examination of the meaning of
milestones; discussion of life cycle dynamics and metrics; consideration
of the impact of tool usage; and the problems of technology transfer.
Dr. Thomas G. DeLutis (NRC) continued the session with a survey of software
life cycle complexity and the important role of modeling in early deter-
mination of such complexity. The ability to provide meaningful estimates
relative to various types of problems, plus the iterative nature of the
life cycle, were also discussed. Dr. J. David Naumann (University of
Minnesota) concluded the session with a challenge to the "single-life-
cycle" concept commonly used to determine information requirements. Con-
tingencies which define the uncertainties in the determination of infor-
mation requirements, and alternative strategies for information requirements
determinations at different levels of uncertainty, were also described.
The methods put forth were no cycle, linear life cycle, recursive life
cycle, and prototype.

-89-

Toward Understanding the Software Life Cycle

Victor R. Basili

Department of Computer Science

University of Maryland

There is need for a better understanding of the software life
cycle process with respect to its management parameters and the resulting
product. This understanding assumes some basic theories about the activi-
ties of the life cycle process and the interaction of these activities, a
set of standard definitions for each of the activities and terms involved
in the process and resulting product, a taxonomy for each of these terms
which parameterize them for a particular environment or point of interest,
and the collection of data exposes what is actually occurring with respect
to each of these taxonomies for each of the terms. The development of
models and measures are then possible based on analytical theories or
empirical studies. These models and measures need to be validated for a
variety of projects based upon each of the taxonomies using data collected
during the life cycle process for each project. This should result in the
refinement of the theories for the local environments and the development
of new models and metrics.

Once a basic model of the life cycle process has been developed
with its associated management and development methodologies, it must be
transferred into practice by building tools for the manager and programmer
based upon these associated models. Data must be collected to give to the
manager information on the progress and quality of the product. These
methodologies can then be transferred from project to project, using the
developing data base of quantitative knowledge about the software life
cycle as background for management decisions on the current project and to
help further refine our models and metrics for future projects.

This paper discussed the basic components necessary for under-
standing the software life cycle, the model of the dynamic nature of the
development process, the requirements for transferring technology from
theory to practice and from project to project, and some areas where models
and metrics currently exist.

-90-

TOWARD UNDERSTANDING THE SOFTWARE LIFE CYCLE

Victor R. Basili

University of Maryland

Introduction

There is need for better control in the management of software.
This control can be achieved only by a better understanding of the
software life cycle process in theory and a more effective method of
exposing progress in practice. Understanding assumes models and
measures of the various aspects of the process and the product which
parameterize each of the factors that influences them. It requires
identifying these factors, knowing their bounds, and measuring their
interaction. Visibility assumes the ability to produce certifiable
checkpoints of progress. In many cases, this requires the availa-
bility of data, collected during the development process, that
conforms to the given models and measures.

Current problems arise from the fact that there are too many
parameters affecting the development of software. It is difficult
to isolate all these parameters, and understand their effect and the
relationships and interactions they foster in the development process.
Even those factors that are intuitively recoguizable cannot be defined
or quantified very well. It is almost impossible to find an agreed
upon set of definitions for some of the most basic factors or terms;
e.g., size, specification, etc. We do not have a realistic model of
the life cycle process itself. Most views of the life cycle are in
terms of static phases; e.g., requirements, specification, design,
coding, testing and maintenance. In practice, the life cycle process
is not static butdynamic, iterating through all phases. The phases
define aspects of the development process, but the sequence of phases
does not describe their interaction. When we try to fit the process
to this static model, we are left with a poor understanding of the
dynamics of the process.

Visibility of progress is hard to assess, especially during the
early stages of development. Milestone definition is vague and it is
difficult to verify that the product at any point in time corresponds
to what is expected. This is partly because progress doesn't corre-
spond to the static model and there is not enough solid information
to permit confident assessment of success.

To solve the problems of control, understanding and visibility,
we must develop a science of the software life cycle process. We
must develop realistic models that fit the process. We must develop
quantifiable measures that accurately feed back information on progress
and quality. To this end, we must collect data for the development
and validation of models and measures for feedback and visibility of
the process and product.

-91-

In what follows, some of the basatc problems with model develop-
ment and data collec-ion will be discussed in more detail. An approach
for building and using realistic models will be given along with its
benefits in the development process. Finally, some promising models
and measures currently in existence will be given.

Problems

The major problem in model development is that there are too
many parameters and factors to consider. There are (1) people-related
factors, e.g., the number of people involved, the level of expertise,
previous experience with the problem, group organization; (2) problem-
related factors, e.g., type of problem (data base manipulation, real
time, etc.), proximity to the state of the art requirements, suscepta-
bility to change, number of external interfaces; (3) process-related
factors, e.g., top down design, use of librarian, programming languages,
reporting mechanisms; (4) product-related factors, e.g., deliverables,
real time requirements, number of modules, size, efficiency tests;
and (5) resource-related factors, e.g., budget, deadlines, response
times, target and development machine systems. We need to understand
the effect and boundaries of each of these factors in theory and then
map them onto the current problem to be solved in practice. We need
to know how to balance various factors and make adjustments.

Understanding these factors, their boundaries and interactions
requires analyzing their effect on a large number of projects. This
requires the collection of the appropriate data and the ability to
transfer this data from project to project across government agencies
and industry, in order to build enough of a data base to isolate
common developments and compare the results. However, there are major
problems in data collection and transfer of information. First we
must know what data to collect before we begin collecting it. It
must be model driven. (Data collection can be very expensive if it
is not done right. It need not be if it is well planned as to what
is wanted and how it is to be processed.) Second, basic to data collec-
tion and information transfer is a standard definition of terms and
taxonomies. Neither of these currently exist. In fact, we do not
agree on such simple definitions as what constitutes source code,
project size and error. It is not even agreed on what is meant by
the life cycle terms, that is, the definitions of the terms given in
the introduction are not standard. W~hen reading the analysis of a
particular project in the literature, one cannot always transfer
that knowledge to another project because it is not always clear what
the original author meant by many of the terms which were involved
and what their values were. Many of the contributing factors are not
explicitly given.

Besides the definition of basic terms, we need taxonomies; that
is, we need to understand the data at various levels of abstraction
for different classification schemes and different environments. At
levels of abstraction, we need to know when to worry about details
and when to see the big picture; e.g., budget factors can be viewed
for the entire project across the entire life cycle, or for some sub-
cycle (such as the design phase or the design, coding and testing
phases), or for some subsystem (such as the design phase of a particular
component).

-92-

A

We can categorize a product or subsystem by its type (e.g., data
manipulation, mathematical, real time). This permits the specific
weighting factors for productivity which can be associated with the
type of application. We can classify an environment by its con-
straints (e.g., execution time critical, storage critical, calendar
time critical). Then we can better understand the effects on budget
or development time based upon the specific set of constraints on
the problem.

We are usually interested in collecting data for a specific
purpose. How we classify data dictates the kind of data collected.
For example, there are many ways to classify error data: by cause
(e.g., misunderstanding requirements, misstated specification,
clerical coding error), by time used to fix, by technique used to
find or correct the error, etc. Each of these classifications re-
quires the collection of different data and tells us different things
about the development process itself. In evaluating a technique such
as code reading, we would like to know what class of error it minimized
or eliminated. We would like to know what class of error is most
common to a particular type of software product or particular methodology.

Until we can agree on a standard set of definitions of terms and
a standard set of taxonomies for categorizing data, it will be diffi-
cult to understand and analyze the software development process, to
develop models thac can be parameterized for different environments,
and to gain real control o!~ the management process.

Part of our lack of understanding also stems from a poor model
of the life cycle process itself. Milestones are often associated
with the completion of a static set of p.hases. Typically, these
phases are (1) requirements--an operational description of the user's
needs; (2) specification--the developer's abstraction of the require-
ments giving what is to be done without indicating how; (3) design--
the abstract description of how a system is to work; (4) coding--the
implementation of that design in machine executable form; (5) testing--
the verification that the operating coded system satisfies the opera-
tional requirements; (6) maintenance and modification--the continual
repetition of phases 1 through 5 as the system evolves in time to meet
new organizational needs.

It is clear from available data that the life cycle process is
dynamic in nature. One phase is not completed before another one
begins. Each of the phases overlaps and interacts. Part of the
interaction is due to the natural state of affairs. A requirements
change or flaw, or better understanding of what was meant in an earlier
phase, causes a return to that phase with respect to the particular
subsystem currently being worked on.

Many methodologies involve the interaction of the various phases
of development. For example, the top down development methodology
permits certain parts of the system to be coded before other parts
are designed (Mills, Baker). Methodologies exist that require an

-93-

iterative development of the system by building increasingly larger
subsets of the system until the entire functional capability is
developed (Basili and Turner).

Standard static milestones become meaningless in these envircii-
ments because they tend to be too simplistic a measure of progress.
A milestone should be a measurable checkpoint of progress. It
must be a visible, certifiable, if not quantifiable, measure related
to an individual phase and subsystem with respect to degree of com-
pleteness; i.e., satisfaction of functional goals, bounds on reliability,
"goodness" of the product, etc. The milestone should assure us that
a particular function has been completed through some phase with a
certain reliability and complexity bounds, etc. This permits a more
honest evaluation of progress.

Certifiable milestones are a necessity for successful management.
Milestones can be evaluated by nonquantifiable and quantifiable
techniques. Nonquantifiable evaluation involves reading and review-
ing the product at various stages in development. Quantifiable evalu-
ation implies the need for measures of the existing product, whether
that product is code or some design or specification or requirement.
A simple measure of lines of code is not enough. It only measures the
final product. This kind of measurement is too late to give any in-
formation about progress when it is really needed and when something
can be done about problems. It does not tell us enough. We want more than
lines of code. We want to know how complex that code is, how
reliable it is, how transportable it is, etc. We want to know some-
thing about the quality of the product at that point in time.

Life cycle management requires an rutc.:.ated set of tools to help
the manager evaluate progress, evaluate the product, and understand
when and if corrective measures need t~o be made.

Model and Measure Development and TechnologyTransfer

Models and measures tell us what is supposed to be happening,
what we need to know, and how to recognize it. They drive the actual
data collection process and require the standardization of definitions
and taxonomies. To develop a realistic model, we must better under-
stand the process. To understand the process, we must have a realistic
model. The approach is circular, but we must start somewhere. We
can begin by building a set of "first-order" models and measures based
on sound principles and experience. These models and measures then
can be used to generate the collection of data that will help verify
this validity. Based on the data collected, we refine the models and
possibly modify the kinds of data collected. The process is iterative
and continues until we have a set of models and measures that corre-
sponds to reality and tells us what we want to know.

Although the overall approach is slow in yielding a full under-
standing of the entire life cycle process, intermediate models and
measures are still valuable for management in the present environment.
There are several models and measures that already exist and have shown

-94-

tremendous promise of realistically mirroring various aspects of the
life cycle. These models can be used to aid in the management of
current projects and help in the problem of technology transfer.

There are essentially two kinds of technology transfer. The
first is the transfer of theory into practice; the second is the

transfer of knowledge and experience from one project to another.
Both require the collection of data and the use of tools which feed
back and save information on the management and development of the
system. Some data collection must be done manually, but much of it
may be automated. The use of automated tools can help standardize
definitions, aid in the development of taxonomies within the local
environment, and minimize the cost of data collection. These tools
can be used to feed back information to the manager in real time,
permitting him to control the development of the product. Some of
this information can also be of benefit to the programmer, permitting
him to evaluate his own progress or evaluate the complexity or relia-
bility of the design or code he has developed. Information gathered
during the development of one project can be stored in an archival
data base which the organization can use to do future estimation on
costs, development time, etc. It can be used after the fact to evalu-
ate what went wrong and what went right. Other managers can use it
as an experience base to better understand how different projects
with different parameters were managed. The feedback can be used
to help evaluate some new methodology, or help modify or adapt it
to the local environment. It can be used to convince managers of the
benefits of a different methodology by giving real evidence that it
works.

This archival data base can then be used to validate and refine
existing models and measures with respect to individual environments.
It may also motivate new theories and measures or the collection of
new data; i.e., we believe something went wrong because we didn't
understand the effect of some parameter which we had not measured.

Specific Models and Measures

There currently exists a large number of models and measures of
the software development process. Many of them are referenced in the
working papers of the First Software Life Cycle Management Workshop
(1 SLCMW) and in the proceedings of the Second Software Life Cycle
Management Workshop (2 SLCMW). These range from resource estimates
to complexity measures and we will discuss just a few here to demon-
strate the amount of progress in the area.

1. Resource estimation - Results from computer hardware estima-
tion have been used for the basis of software estimation (Putnam).
The expenditures across time for large-scale projects have been found
to agree closely with the Rayleigh curve

E = 2 Kate -at2

where E is the rate of expenditure at time period t (measured in units

-95-

such a month, year), K is the total cost of the project, and a is the
maximum expenditure for any time unit. Further work has been done
on analyzing the equation to add such factors as difficulty of the
product and state of the art of technology. The model has shown to
correspond fairly well to any large-scale model developments. Various
other models have been developed based on experience, data collection,
and continual refinements (Boehm and Wolverton).

2. Effect of various factors -Effect of various factors and
development techniques on the software environment have been measured
(Walston and Felix) yielding a productivity ratio of

P = 5.2 L09

where P is the total effort in man months and L is in thousands of lines
of source code. A productivity index has been derived which weights
many of the factors to identify divergence from the estimated value P.
These factors include such items as complexity of customer interface,
hardware under concurrent development, previous experience of personnel
with the application, programming language and operational computer,
techniques used such as structured programming, chief programmer teams,
top down development, and complexity of the application and program flow.

3. Reliability models - A variety of reliability models have
been developed (Musa, Shooman, Littlewood, Goel), several of which
have shown to be quite effective in practice in estimating the amount
of machine time required to reach a certain predetermined reliability
standard in order to stop testing the system. One concept used is
mean time to failure.

4. Product measures - Several measures of the complexity of a
product have been developed which can be associated with the control
structure (McCabe) or data structure (Myers). Development invariants
in the software product with regard to such factors as effort and length
estimation have been identified (H-alstead). Invariants in the behavior
of a product in the software maintenance have also been identified
(Belady and Lehman). A variety of measures, including portability,
reusability and maintainability, have also been developed (McCall).

Tools have been developed that lend themselves to automatic
data collection, visibility and measurement. These include various
requirement analyzers, such as PSL/PSA (Teichroew and Sayani) and
automated Process Design Languages (Caine and Gordon).

Conclusion

It is clear that to manage software we need to better understand
the software life cycle process. To this end, data collection and
analysis are required to build and refine models and measures of the

process and the product. There is a need for identification of in-
fluencing factors, standard definitions and taxonomies, certifiable
milestones and tools that aid in the data collection analysis and

feedback process. Progress has been made in the modeling of many
aspects of the life cycle, but more testing of these models must be

-96-

done in real environments. The process is slow but necessary if we

are ever to truly understand the software life cycle process.

References

(Mills)
Mills, Harlan D., Software Development, IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, December 1976, pp. 265-273.

(Baker)
Baker, F. T., Structured Programming in a Production Programming
Environment, Vol. SE-I, No. 2, June 1975, pp. 241-252.

(Basili and Turner)
Basili, Victor and Turner, A. J., "Iterative Enhancement: A
Practical Technique for Software Development, IEEE Transactions on
Software Engineering, Vol. 1, December 1975, pp. 390-396.

(1 SLCMW)
Software Phenomenology, Working Papers of the Software Life Cycle
Management Workshop, Airlie House, August 21-22, 1977

(2 SLCMW)
Proceedings of the Second Software Life Cycle Management Workshop,
Atlanta, Georgia, August 1978, IEEE Society Publication.

(Putnam)
Putnam, Lawrence H., A General Empirical Solution to the Macro
Software Sizing and Estimating Problem, IEEE Transactions on
Software Engineering, Vol. SE-4, No. 4, July 1978, pp. 345-361.

(Boehm and Wolverton)
Boehm, B. W. and Wolverton, R. W., Software Cost Modeling: Some
Lessons Learned, Proceedings of the Second Software Life Cycle
Management Workshop, Atlanta, Georgia, August 1978, IEEE Society
Publication.

(Walston and Felix)
Walston, C. E. and Felix, C. P., A Method of Programming Measure-
ment and Estimation, IBM Systems Journal, No. 1, 1977

(Musa)
Musa, J. D., A Theory of Software Reliability and Its Application,
IEEE Transactions on Software Engineering, Vol. SE-l, No. 3,
pp. 312-327, September 1975.

(Shooman)
Shooman, Martin L., Structural Models for Software Reliability
Prediction, Proceeding of the 2nd International Conference on
Software Engineering, October 1976, San Francisco, California,
IEEE Computer Society, New York

-97-

(Littlewood)
Littlewood, Bev, Validation of A Software Reliability Model,
Proceedings of the Second Software Life Cycle Management
Workshop, Atlanta, Georgia, August 1978, IEEE Society Publication.

(Goel)
Goel, Amrit L., A Software Error Detection Model with Applications,
Proceedings of the Second Software Life Cycle Management Work-

shop, Atlanta, Georgia, August 1978, IEEE Society Publication.

(McCabe)
McCabe, Thomas J., A Complexity Measure, IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, December 1976, pp. 308-320

(Myers)
Myers, G. J., Reliable Software Through Composite Design,
Petrocelli/Charter, 1975

(Halstead)

Halstead, M, Elements of Software Science, Elsevier Computer
Science Library, 1977

(Belady and Lehman)
Belady, L. A. and Lehman, M. M., A Model of Large Program
Development, IBM Systems Journal, No. 3, 1976, pp. 225-251.

(McCall)
McCall, James A, The Utility of Software Quality Metrics in
Large-Scale Software System Developments, Proceedings of the
Second Software Life Cycle Management Workshop, Atlanta, Georgia,
August 1978, IEEE Society Publication.

(Teichroew and Sayani)
Teichroew, D. and Sayani, H., Automation of System Building,
Datamation, pp. 25-30, August 15, 1971

(Caine and Gordon)
Caine, S. H. and Gordon, E. K., PDL: A Tool for Software Design,
Proceedings 1975 National Computer Conference, pp. 271-276.

-98-

Contingency Theory Approach to Systems
Life Cycle Management

J. David Naumann

Gordon B. Davis

University of Minnesota

Application of formal life-cycle methodology in an organizational
response to an information-decision problem, especially the reduction of
uncertainty about the outcome of the development process. A single life-
cycle methodology is inappropriate because the level of uncertainty varies
as a function of several contingencies.

This paper described contingencies which determine the level of
uncertainty, described a continuum of responses to level of uncertainty,
and discussed the application and testing of the contingencies theory.
Contingencies include project size, degree of structuredness, user-task
comprehension, and developer-task proficiency.

-99-

6L_ .

THE CONTINGENCY THEORY APPROACH TO SYSTEM LIFE CYCLE MANAGEMENT

J. David Naumann and Gordon B. Davis

University of Minnesota
College of Business Administration

Minneapolis, Minnesota

Application of formal life-cycle methodology is an organizational
response to an information-decision problem, specifically the reduction
of uncertainty about the outcomes of the development process. A single
life-cycle method is not appropriate because the level of uncertainty
varies as a function of a number of contingencies. This paper describes
contingencies which determine the level of uncertainty, describes a
continuum of responses to level of uncertainty, and discusses the appli-
cation and testing of the contingency theory. Contingencies include
project size, degree of structuredness, user-task comprehension, and

developer-task proficiency.

The system development life-cycle is the central concept in currently-I
used methods of managing and controlling the determination of information
requirements and designing and implementing processing systems to meet
those requirements. When organizations specify the use of formal life
cycle-based methods for all application developments, the results are nixed.
A single life-cycle method is not appropriate for all cases because appli-
cations differ in the certainty with which requirements can be established.

Introduction

Information systems developers who rely upon formal life-cycle develop-
ment methodologies are not universally successful; developers who do not
apply life cycle methodologies do not always fail. Formal life-cycle manage-
ment procedures, rigorously adhered to, provide a high degree of assurance of
success for large, conventional developments where users and developers share
understanding of the results to be produced. As systems under development
move away from the routine, however, uncertainty about the characteristics
of the end result increases. Information requirements determination and
specification becomes more difficult, costly, lengthy, and unsatisfying to
users and developers alike.

Concepts such as recursive life cycle1 and prototype systems2 are
receiving increasing attention as suggested solutions to the problems of
information requirements determination. Implicit in the advocacy and accep-
tance of these concepts is an understanding that the development and applica-
tion of increasingly rigid rules and programs for requirements determination
and specification can be counterproductive. Like the formal life-cycle
methodology, however, an innovative concept is not a panacea. Different
methods may be needed for different systems development projects.

A contingency theory identifies alternative actions and presents factors
to use in selecting the optimal alternative. For example, McFarlan 3 proposes
a contingency theory for development project management. He identifies pro-
ject size, degree of structuredness, and degree of company-relative technology
as factors which determine the best project planning and control tools.

-100-

Uncertainty has been identified by Galbraith4 as a major factor in
determining the optimal organization structure. The difference between
the amount of information necessary to perform a task and the amount of
information possessed is a measure of task uncertainty; organizations
respond by choosing from a set of four organizational strategies to deal
with the level of uncertainty.

The information requirements determination and specification problem
is one of uncertainty: the success of an information system development
effort depends upon the clear, complete, unambiguous, and accepted speci-
fication of need. The formal life-cycle development methodology response
to this need is to require formally approved documentation as an agreement
between users and developers before design and implementation. Ideally,
this approach reduces uncertainty about the outcome of the development
process to a mutually acceptable level. Since information requirements
uncertainty varies from application to application, the "rules and programs"
approach is incapable of producing a satisfactory result over the entire
range of information systems development projects.

Contingencies Analysis

In the determination of information requirements for an information
system application uncertainty refers to knowledge of the "real" information
needs. Among the development contingencies which determine information
requirements uncertainty are project size, degree of structuredness, user-
task comprehension, and developer-task proficiency. A systems development
project has some combination of these attributes. The combination of con-
tingencies defines the level of uncertainty which must be resolved in a
system development effort.

Project Size

The project size contingency has three key characteristics: duration,
number of people involved, and total dollar amount. These characteristics
are usually, but not necessarily, collinear. That is, a high cost project
usually requires many people over an extended time period. Project size is
not a good measure of the value of a systens development project, but it is
correlated with the degree of uncertainty of the results of the development
process.

The number of people involved characteristic refers to both users and
system developers. A large project necessarily involves many developers, an
extended duration, or both. Uncertainty is associated with communication and
coordination in large development projects. A project with a large number of
users also contributes to uncertainty. Multiple users or even multiple user
organizations add to the information which must be gathered and communicated
to determine system requirements.

Degree of Structuredness

one dimension of the Gorry and Scott Morton5 framework for information
systems is that of the relative structuredness of the decisions to be supported
by an information system. For information systems information requirements

-101-

determination, a high degree of structuredness means that a general model
exists which can be applied to the given organizational setting. A low
degree of structuredness means that there is no routine procedure for dealing
with the problem, there is ambiguity in the problem definition and uncer-
tainty as to the criterion for evaluating solutions. Uncertainty about the
decisions to be supported is an important factor in uncertainty about the
outcome of the systems development process.

User Task Comprehension

Related to but distinct from structuredness is the comprehension that
the user or users have of the task to be performed by the information system.
User task comprehension affects the selection strategy and development project
success in much the same way as degree of structuredness. If the users have
a low degree of understanding of the task for which the system is intended,
whether or not a general model of a problem exists, less is certain about
the information requirements (and the users' acceptance of the results of the

development process).

Developer Task Proficiency

Developer task proficiency is a measure of the specific training anO
experience brought to the project by the development staff: project manager,
liaison staff, systems analysts, systems designers, programmers, etc. It is
not a measure of ability or potential: rather it is a measure of directly
applicable experience. This contingency indicates the degree of uncertainty
with which the developer will be able to obtain and document the requirements

(and also proceed with the remainder of the development process).

CONTINGENCY ANALYSIS

CONTINGENCY CONTRIBUTION
TO

TYPE DEGREE UNCERTAINTY

Project Large +
Size Small

Degree of Structured LEVEL OF
Structured- Unstructured + UNCERTAINTY
ness

User Task Complete
Comprehension Slight +

Developer- High
Task Profi- Low +
ciency

Figure 1

INFORMATION REQUIREMENTS DETERMINATION CONTINGENCY ANALYSIS

-102-

Uncertainty-Reducing Strategies

The response to uncertainty produced by the characteristics of a
systems development task, the using organization, and the developer organi-
zation (i.e., the contingencies) has frequently been unidimensional. Under
the traditional life-cycle approach, formal procedures, reviews, committees,
check points, etc., are used for all projects.6 There has been no recogni-
tion of the degree of uncertainty from the contingencies. An alternative
approach is to:

1. Analyze contingencies and determine the relative uncertainty,

2. Select an uncertainty reducing strategy appropriate to the level
of uncertainty,

3. Apply the information requirements determination methodology
corresponding to the appropriate uncertainty reducing strategy.

A low level of uncertainty clearly suggests that a simple strategy will
suffice to discover information requirements and produce system specifica-
tions. A high level of uncertainty, in contrast, suggests that the
appropriate strategy will serve to define and communicate information re-
quirements to users and developers in such a way that the object system
products can be specified and agreed to.

The strategies range from acceptance of information re uirements as
specified, through linear discovery and recursive discovery, to experimental
discovery of information requirements. Corresponding methodologies are
suggested as typical of the discovery strategies and widely understood and
applicable.

Accept as Specified

If information requirements are known and agreed upon, then the proper
strategy is to accept the user' s statement of need as adequate specifica-
tion for implementation. The method is therefore to have no information
requirements cycle. Examples are file conversions, reports from existing
files or databases and small single-user models. These examples have in
common: small size, high degree of structure, users who understand what
the systems are to do and how the implementation will function, and must
have developers with experience in similar systems. Explicit recognition
of the need for the "accept as specified" strategy will lead to greater
responsiveness and an increase in development organization efficiency.
Formal rules and procedures designed to assure mutual understanding and accep-
tance of system specifications may be unnecessary and unwieldy at this level.

Linear Discovery

If information requirements can be determined through a straight-forward
process of interviewing, fact gathering, and documentation, the proper
strategy is to proceed step-by-step to system specification. The method is
therefore a linear application of the life cycle. Examples are transaction
level systems, single function accounting systems such as accounts receivable
or payable, and minor modifications to existing information systems.

-103-

Information requirements for large systems which are highly structured
and where user-task comprehension and developer-task proficiency are high
may be effectively determined by the linear discover process. However,
information requirements for a relatively small system such as a decision
model may not be determinable by this method if the decisions to be supported
are relatively unstructured, or if the user does not comprehend the task,
or if the developers have not previously produced such a system. Linear
application of the life-cycle model is an effective strategy under the
appropriate combination of contingencies.

Recursive Discovery

The linear discovery strategy may not produce correct or complete or
acceptable specifications of information system requirements. The tradi-
tional life-cycle approach extends to recursion for such systems. One or
more discovery tasks are iterated until a complete, consistent specifica-
tion is determined and accepted. Examples are large, multiple-user systems,
systems which are new to the user or developer organization, and systems
which support the relatively unstructured decisions of tactical and strategic
management. This approach assumes that a correct specification of require-
ments can be made given sufficient time and effort. Where the contingencies
indicate that is a valid assumption, the recursive discovery strategy is
appropriate and effective.

Experimental Discovery

A high level of uncertainty may be indicated by a combination of the
contingencies. Repeated iterations of discovery may not successfully produce
adequate specifications of information requirements in such cases. The life
cycle method, whether linear or recursive, is inappropriate when uncertainty
is high. The strategy of experimental discovery as realized in the proto-
type design method, reduces uncertainty by producing successive approxima-
tions.

Users and developers can easily see what is wrong with an implementation
even though they are unable to completely specify its information require-
ments. 7 The higher costs associated with prototype implementation are
justified by the provisions for interactive development and discovery.
Examples are decision support systems for upper management, interactive fore-
casting models, and small (or large) systems to be implemented for many
different users. Conscious selection of the e;'perimental discovery strategy
may be the only effective approach to information requirements determination
when the level of uncertainty is high.

-104-

INFORMAT ION REQUIREMENTS DETERMINAT ION

Uncertainty Methodology
Reducing Strategy

l1.ow
Accept information No requirementsU requirements as specified determination

N
C Linear information Life cycle applied

E requirements discovery linearly

T Recursive information Life cycle applied
A requirements discovery recursively

T Experimental information Prototype
Tig requirements discovery development

Figure 2

INFORM4AT ION SYSTEMS DEVELOPMENT STRATEGY AND !ETHODOLOGY

Conclusion

A range of information requirements determination strategies is needed.
Such strategies match the level of uncertainty about the system specifica-
tion which is to result. The appropriate strate-'y is determined by the
extant contingencies.

Inappropriate methodology selection and application leads to either
of two problems: insufficient capacity to reduce uncertainty or more
capacity than needed. Where a strategy does not provide sufficient capacity
to reduce uncertainty, several possible consequences may result. Changes
during implementation or after installation are often required. User dis-
satisfaction with the object system is a negative result even though modifi-
cations are not made. In the extreme case, information requirements must be
re-analyzed and specified.

The problems caused by application of a higher capacity methodology
than needed are less immediately apparent. Higher development costs and
longer development duration reduce the efficiency of the development organi-
zation and justify the charge of unresponsiveness.

Uncertainty reducing strategies and a wide range of information require-
ments determination methodologies are being applied in industry and govern-
ment. A program of empirical research is needed to develop and refine measures
of uncertainty indicated by the contingencies to appropriately characterize
specific methodologies as specific levels of uncertainty reducing strategies,
and to associate systems development outcomes with the strategies applied.

-105-

The contingency theory approach is applicable to another aspect of
information systems development which might be labeled the uncertainty
tolerance level. Variables such as the impact of systems failure and
the cost of modification and enhancement imply that uncertainty need not
be reduced to a common level for all systems, but that an appropriate
level of uncertainty is contingent upon such factors as number of users,
system distribution, etc.

Research leading to more precise operational definition of the con-
tingencies and their effects will lead to more efficient and effective
information systems development.

References

1. J. L. Podolsky, "Horace Builds a Cycle," Datamation, November, 1977,
page 162.

2. L. Bally, J. Britton, and K. HI. Wagner, "A Prototype Approach to
Information Systems Design and Development," Information Management,
Volume 1, Number 1, November, 1977.

3. F. W. McFarlan, "Effective EDP Project Management," in Managing the
Data Resource Function (R. Nolan, Ed.), West Publishing Company,
St. Paul, 1974.

4. J. Galbraith, Designing Complex Organizations, Addison-Wesley,
Reading, Mass., 1973.

5. C. A. Gorry and M. S. Scott Morton, "A Framework for Management
Information Systems," Sloan Management Review, Volume 13, Number 1,
(Fall, 1971), pages 55-70.

6. G. B. Davis, Management Information Systems: Conceptual Foundations,
Structures, and Development, McGraw-Hill, New York, 1974.

7. C. Alexander, Notes on the Synthesis of Form, Harvard University Press,
Cambridge, Mass., 1964.

-106-

OPERATING SYSTEMS SECURITY

LTC Robert P. Campet

DAMI-AM

- -m

OPERATING SYSTEMS SECURITY

SESSION CHAIRPERSON: LTC Robert P. Campbell

DAMI-AM

SESSION SUMMARY

This session featured presentation of two papers which briefly
summarized the character and scope of the software security problem, dis-
cussed approaches being used to improve the security of general purpose
operating systems and described in detail current efforts on development
of the Department of Defense Kernelized Security Operating System (KSOS).
The KSOS presentation detailed the design methodology and security assurance
methods used, the actual design, with emphasis on the interfaces available
to various classes of users; and the potential application for KSOS.

-107-

SOFTWARE SECURITY
LTC Robert P. Campbell

OACSI, HQDA

The problems of ensuring the security of software and the operational
systems wh..ch they support have been with us, naggingly, for over a decade.
A basic con~flict can be found between the national level security policies
for the pro,-ection of classified information and privacy data, which are
not enforceable within today's automation technology, and operational
necessity, pressuring for full exploitation of state-of--the-art technology
(Figure 1). These factors, considered with technology, form a triumvirate
within which those with security responsibilities must achieve an
equ~ilibrium, a balance, a degree of risk that is acceptable within the
context of the environment. The policies form the base line. They are
generally fixed and immutable or at best can only be more precisely defined
and thus refined. On the other hand, there are requirements, born of
operational necessity, driving us to employ all available technology in
satisfaction of these needs. The third element, technology, responds to
both policy and operational requirements. A change in one of these areas
influences the other two.

Within this environment, the price of security is very high. Because
technology has not been able to respond to security policy needs, sizeable
amounts of resources have been allocated to support information
segregation, dedicated computers, large numbers of security clearances,
and burdensome physical precautions and procedures. There are other
nondirect costs, in terms of inconvenience, lack of capability, or lost
opportunity that are never really quantified but which clearly exist. The
point is that large quantities of money and other resources are being put
into day-to-day operational procedures without materially influencing the
problem. These are sunk cost which are lost, never to be retrieved, and
which drastically reduce the return on our technological investment.

These sunk costs are increasing. It was estimated that, 10 years ago,
the commercial world found a premium of 3 to 5 percent for security to be
too high. Today, there is a belief that, with the increased emphasis being
given to security and privacy, there is a willingness to raise this premium
to 10 to 15 percent, a penalty that is bound to impact broadly upon overall
operations. It is evident that the time has come to directly apply some of
our technological drive to satisfaction of these privacy and security
requirements.

There is an inherent compatibility between our quest for reliable
software and that for secure software. Reliability seeks assurance that
the implementatio 'n does what it is supposed to do, while security seeks
assurance that the implementation not only does what it is supposed to do--
but no more or no less. While reliable operations are not necessarily

-108-

secure, secure operations always have the characteristic of reliability
because security requires a high degree of stability and predictability,
both of which are reliability prerequisites. There is growing awareness
that the time has come to invest in security technology in order to offset
the increasing burden of operational security costs. Progress needs to be
made.

Shifting now to the most basic of our software security problems, that
of the operating system itself, there are basically three strategies that
can be used to address security vulnerabilities: the patch method, the
security kernel method, and that of designing a secure operating system
from scratch (Figure 2). The patch method has been characterized by such
attempts as by IBM to improve its 360/370 security with.VS2/Rel 3, the CDC-
6600 with NOS BE, the Honeywell GOOS, the UNIVAC Exec VIII, and so on. The
conclusion, quickly learned, is that security by patch does not work.
There are always other holes, and often the patch itself will introduce
more flaws. The second method features the security kernel, wherein the
trusted processes are isolated in a special module that checks all accesses
to the system. This method shows great promise for short-term improvement
in security state-of-the-.art. There are security kernels being developed
for the general purpose operating systems of the PDP-11 (the "IKSOS 11"),
tne Honeywell Level 6 (KSOS 6), and the IBM VM 370 (KVM 370). Some of these
implementations will reach operatioi~al capability before the end of FY 79.
The third strategy, that of designing a secure operating system from
scratch, offers the best potential for long term solution although it will
not be without problems. Anytime you introduce a totally new operating
system, you will not have the support base, the community of users or a
broad inventory of applications software readily available for use. But
DOD is pressing ahead with the Provably Secure Operating System, or P505,
looking for a prototype by 1980, with the first formal, mathematically
verifiable version possibly available by late 1982. The National Security
Agency, Air Force Systems Command, SRI, and MITRE are currently
collaborating on the design effort.

With the promise being shown by the security kernel approach, we
believe that we are on the brink of significant technical accomplishment.
To maximize the effectiveness of these efforts, DOD has established a
Computer Security Technical Consortium (Figure 3) in order to provide (1) a
coordination mechanism for ongoing research in the computer security
field, (2) a focus for technical aspects of the certification and im-
plementation of multilevel secure systems, and (3) technical leadership
for the transfer of state-of-the-art computer security technology to
industry.

The third area of this initiative involves an industry relations
program which will transfer this technology to industry and encourage
industry, at its own expense, to develop and implement secure systems based
upon this technology. To further this effort, DOD has asked the military
services for funding to equally support nominal contracts with computer
manufacturers to obtain information on the integrity mechanisms they are

-109-

using in their new operating systems. DOD has also requested technical
support in the form of knowledgeable individuals to act as Contracting
Off icers Technical Representative (COTR) for each of the industry
contracts. These individuals must be government employees and will be
expected to devote approximately 20 percent of their normal duty to this
effort. I believe the Army's need for multilevel secure systems to be as
great, if not greater, than that of any of the services, so I am currently
trying to line up Army support for this effort.

The remainder of this session will focus on the Kernelized Secure
Operating System, or KSOS, as it is currently entitled (Figure 4). The
KSOS had its beginnings in research that started almost 10 years ago when
concerns for the insecurity of sensitive computer systems led to the use of
"tiger teams" to attempt penetration through their operating systems.
These teams succeeded in breaking every commercially available operating
system with ease and impunity. Concern over the serious vulnerabilities
uncovered led to a study in 1972 by the Air Force Electronic Systems
Division of the requirements for a secure system. The results of that
study form the basis of most of our efforts in developing secure systems.
The most important concept to come out of that study is that of the
reference monitor (Figure 5). The reference monitor mediates the access of
subjects to objects. It determines whether or not access is to be granted.
All security relevant decisionmaking code is collected in the security
kernel. The reference monitor concept requires that this module be
complete (i.e. , that all subject/object accesses be checked by the kernel),
that it be isolated (i.e. , that the kernel code be protected from
modification or interference by any other code in the system), and that it
be verifiable (i.e., perform only that which it was intended and no more).
Verification is a very difficult area, and may run the gamut from mere
performance audit to formal mathematical proof of correction. For security
applications, we are strivirig for formal provability. Significant
progress is being made in this area. Between 1973-1975, the Air Force ESD
and MITRE developed a security kernel for the PDP 11/ 4 5 and then applied
those concepts to the design of the Multiplexed Information and Computing
Service (MULTICS) operating system for the Honeywell 6000 system. About
this same time, Dr. Jerry Popek of UCLA was building a secure kernel
prototype for the PDP 11/L45 based upon a virtual machine monitor system and
emphasizing the kernel verification process. Also during the early 1970's,
the Bell Labs designed and implemented the UNIX operating system for the
PDP 11. The UNIX, designed to provide effective support to interactive
users, has proven to be highly efficient and reliable. Its operating
system structure, written in the high order language "1C" is simple and
uncomplicated. Both UCLA and MITRE have interfaced their prototypes with
UNIX.

In 1977, DOD initiated an effort to move beyond the prototype stage,
to design and implement a production quality version of a certifiably
secure operating system which emulates the Bell Lab's UNIX. This program,
known at that time as the "DOD Secure UNIX," was two--phased (Figure 6).
The Design Phase, with a competitive PFP issued in April 1977, saw twc

-l10-

contractors (TRW and Ford Aerospace and Communications Corporation)
selected in August 1977 to develop detailed systems designs. The Design
Phase was completed in April of 1978. The Implementation Phase commenced
in May 1978 with the award of contract to Ford Aerospace and Communications
Corporation to build the production version, fully supported, for fielding
ii. August 1979.

KSOS will be a complete rewrite of the core of the UNIX operating
system (Figure 7). Thus, there will be no Bell Lab's/Western Electric code
in the KSOS and no need to pay licensing fees to Western Electric. Through
provided emulation, however, KSOS will be compatible with the UNIX
operating system and existing UNIX applications.

Because of the simplicity and straightforward design of UNIX, extend-
ing the KSOS to run on other hardware architectures should not be a
difficult task. The UNIX itself currently runs on PDP 11/40, 11/45, 11/70,
and also on Interdata 8/32. UNIX minicomputer applications are also
frontending IBM 360/370's, UNIVAC, and Honeywell mainframes, testifying to
the appeal and acceptability of UNIX. All of these factors favor the DOD
initiative. In addition to DEC and Honeywell implementations of KSOS, DOD
is aware of other serious interests in implementing KSOS-like
architectures. There is no reason to believe that other major
manufacturers will not do likewise. The KSOS, about to join the DOD
inventory of computer tools, will provide a significant capability to
better respond to national level security policy and, importantly, will be
demonstrated proof to industry that secure systems are possible.

LUJ

LLLU

LoU

= C

C=)D

f--

CCD

(-0)

LU

CD/
LU

Lu

Ia-

LD)L-) CD
-JC/) L-) -

SUJ CD Lo C

CD C
C-4 CD CD LU .1 CD LU

LU C/) LO CD -14 CD (. ~
CD (= M: <

LU -n 2M C))>c')

LU LU

C-) V) CD

No=

- LL

-)

LUL

LU
U-~ >-

LU

-Ji
F,

r, LU C/)

LU V) LU C/)

LUU
-- CD L

GO'

-j- LU

LU LU LU LU C)

w LU LU

Li-
CD LU cx V)

(-.>

C) C)

LrLU

LU 4

Ci-)

0- C)

LU >- U
'i C: C- L

C) C)lL
LUJ LUJC

C)) -r

C=)'

LL LUJ C)-

CU Lu - U - L

LC)
V) C)

LL >- _
LU LL Ui C)JLL

o:: -- -

I LU C/) LL) CU t

C.) - LU J ><O C) C

LU ~ ~ L I- LU c/ . C)C
0- L- .. J J L I

I-J O l- >

~~~-L LUL U U L

L- .1J LU )

LU -

C)C7 CT) Dc>-> L

C Cl

_~a 
c- C)L) " C)



LUJ

I-

C-)

LUJ

LU J

-

LLL

LUJ

LU-

LL I
L/) LU C

SLUI LUJ
(U) LU -

V) LUJ

00 0



C)

LULO LUJ
c~LU LUJ

V)~ I--j

I-- 0 LUJ

-cr LL ( L (
-LU I- C/") --m -

LU J
Ck C:)

C' -- ~ ~(--> U
LA.J 9-.. X: -

LUI U Qv LU C= LU-
l - V) F- -j

ZZ V/) cn' R 2-W
LUJ C) u LUJ C'

LUJ C:)
LUJ l-l r-I 00 00 Oi;

Coo r-. r- r-_ . r-l r-_

qcr a) a) LU >- U

U--

C= LU

LU Z-1-117-M



LUJ

C:?

LU LI

C- 2EC/

LLLU

-< LUJ

LU -

LU LU

:r LU J
cL a.

0 0

o 0 0



The Department of Defense

Kernelized Secure Operating System (KSOS)

E. J. McCauley

Ford Aerospace and Communications Corporation

The Department of Defense Kernelized Secure Operating System
(KSOS) is intended to be a provably secure operating system for larger
minicomputers. KSOS is divided into three parts:

1. The Security Kernel - a minimally complete primitive operating
system providing the basic security enforcement of the system.

2. The UNIX** Emulator - which transforms the interface provided
by the Kernel Into one similar to that provided by UNIX.
Existing UNIX applications will run unmodified on KSOS.

3. The Non-Kernel System Software (also called Non-Kernel Security-
Related Software) - which is the collection of software needed
to operate, maintain, and administer a KSOS system.

The session dealt with three major topics. First, the design
methodology and security assurance methods used on the KSOS project have
been briefly discussed. These methods blend well-accepted software design
procedures with new ideas from the research community. KSOS will be one
of the first production projects to routinely employ formal, mathematical
specifications in its design process. There were also proofs that the
design satisfies the security requirements independent of any mechaniza-
tion of that design. The second topic was the design of KSOS. Here, the
emphasis was on the interfaces available to various classes of KSOS users.
It has been a design goal that the KSOS Kernel could be used for applica-
tions other than UNIX. Thus, the features that realize this goal were
emphasized. The final topic was the potential applications for KSOS.
Particular emphasis was placed on applications in which the full generality
of the UNIX Emulator is not required, such as the Military Message Process-
ing equipment.

-119-



The Department of Defense Kernelized Secure Operating System (KSOS)

E.J. McCauley

Ford Aerospace and Communications Corporation, Palo Alto, CA

ABSTRACT

The Department of Defense Kernelized Secure Operating System (KSOS) is
intended to be a provably secure operating system for larger minicom-
puters. KSOS will emulate the UNIX** operating system. This paper
deals with three major topics. First, the design methodology and
security assurance methods used on the KSOS project will be briefly
discussed. These methods blend well-accepted software design pro-
cedures with new ideas from the research community. KSOS is one of
the first production projects to routinely employ formal, mathematical
specifications in its design process. There will also be proofs that
the design satisfies the security requirements independent of any
mechanization of that design. The second topic is the design of KSOS.
Here the emphasis will be on the interfaces available to various
classes of KSOS users. It has been a design goal that the KSOS Kernel
could be used for applications other than UNIX emulation. Thus, the
features that realize this goal will be emphasized. The final topic
will be the potential applications for KSOS. Particular emphasis will
be placed on the effective utilization of the system's features in
supporting multi-level applications.

1. INTRODUCTION

The purpose of the Department of Defense Kernelized Secure Operating System
(KSOS, formerly called Secure UNIX) is to provide a provably secure operating
system for larger minicomputers. KSOS will provide a system call interface
closely compatible with the UNIX operating system. The initial implementation
of KSOS will be on a Digital Equipment Corp. PDP-11/70 computer system. A
group from Honeywell is also proceeding with an implementation for a modified
version of the Honeywell Level 6 computer system.

KSOS will be capable of handling information at various security levels (a
security level is a combination of a hierarchically ordered classification
category, like SECRET or TOP SECRET, and a, possibly null, set of compartments,
like NOFORN or specialized need-to-know compartments). The goal of the system
is to provide strong assurances that it is impossible for an unprivileged user
to cause an information compromise.

The work described in this paper was performed under ARPA Order 3319, Con-

tract MDA903-77-C-0333 administered by the Defense Supply Service-
Washington. Various DoD Agencies are funding the work. The conclusions
presented are those of the author and are not necessarily those of the
Government or Ford Aerospace.

** UNIX and PWB/UNIX are trademarks of the Bell System

Version 1.4

-120-



At its outer interface, KSOS will appear to be closely similar to the UNIX
operating system [Ritchie 74]. The only changes are to tighten the security
checking on some of the operating system calls, and to add several new calls
which individual UNIX sites had previously added to their systems. Existing
applications programs written for UNIX will run without modification or recompi-
lation on KSOS, providing that they do not violate the security rules of the
system. At last count there were several hundred application programs for UNIX,
ranging from simple utilities through sophisticated compilers, data management
systems, text processing systems, and powerful editors. (This paper was com-
pletely prepared on a UNIX system, as is all documentation for the KSOS pro-
ject.) All of these programs should run on KSOS without modification.

This UNIX-like interface is provided by a software component called the
UNIX Emulator. The UNIX Emulator transforms the user's UNIX operating system
calls into (sequences of) calls to the Security Kernel. The Security Kernel is
the heart of the system. The Kernel implements the reference monitor concept
[Bell and LaPadula 73]. Briefly, through a combination of hardware and software
checking, the Kernel mionitors every access attempt by each user process. The
Kernel will be shown to make the correct decision on whether to permit or deny
the access attempt.

One important distinguishing characteristic of KSOS over the prototypes
which have preceded it (Kampe et al. 77] (MITRE 77] is that it contains a full
range of support software. Included in this "Non-Kernel System Software" (also
called Non-Kernel Security-Related Software) are components which support the
day-to-day operational functions of the system: secure spooling of line printer
output, portions of the interface to a packet-switched computer network, etc.
Also included are components for the continuing maintenance of the system such
as consistency checks of the file system, and system generation support.
Finally, there are components to support the administration of the system, such
as adding and deleting users, changing the security levels that a given user may
access, and other functions.

The schedule for KSOS calls for its delivery in the fall of 1979 after the
conclusion of a full series of testing. The KSOS development contract specifies
that the system shall have a full MIL SPEC documentation package in accordance
with MIL-STD-483, -490, and -1521A. Detailed documentation on the basic archi-
tecture and interfaces is presently available in the form of B5 Specifications.
The Kernel B5 Specifications [Kernel 78] include formal, mathematical descrip-
tions of precisely what each Kernel call does. In addition technical reports
have been delivered detailing our plans for verification of the system's secu-
rity properties [Verif 78], for the tools and techniques to be used in implemen-
tation [Impl 78], and for the long term maintenance and support of the system
[Maint 78].

2. THE DESIGN METHODOLOGY

It is generally accepted that security cannot be added on to a system.
Rather, the security features of a system must be designed in from the begin-
ning. In the case of KSOS this is accomplished by adding mathematical formalism
to the system design and implementation process. The design methodology fol-
lowed on KSOS is called HDM (Hierarchical Design Methodology) and was developed

Version 1.4
-121-



at SRI International [Robinson et al. 77J in an attempt to improve the rigor of
the design process. HDM is much more evolutionary than revolutionary. It takes
the proven techniques for system design and implementation and adds to them the
mathematical formalism needed to make precise statements about the behavior of
the system. HDM also incorporates verification that successive stages in the
design process are consistent with the earlier stages. Figure 1 shows HDM
versus the classical software development process as defined by MIL-STD-483,
-490 and -1521A. (All the services have software procurement procedures that
are similar to those of MIL-STD-483, -490, but there are slight differences in
terminology.)

Design Stage HDM "Classical"

Requirements Definition formal mathematical broad statement of
model of security security requirements

Functional Allocation hierarchical decom- decomposition into
position of system functions performed
into layers of virtual by each CPCI
machines

Functional Specification formal mathematical B5 Specifications:
specification in a interfaces, input,
non-procedural processing and output
language (SPECIAL) for each function

Detailed Design data representations, Structured English,
abstract programs flow charts, etc.

Implementation verifiable language language chosen for
efficiency, maintain-
ability, compatibility
etc.

Requirements Compliance formal proofs: manual reviews:
design vs security Functional Config.
model Audit

code vs design Physical Config.
Audit

Figure I. HDM vs Classical Design Methods

For I(SOS, we have used a mixture of HDM and the classical methodology. Somewhat
to our surprise the steps of HDM have been able to be incorporated into the
classical methodology without great dislocation for either methodology.

KSOS will have two distinct classes of proofs made about its security pro-
perties. First, the design will be proven to be secure. This proof is indepen-
dent of any implementation. It consists of proving a relatively large number
(we estimate about 1000) of inequalities derived from the design. These

Version 1.4
-1,22-



inequalities relate the security levels of inputs for a particular function to
the security levels of the outputs of that function. For a system to be secure
each function must satisfy two properties:

a. the simple security property: a process may only read data at or below its
security level

b. the security *-..property (pronounced "star property"): a process may only
write data at or above its level

The generation and proof of the theorems must be automated because there are so
many of them. Fortunately, they are nearly all trivial, hence automated theorem
generators and provers can be used. Presently, we have been successful at
automatically generating and proving the theorems for a fragment of the design.
Current efforts are underway in the area of speeding up the proof processing
sufficiently to handle the anticipated number of theorems.

The second class of proofs about the system is that the code realizes the
design. These proofs follow the methods first proposed by Hoare [Hoare 69],
[Hoare 72]. They consist of showing that given a precise definition of the pro-
gramming language and a set of initial assertions (the EXCEPTIONS clause from
the formal specifications in SPECIAL), the program exits with the system in the
#estate" described by the EFFECTS clause of its specification. Full proofs of
all the code in even a system as small as the KSOS Kernel are presently beyond
the state of the art. We plan to do representative- proofs of modules known to
be both important to the overall security of the system, and whose proofs appear
to be tractable.

Our experience with the design methodology has been favorable. The rigor
of doing formal specifications from the very beginning of the project has been
extremely valuable. Inelegant solutions to problems show up very early. A
kludge in formal specifications is very, very obvious.

3. KSOS DESIGN

This discussion will be a bottom-up presentation. First, the Kernel will
be discussed. The emphasis will be on the more interesting aspects of the Ker-
nel interface, and how they could be employed for applications other than the
emulation of UNIX. The UNIX Emulator will be discussed next. This will be
rather brief, and will again emphasize the more novel aspects of the Emulator.
The discussion of the Emulator will not present very much on UNIX per se.
Finally, the Non-Kernel System Software will be discussed.

Central tc.. the KSOS design is the notion of processes. Loosely, a process
is a program in execution. In KSOS processes are comprised of two parts: a
user mode portion and a supervisor mode portion. In emulating UNIX, the user
mode portion is a normal UNIX application program, and the supervisor portion is
the UNIX Emulator. The PDP-11/70 has three distinct memory domains: user,
supervisor and kernel. The KSOS Kernel (and nothing else) resides in the kernel
domain. The two process portions reside in the user and supervisor domains
respectively. The user mode UNIX system calls are vectored to the UNIX Emulator
which performs the internal functions and Kernel calls necessary to emulate the

Version 1.4
-123-



call. Because the UNIX Emulator is not verified, it cannot be used in any
trusted services. In these cases, the user mode portion is not used. The pro-
gram performing the trusted service resides in the supervisor domain. Figure 2
shows the relationship of the KSOS components.

I User Programsl untrusted
USER MODE (may include I NKSR

I Kernel calls)I
I ........... .

SUPERVISOR I
MODE UNIX EMULATOR Itrusted NKSR I

KERNEL MODE SECURITY KERNEL

(NKSR: Non-Kernel Security-Related Software)

Figure 2. Functional Components of KSOS

3.1 The KSOS Security Kernel

Viewed as an abstract machine, the Kernel's function is to create the
objects of its interface (processes, process segments, files, devices, and sub-
types) from the basic hardware resources of the system, and to mediate all
access attempts to these objects. The Kernel is the heart of the security pro-
tection features of KSOS. The Kernel is a simple operating system that controls
access to the protected objects of the system. The Kernel must allocate the
sharable resources of the computer (e.g. cpu time, disk space). Due to limita-
tions of the PDP-11/70, the Kernel manages all devices.

The Kernel enforces three distinct types of access checking. The first is
the enforcement of DoD security policy. This checking is the verification of
that fact that the user has the proper clearance and need-to-know to for reading
the information (the "simple security property"), and that information cannot be
downgraded by writing it to a file at a lower security level (the "security *-
property"). The second type is the enforcement of an integrity policy described
in (Biba 75]. Integrity is a mechanism for protecting system data bases, pro-
grams, etc. against modification while allowing them to be read by any process.
It is formally defined to be the mathematical dual of the security model. We
have found this integrity model to be overly restrictive, as its originator
suspected. However, it does provide an additional, essential dimension of pro-
tection. Development of a more effective integrity model would seem to be a
meaningful research topic.

The third type of access checking performed by the Kernel is discretionary
access checking. Unlike the first two types of checking, the discretionary
access checking is completely under the control of the user. The user may at
his discretion permit or deny access by other users to the objects he owns.
KSOS enforces a discretionary access policy similar to that of UNIX. For each
object there are (logically) nine bits that specify read, write, and
execute/search access by the owner, others in the same group as the object, and

Version 1.4
-124-



all others. We recognize that this discretionary access policy has limitations
when compared to more sophisticated schemes, such as the access control lists
used in Multics. However, it is simple, and requires a small fraction of the
support mechanisms needed for access control lists.

The Kernel supports five different types of objects:

a. processes

b. process segments

c. files

d. devices

e. file subtypes

All Kernel objects have the same type of name called a SEID (Secure Entity IDen-
tifier). Further, every object, regardless of its type, has a block of informa-
tion associated with it that includes all the information needed by the Kernel
to mediate access attempts to the object. This block is called the "type
independent" information. The type independent information includes:

a. the security classification category (UNCLASSIFIED I CONFIDENTIAL I SECRET
I TOP SECRET)

b. the security compartment set (e.g. NOFORN, special need-to-know compart-
ments)

c. the integrity classification category (USER I OPERATOR I ADMINISTRATOR)

d. the integrity compartment set (presently always null)

e. the owner of the object (a user and a group)

f. the discretionary access information

Because objects, regardless of the object type, have homogeneous type indepen-
dent information, access checking by the Kernel is greatly simplified. All that
must be checked is that information may flow from the source to the destination.
For example, if a process wishes to read a file, the source is the file and the
destination is the process. In the KSOS Kernel, two functions perform all the
access checking (one for security and integrity checking and one for discretion-
ary access checking).

3.1.1 Processes

Processes are the only active agents in the KSOS design. To adequately
emulate UNIX, KSOS processes must be cheap and plentiful. For example, each
UNIX command is run as a separate process. Processes in KSOS will require only
modest amounts of Kernel resources. Most of the Kernel data for a process will
be swapped in and out with the process, reducing the amount of locked down Ker-
nel memory space for the process tables.

Version 1.4
-125-



Processes may possess privileges that enable them to perform functions that
require reduced checking by the Kernel (e.g. changing the classification of a
file) or which may require that additional checking be performed in the process
(e.g. logically mounting part of the file system). The privileges that may be
given to a process have been designed following the concept of "least
privilege". That is, the granularity of the privileges is quite fine, and quite
specific. Many service processes possess only a single privilege, and many
privileges are possessed by only one process. Thus, the KSOS Kernel is designed
to create encapsulated environments for critical functions. Privileges are
obtained from the process image file (in UNIX the "a.out" file, in other systems
this has been called a load module) from which the process was initialized. Two
Kernel calls, K invoke and K spawn, are used for the controlled invocation of
privileged software. K -invoke functions by replacing the entire process with a
user-specified intermediary process. For the invocation of trusted software,
this intermediary is a trusted "bootstrap" that in turn, replaces itself with
the requested process image file, and sets the privileges of the process from
the values in the image file. K -spawn performs the same function in a new pro-
cess created as part of the K spawn function. For both K invoke and K spawn,
the user specifies the intermediary process image to be used. The "bootstrap"
image discussed above is one choice. For other applications it may be desirable
to have other possibilities for the intermediary, so that specific trusted ser-
vice functions could be invoked very rapidly.

In addition to the K spawn mechanism, new processes may be created by the
K fork call, which is similar to the UNIX fork call. K fork creates a "clone"
of the caller, a new process that is an exact copy of the caller. The only
difference between the two processes (parent and child) is the return value from
the K fork call. Such a mechanism is required for the accurate emulation of the
UNIX fork call.

Processes normally run at a single security level. The only exception to
this is the part of the Non-Kernel System Software that changes the user's work-
ing security level. For inherently multi-level applications, the preferred
design would be to create a trusted multiplex/demultiplex ("mux/demux") process
which directs commands and i/o to processes running at each level needed. This
would be preferable to having these per-level functions performed within one
process which changes its level because such a process would be larger and more
complicated than the mux/demux process. Verification of the correctness of a
process becomes significantly more difficult as the process size and complexity
increases. One example of this preferred architecture is the KSOS network
interface. A small trusted process separates the multi-level data stream from
the network into several streams. Each stream has data of only one security
level in it. The mono-level streams from the processes are similarly combined
by the trusted process into a single, multi-level stream.

Standard UNIX is acknowledged to be deficient in the area of Inter-Process
Communication (IPC). KSOS provides significant improvements in this area. The
Kernel supports both an event IPC mechanism and shared segments. The event
mechanism allows one process to send a message to another process, and (option-
ally) to cause the receiving process to be interrupted analogously to receiving
a hardware interrupt. The full set of security checks is performed for each IPC
attempt. That is, information must be able to flow from the sender to the reci-
pient, and the recipient must have permitted such information flow. Finally, a

Version 1.4
-126-



process may enable and disable the pseudo interrupt mechanism, so that it will
not be interrupted during some critical operation. (Shared segment IPC is dis-
cussed below.)

3.1.2 Process Segments

A process segment is a portion of the virtual address space of a process.
The process segment is not tied to the native memory management hardware of a
particular machine. The KSOS process segment may be of any size from a
hardware-limited lower bound up to the entire virtual address space of a pro-
cess. A process may have only some of its segments actually mapped into its
address space. At its creation the segment may be declared to be sharable, in
which case other processes can "rendezvous" with it and map it into their
address spaces. This allows for ver" high bandwidth communication between the
processes. Naturally, they must estab.lish a protocol that guarantees that the
segment will not be corrupted through unsequenced use. The process may elect to
have only some of its segments actually mapped into its address space. In par-
ticular, several segments for the same part of the address space could exist.
This mechanism is used by the trusted mux/demux processes discussed above. The
data segments are shared between the trusted mux/demux and the processes servic-
ing each logical stream. The mux/demux maps in a particular segment to a well
known location and puts/extracts the data for that stream into/out of the seg-
ment.

One other use for shared segments is shared text (program) segments. It is
possible to have a pure text segment shared between multiple processes, thus
reducing the overall memory requirements for the system. KSOS allows a segment
to be locked in memory, or to be retained in the swap area for faster accessing.
The designer of a KSOS-based system is offered considerable latitude in trading
space for time.

3.1.3 Files and Devices

The Kernel file structure is flat and uniform. That is, there are no Ker-
nel assumptions about the internal structure or contents of files. Directories
and other higher level constructs are mechanized outside the Kernel. The UNIX
Emulator creates UNIX-like directories by interpreting the contents of Kernel
files. This allows a designer working directly with the Kernel to create a dif-
ferent type of directory structure if desired. Kernel files are accessed by
blocks. There is no Kernel buffering of file i/o. Rather, the i/o is done
directly into the requesting user's address space. Kernel i/o is synchronous,
that is, the call does not return to the user until the i/o is completed. This
is mitigated by the shared segment IPC which lets another process wait for the
i/o to complete. We are currently studying the requirements for and the impact
of asynchronous i/o.

Kernel devices are like a special type of file, as in UNIX. Terminals have
only the lowest level echoing support in the Kernel. Higher level functions
like erase/kill processing are done outside the Kernel.

KSOS supports removable file volumes. The mechanism is similar to the UNIX
mount mechanism with some significant additions for protection. Because of the
possibility for removing a volume, files are limited in size to one volume.

Version 1.4
-127-



Presently the design allows for support of at least 300 Mbyte disks, with exten-
sibility to 600 and 1200 Mbyte disks possible. These large disks may be parti-
tioned into one or more independent extents, referred to as "mini-disks". It is
possible to use a mini-disk as a device rather than as file system volume. This
allows for very high performance i/o. The cost is that the process must mechan-
ize for itself whatever structure is wishes for the raw disk device. Naturally,
use of a given mini-disk as a raw device precludes its simultaneous use as a
file system and vice versa.

3.1.4 Subtypes

The KSOS subtype mechanism is one of its more novel features. The subtype
mechanism is designed to allow the selective encapsulation of a class of files.
Each file is a member of a subtype class. "Normal" files are in the null sub-
type class. Files which are UNIX directories are in the "UNIX directory" sub-
type class. The accesses to files in a given subtype class may be restricted.
For example, the subtype restriction on UNIX directories is that anyone may read
a directory, but only a process whose effective user ID is the Directory Manager
may write them. These subtype restrictions are in addition to the other types
of access checking (security, integrity and discretionary). The access restric-
tions for a given subtype apply to all files of that subtype. To update a UNIX
directory, the requesting process will K spawn another, new process that exe-
cutes the (privileged) Directory Manager program. This new process will perform
the requested modification if possible. The mechanics of how this occurs are
discussed below.

There are many other possibilities for using subtypes. For example, they
could allow "peaceful coexistence" of two separate directory structures as might
occur if there were two different Emulators, say one for UNIX and one for
another operating system. Subtypes could also be used to control what could be
done to files that mechanized the internal structure of a data base management
system. Only processes that were known to correctly manipulate the structure
would be allowed to change it. The subtype mechanism provides the KSOS Kernel
with a significant type extension feature in that it lets the Kernel support
encapsulation and control of objects without having the Kernel be cognizant of
the syntax and semantics of the object.

3.1.5 Secure Terminal Interface

In a secure system it is necessary to have an "unspoofable" path to trusted
services. ("Spoofing" occurs when an unprivileged user process pretends to be a
privileged process. For example, a nefarious user starts a process that imi-
tates the login sequence, and waits for an unsuspecting victim to type in his
password.) In KSOS each terminal is (logically) two devices, the normal termi-
nal device and the secure device. Only privileged Non-Kernel System Software is
able to use the secure device. When the user types a reserved attention charac-
ter (currently BREAK), the normal path is blocked, and the character stream is
switched to the secure path. Listening on the secure path is a service process
which will cause the desired secure service to be performed. Because the normal
path is blocked, rather than killing off any process using it, it is possible
for the user to start doing something, temporarily abandon it while requesting
some secure service, and resume the activity after the secure service is com-
pleted. This is the mechanism by which the user is able to change his working

Version 1.4

-128-



security level.

3.1.6 Auditing

DoD security policy requires that certain security-related events be cap-
tured for auditing purposes. In KSOS this occurs in two ways. The Kernel cap-
tures the events it knows about and generates an IPC message to the Audit Cap-
ture process. The second mechanism is that the Non-Kernel System Software cap-
tures the event. This second case is necessary because the Kernel cannot tell
that certain significant events, like a user login, have occurred. The Audit
Capture process does only a minimal amount of processing and then simply places
the event record into an audit log. Although it is not within the scope of the
current KSOS contract, this audit log could be processed to look for suspicious
(sequences of) events.

3.2 The UNIX Emulator

The UNIX Emulator is almost completely defined by its two interfaces. it
must transform the system calls of the UNIX interface into sequences of Kernel
calls. In the design KSOS a serious attempt was made to get a good "impedance
match" between the Emulator and the Kernel, while not having the Kernel be
strongly UNIX-dependent. This means that the Emulator is fairly straight-
forward.

The UNIX Emulator is "untrusted", that is, it has no special privileges.
Thus, individual KSOS sites may modify their UNIX Emulator to provide additional
functions. One of the major strengths of UNIX has been that it was easy to
modify to adapt it to the needs of a particular installation. This flexibility
has been retained in KSOS.

3.2.1 UNIX Directory Management

One of the major functions of the Emulator is the creation of the UNIX file
system from the more primitive file system provided by the Kernel. The Emulator
ca -hes the block i/o supported by the Kernel to provide the byte stream i/o sup-
ported by the UNIX interface. The Emulator also is where UNIX directories are
managed. The final design of the UNIX directory management function is the
result of a long series of (occasionally heated) debates on where directories
would be mechanized. Initially they were to be completely managed by the Emula-
tor. However, this was prior to the birth of the subtype notion, and there was
no way to guarantee the integrity of the directory structure. In particular,
trusted software could not depend upon the directory structure. Then it was
proposed to move part or all of the directory management function into the Ker-
nel. This seemed to solve the integrity problem, but opened a new and more
serious problem of making the Kernel cognizant of the structure and semantics of
directory files, and thereby making the Kernel very UNIX-specific. Finally, the
subtype idea was proposed. The Kernel would know that directories were "spe-
cial", and would aid in the preservation of their integrity. However, the Ker-
nel would not be aware of the internal structure or semantics of directories.

The current design has the Emulator performing all the directory interpre-
tation functions (i.e. recursively searching for names in directories), but
writing directories is only done by the Directory Manager. The Directory

Version 1.4

-129-



Manager is a program that is K spawn'ed into execution whenever an Emulator
needs to modify a directory. It starts its life running as the user "dirmgr"

who owns the directory subtype. After getting permission for write access to
directory subtyped objects, the Directory Manager reverts its identity to that
of the requesting user. From there on, the the Kernel will enforce security,
integrity, and discretionary access checking. Thus, the user cannot trick the
Directory Manager into modifying a directory that the user cannot access. This
architecture may be criticized as being too slow, since creating a new process
via K spawn is moderately time consuming. However, measurements on one of our
UNIX systems in a software development environment suggest that modifications of
directories is a fairly infrequent occurrence.

3.2.2 Computer Network Support

The Emulator contains the bulk of the support for the computer network
interface. KSOS will "speak" Version 4 of the Transmission Control Protocol
(TCP) [Postel 78b] including the Internet Datagram Layer [Postel 78a]. This
protocol appears to be on its way to becoming a future standard within DoD.
There are no present plans to support other protocols, in particular, the
Arpanet Host to Host Protocol will not be supported at this time.

The basic structure of the KSOS network interface was discussed above.
There is a Network Daemon which handles the Internet Datagram protocol, and
enough of the TCP to separate the i/o stream from the network into separate
streams for each connection. In each Emulator is the majority of the TCP func-
tionality. All of the functions relating to sequence number maintenance, window
maintenance, acknowledgement, and retransmission are in the Emulator. This is
possible because these are per connection functions, and need not be globally
managed. Although no networks presently exist that can handle multiple security
levels, this architecture envisages their development and is designed to support
them. To support a multi-level network, the Network Daemon would be trusted, so
it could handle the multi-level stream to/from the network. The remainder of
the TCP functions performed by the Emulator would be untrusted, since they are
at only one level.

3.3 The Non-Kernel System Software

The purpose of this component of the KSOS system is to provide the software
tools to support a KSOS system. The Non-Kernel System Software is divided into
four groups:

a. Secure User Services: software that manipulates the security levels of
users and files. Also included in this class are all functions that
require a secure ("unspoofable") path to the service.

b. System Operation Services: software that performs continuing services for
the system, such as the Network Daemon, line printer spooling and inter-
user mail.

c. System Maintenance Services: software that performs occasional services
primarily in the area of checking and repairing the consistency of the file
system. Also included are the system generation functions. Individual
KSOS sites can generate their system to suit the hardware configuration

Version 1.4

-130-



available.

d. System Administrative Services: software that aids the System Administra-
tar in controlling the system. Our goal has been that the System Adminis-
trator need not be a computer expert to perform his functions.

The Non-Kernel System Software described is a minimally complete set. Clearly
there are large numbers of additional utilities that would be desirable. It is
expected that this class will be supplemented extensively as KSOS matures.

4. KSOS Application Considerations

There are two broad classes of KSOS applications, each with different con-
siderations. The first is applications that utilize the full KSOS system, i.e.
applications based upon UNIX. KSOS should appear to these applications to be
only slightly different than a standard UNIX operating system. Because KSOS
provides a UNIX-like interface, meaningful secure applications can be built
using the existing software. UNIX is one of the best systems in existence for
the creation of new products by novel combinations of existing packages, and
KSOS will preserve this flexibility. Such applications can, however, be made
easier in some cases via the direct use of KSOS Kernel calls. All programs may
issue Kernel calls directly, but they should be careful in their use lest there
be undesirable interference with the Emulator.

The second class of applications are those which do not use the UNIX Emula-
tor, but which use either a different Emulator or which use the Kernel directly
without an Emulator. The Kernel provides many features that make it an attrac-
tive operating system in its own right. It offers excellent i/o performance, a
range of IPC options, and many features that ease the design of multi-level
applications. Because the Kernel is "UNIX-flavored" without being heavily
UNIX-dependent, it is possible to create application environments that are an
amalgamation of the features provided by different operating systems.

I(SOS facilitates the creation of encapsulated environments that can be used
for a variety of purposes. This encapsulation allows objects to be manipulated
only by software known to perform correctly. In many cases only a small part of
a multi-level application actually deals with data at different security levels.
By encapsulation of these functions in a small trusted process, it is possible
to build multi-level applications that minimize the amount of trusted (and
therefore expensive) code.

5. Summary

The KSOS project is an extremely significant one in the field of secure
systems. It is moving a great deal of technology from the research community
into production development. Naturally, such bold steps are not without risk.
The project has blended established methods with these novel ones to minimize
this risk. KSOS offers both provable security and the potential for performance
close to that of a standard UNIX system. Its underlying design facilitates the
creation of a wide range of applications based on the system. All major mile-
stones have been met to date, and the project appears to be making acceptable

Version 1.4
-131-



progress towards its goals.

6. Acknowledgements

KSOS is being created by an exceptionally talented and dedicated team. It
is a pleasure to acknowledge the contributions of the following people: Gerry
Barksdale, Tom Berson, Ken Biba, Paul Drongowski, and Mark Gang. Ford Aerospace
has had SRI International as a subcontractor in the areas of formal methodology;
Richard Feiertag, Peter Neumann, Larry Robinson and Olivier Roubine have been of
significant help in using and understanding the Hierarchical Design Methodology.
An important acknowledgement must be made to the Government team on KSOS: Dan
Edwards, Ed Burke (MITRE Corp.), Jerry Gann (formerly of MITRE Corp.), Ken Shot-
ting, Pete Tasker (MITRE Corp.), Howie Weiss, and John Woodward (MITRE Corp.).
It is a pleasure to work with such a knowledgeable and hard working team. Steve
Walker now of the Office of the Secretary of Defense, but formerly of ARPA has
been one of the leaders of the Government's secure systems research. His
efforts made the KSOS project possible. Finally, credit must be given to Ken
Thompson and Dennis Ritchie of Bell Laboratories for the creation of UNIX. We
still marvel at the sophistication and elegance of their product.

7. References

This list includes several KSOS deliverable documents not referenced in the
text.

[A-Specs 78] "KSOS System Specification (Type A)", WDL-TR7808 Revision 1,
Ford Aerospace and Communications Corporation, Palo Alto, CA (July 1978).

[Bell and LaPadula 73] Bell, D.E. and LaPadula, L.J., "Secure Computer Sys-
tems", ESD-TR-73-278, Volume I-III, MITRE Corporation, Bedford, MA
(November 1973 - June 1974).

[Biba 75] Biba, K.J., "Integrity Considerations for Secure Computer Sys-
tems", MTR-3153, MITRE Corporation, Bedford, MA (June 1975).

[Emulator 78] "KSOS UNIX Emulator Computer Program Development Specification
(Type B5)", WDL-TR7933, Ford Aerospace and Communications Corporation, Palo
Alto, CA (September 1978).

[Hoare 69] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming",
CACM, Volume 12, Number 10, pp 576-583, (October 1969).

[Hoare 72] Hoare, C.A.R. "Proof of Correctness of Data Representations",
Acta Informatica, Volume 1, pp 271-281, (1972).

[Impl 781 "KSOS Implementation Plan", WDL-TR7799, Ford Aerospace and Commun-
ications Corporation, Palo Alto, CA (March 1978).

[Kampe et al. 771 Kampe, M., Kline, C., Popek, G., and Walton, E., "The UCLA
Data Secure UNIX Operating System", Technical Report, University of Cali-
fornia at Los Angeles, Los Angeles, CA (July 1977).

Version 1.4

-132-



[Kernel 78] "KSOS Security Kernel Computer Program Development Specification
(Type B5)", WDL-TR7932, Ford Aerospace and Communications Corporation, Palo
Alto, CA (September 1978).

[Maint 78] "KSOS Maintenance and Support Plan", WDL-TR7810, Ford Aerospace
and Communications Corporation, Palo Alto, CA (March 1978).

[MITRE 77] "Draft B5 Specifications for the MITRE Secure UNIX Prototype",

Private Communication, 1977.

[NKSR 78] "KSOS Non-Kernel Security-Related Software Computer Program
Development Specification (Type BS)", WDL-TR7934, Ford Aerospace and Com-
munications Corporation, Palo Alto, CA (September 1978).

[Parnas 72] Parnas, D.L., "A Technique for Software Module Specification
with Examples", CACM, Volume 15, Number 5, pp 330 - 336 (May 1972).

[Postel 78a] Postel, J.B., "Internetwork Protocol Specification", Version 4,
Information Sciences Institute, University of Southern California, Marina
del Rey, CA (September 1978).

[Postel 78b] Postel, J.B., "Specification of Internetwork Transmission Con-
trol Protocol - TCP Version 4", Information Sciences Institute, University
of Southern California, Marina del Rey, CA (September 1978).

[Ritchie 74] Ritchie, D.M. and Thompson, K., "The UNIX Timesharing System",
CACM, Volume 17, Number 5, pp 365 - 375 (May 1974).

[Robinson et al. 771 Robinson, L., Levitt, K.N., Neumann, P.G., and Saxena,
A.R., "A Formal Methodology for the Design of Operating System Software,"
in R.T. Yeh (ed.), Current Trends in Programming Methodology, Vol. 1,
Prentice-Hall (April 1977).

[Roubine and Robinson 77] Roubine,O., L.Robinson, Special Reference Manual,
3rd ed., Technical Report CSG-45, SRI International, Menlo Park, CA (Janu-
ary 1977).

(Verif 78] "KSOS Verification Plan", WDL-TR7809, Ford Aerospace and Communi-
cations Corporation, Palo Alto, CA (March 1978).

Version 1.4

-133-



KSOS Executive Summary

Ford Aerospace & Communications Corporation
Western Development Laboratories
Software Technology Department

3939 Fabian Way
Palo Alto, California 94303

ABSTRACT

KSOS is the Kernelized Secure Operating System designed for
DARPA. KSOS is required to be externally compatible with Bell

Telephone Laboratories' UNIX*tm, to be efficient, to satisfy cer-
tain multilevel security requirements, and to be demonstrably
secure. This document provides a summary of the progress ob-
tained in Phase I of the KSOS development by Ford Aerospace and
its subcontractor SRIInternational under contract MDA903-77-C-
0333. It gives an overview of the Phase I work, including a sum-
mary of the documentation delivered under the contract. It also
outlines plans for the Phase II work.

ORGANIZATION OF TifIS SUMMARY

This document is organized as follows.

Introduction
The Basic Design
The Hierarchical Development Methodology, HDM
Security
The Role of Specifications
The Role of the Programming Language
The Role of Verification
The Role of On-line Tools
The Kernel
The Trusted Non-Kernel Security-Related Software
The Emulator
The Nontrusted Non-Kernel Security-Related Software
The Work Proposed for Phase II
Preliminary Evaluation
Guide to Documentation

-134-



INTRODUCTION

The long-term goal of the KSOS effort is to develop a commercially viable
computer operating system for the DEC PDP-11/70 that

* is compatible with the Bell Telephone Laboratories' UNIX*tm,
* is capable of efficiency comparable to standard UNIX*tm,
* enforces multilevel security and integrity, and
* is demonstrably secure.

In order to achieve this goal, the Phase I effort described here has
designed a trusted Security Kernel and associated trusted Non-Kernel
Security-Related Software, such that the trusted software:

* provides a suitable basis for KSOS;
* intrinsically supports multilevel security/integrity,
* can be used by itself to support non-UNIX*tm-based applications,and
* is able to run efficiently on a DEC PDP-11/70.

The security of the overall KSOS system must be convincingly demon-
strated. This will be accomplished by formal verification of the security pro-
perties of the design (i.e., the formal specifications) and selected proofs of
correspondence between the delivered code and the design. In addition, KSOS
will be rigorously tested to lend added confidence in the in the system.

Although the Security Kernel is intended initially to support an Emulator
providing a UNIX*tm-like user environment, the Kernel has been designed to be
used by itself, or with an Emulator providing a different user environment.
Typical uses of the the Kernel by itself would be dedicated secure systems
such as military message processing systems, or secure network front ends.

THE BASIC DESIGN

The design of KSOS consists of a Kernel (KSOS.K) that supports multilevel
security, the trusted Non-Kernel Security-Related Software (KSOS.NKSR.T) which
though outside of the Kernel, is trusted to deviate internally from the mul-
tilevel security policy to provide critical system functions, an Emulator
(KSOS.E) that provides compatibility with the existing UNIX*tm user interface,
and the untrusted Non-Kernel Security-Related Software (KSOS.NKSR.U) providing
user-level services such as secure mail and line printer spooling. As a
consequence of the requirement for a convincing demonstration of KSOS secu-
rity, the trusted software should be reasonably small --in order to simplify
the verification effort. However, it is neither necessary nor desirable that
all security-related software be a part of the Kernel, particularly because
some of the security policy may vary from one application to another. The
design supports various security-related functions outside of the Kernel. Any
meaningful verification of security must also consider any of the Non-Kernel
Security-Related Software which is trusted to violate the strict sense of mul-
tilevel security and integrity. The FACC KSOS design encourages the minimiza-
tion of such trusted software, although it makes explicit the efficiency tra-
deoffs that arise. Note that in the design discussed here the UNIX*tm Emula-
tor software has essentially no effect on security, and therefore does not
require verification.

-135-

.. .. ... L _ __ .... ..



A slightly simplified block diagram of the design approach is given in
Figure 1, showing which levels of the design depend on which others and which
design levels must be trusted. A given design level in this figure is permit-
ted to depend only on lower design levels. In principle, a particular design
level may call any lower design level directly; however, in the actual imple-
mentation there will be some restrictions imposed, as noted below.

As seen in the figure, the Non-Kernel Security-Related software for KSOS
is divided into two design levels, one (KSOS.NKSR.T) trusted to violate
selected parts of the multilevel security model in a controllable way, the
other (KSOS.NKSR.U) not requiring any trust at all. The Emulator is seen to
be nontrusted. The figure shows that the trusted KSOS.NKSR.T can call upon
the Kernel. It also implies that the Emulator can call upon KSOS.K and
KSOS.NKSR.T. Similarly, the nontrusted KSOS.NKSR can call upon the Kernel,
the trusted KSOS.NKSR.T and KSOS.E. User applications (i.e., programs or
dedicated environments) may in principle use the Kernel, the Emulator, and the
Non-Kernel Security-Related Software, although in the actual implementation
they can be constrained, e.g., not to use KSOS.K directly. By this means,
certain Kernel primitives may be restricted to use by the trusted software,
and certain Non-Kernel Security-Related functions may be restricted to use by
administrative officers or system daemons. On the PDP 11/70, KSOS.K will run
in Kernel mode, while the trusted KSOS.NKSR and KSOS.E will run in supervisor
mode. Other systems than KSOS could be built using KSOS.K, which might or
might not use portions of KSOS.NKSR and KSOS.E. Implementations of KSOS or
just KSOS.K on other hardware are also anticipated. In a generalized domain
architecture, Figure 1 is illustrative of how the system might be partitioned
into more than just three states.

It is an engineering judgment as to what should be in the Kernel, as well
as to what the specific Kernel interface should be, in order best to satisfy
the system requirements. The approach taken in the FACC Phase I design is
expected to provide significant advantages. In this design, the Kernel pro-
vides generality suitable for the implementation of UNIX*tm and other applica-
tions, while also being modest in size and conducive to efficient implementa-
tions for these applications. This arises from the use within the Kernel of
compile-time definable types (similar to the extended type mechanism in SRI's
Provably Secure Operating System, PSOS). In.KSOS, this mechanism is used to
support multilevel secure directories, without requiring the entire directory
manager to be inside the Kernel. In the case of directories, a file "subtype"
is supported by the Kernel, while the directory manager is a part of
KSOS.NKSR.T. This allows the integrity of the directories to be improved
while continuing to allow the Emulator to be untrusted.

The methodology employed throughout facilitates verification that the
entire system satisfies the desired multilevel security properties. This
verification is composed of two parts. First, that the design is consistent
with the formal requirements, and second that the implementation is completely

consistent with the design. As a result of the latter verification, the secu-
rity of the implementation can be effectively demonstrated. Moreover, note
that much more is thereby verified since the consistency proofs of the imple-
mentation guarantee not just secure operation but also correct operation,
assuming the specifications are correct. That is, the demonstration that pro-
grams are consistent with their formal specifications guarantees that the
implementation does what is specified, no more, and no less. It should be

-136-



V K+T+E+U+A .......

I-
UNIX*tm Applications

Untrusted Al
I ---------------------------

User
mode V K+T+E+U

INon-Kernel Security-Related Softwarei

I Untrusted portion I
I KSOS.NKSR.U U1

. .. . . . . . . . I

V K+T+EI -- - - - - - - - -- - - - - - - - - I
I UNIX*tm Emulator I I

Untrusted I Not
KSOS.E El Trusted

Supervisor I ......................
mode V K+T

S ------------------------------- Trusted
INon-Kernel Security-Related Softwarel I

Trusted portion I V
KSOS.NKSR.T Tj

-------------------------------I

V K

- -------------------------------
Security Kernel

Kernel I trusted
mode I KSOS.K KI

-------------------------------- I
o...... .......

Figure 1
Block Diagram of KSOS Components

Note: K,T,E,U,A denote the functions provided by the five
levels in upward order, respectively. The interfaces
potentially visible at each level are cumulative upwards,
e.g., as indicated by K+T+E+U+A. In actual implementation
there may be restrictions on function visibility.

remarked that this two step verification, first of the design and then of the
implementation, may reduce the overall verification effort. It also allows
strong statements to be made about the system design whether or not full code
proofs are undertaken.

The work of this contract has taken a strong systems viewpoint toward the
overall development of the Security Kernel, the Non-Kernel Security-Related
software, and the UNIX*tm Emulator. This viewpoint is focused around the use
of a formal methodology for system design, implementation, and verification
that has been developed at SRI International, and used previously on various

-137-



system designs. The methodology is called the Hierarchical DeVelopment Metho-
dology (1I)H). Its use permits a wide collection of needs arising throughout
the development and subsequent use of the Security Kernel and its surrounding
KSOS software to be carefully addressed or anticipated. As a consequence, the
resulting KSOS design provides:

* multilevel security;
* provable security;
* high reliability and availability;
* high performance (operational efficiency) of both the Kernel and the

UNIX*tm Emulator;
* flexibility of the Kernel design to be readily applicable to other

hardware bases besides the PDP-11/70 (e.g., to the Honeywell SCOMP);
* generality of the Kernel design to be applicable to other security-

relevant applications instead of or in addition to KSOS, e.g., a dedi-
cated message processing system;

* controllability of the maintenance and evolution of the Kernel and Non-
Kernel Security-Related software;

* ease of maintenance, evolution, and particularization to installation

needs of the Emulator software, without adverse impact on the overall
system security.

* ease of reverification following changes to the trusted portions of the
system (KSOS.K and KSOS.NKSR.T).

It should be noted that the goal of provable security has significant
implications that would affect any development process, with respect to the
design, the choice of specification language, the choice of the programming
language, and the choice of the verification methodology. However, these are
all addressed by IDM and by the approach taken here.

THE HIERARCHICAL DEVELOPMENT METHODOLOGY, 1DM

The formal methodology used in Phase I and proposed for use in the Phase
II development of the KSOS system is summarized below.

* An overall systems viewpoint is maintained throughout.
* A unified methodology is used for design, implementation, and verifica-

tion. This greatly increases the understandability of the design, the
ease of implementation, and the verifiability of the resulting system.
It includes the use of a formal specification language called SPECIAL (A
SPECification and Assertion Language).

* The methodology encourages a hierarchically decomposed design, which
itself has strong implications on initialization, shutdown, recovery from
hardware and software errors, maintenance, and verification.

* A programming language is to be used that is well suited to both system
programming and to eventual program verification.

* Verification is separated into two distinct stages, the first showing the
correspondence between the formal specifications of the design and the
formal requirements for multilevel security, the second showing the con-
sistency of the programs with their specifications. The combination of
these stages assures that the implementation completely satisfies the
multilevel security requirements. This approach increases the understan-
dability of the proofs, and also simplifies them.

* Advanced but well-debugged development tools supporting HDM have been
used and will be used wherever appropriate. Existing tools used in Phase
I include checkers for the hierarchical structure, the specifications,
and the mappings between the state representations at different levels.

-138-



An existing theorem prover and simplifier are expected to be used in
Phase II to provide verification tools supporting proofs of correspon-
dence between specifications and the multilevel security mode]. Related
tools -- some existing and some under development -- may be used to pro-
vide illustrative proofs of program correctness, as appropriate.

The methodology attempts to unify the entire development process. It
decouples design and implementation into distinguishable stages, providing a
formal definition of the design and a formal basis for implementation and
proof. This approach considers the entire development process in a formal way
and permits formal proofs at each stage in the process. Even in the absence
of proofs, this approach seems to greatly increase the understandability and
precision with which a design can be expressed, and the ability to evaluate
the reasonableness of such a design with respect to stated desired properties
of the system. The methodology has considerable utility throughout the
development of KSOS, in Phase I, in Phase II, and in any additional efforts to
provide proofs of implementation correctness. It also makes a positive con-
tribution to various further related tasks, such as verification of the con-
sistency of any subsequent changes affecting security, as well as implemention
of the design on other hardware and verification of the resulting system. In
the latter case, specifications for most of the Kernel (except for the machine
and device-dependent levels) could remain largely intact, and the specifica-
tions for KSOS.E and KSOS.NKSR.T could remain unchanged. Thus the demonstra-
tion of the security of the design can carry over directly to the new imple-
mentation. The verification of consistency between code and specifications
might also carry over in part, depending on the programming language used.

SECURITY

The desired multilevel security requirements demand that information at a
particular security level may not move downward to a lower security level.
Because of the syntax of SPECIAL, the proofs that these requirements (formally
stated) are actually satisfied by the specifications follow largely from sim-
ple (i.e., mostly syntactic) checks on the specifications. Following such
proofs, any implementation consistent with the specifications would itself
satisfy the security requirements. That a design proved to be secure is
itself correctly implemented then follows completely from proofs of the con-
sistency of the specifications with their implementing programs and hardw'are.
(The dependence on correct hardware is made quite explicit by this approach.)
It is of course also desirable to demonstrate 't the specifications --even
if proved to be secure-- actually describr ch. sired effects. This task is
aided by the understandability of the sper c.!' ts, and by testing of the
resulting implementation. For example, he specifications for the top-level
(user-interface) can be compared with the behavior of existing UNIX*tm in the
case of the Emulator. The resulting system cen be compared with exisiting
UNIX*tm by running programs and applications environments on both systems.

The design for the Kernel permits all of the Kernel primitives to satisfy
the desired security properties completely under normal usage by users. A few
relaxations of this strict behavior are necessary to support the trusted Non-
Kernel Security-Related software, and are confined to the KSOS.NKSR.T by the
controlled distribution of minimal privilege. These isolated relaxations can
be shown to satisfy a specific subset of the security properties, in a com-
pletely controllable way, and to be masked completely by the trusted Non-
Kernel Security-Related software.

-139-



THE ROLE OF SPECIFICATIONS

Formal specifications by themselves provide a significant advance in the
state of the art of software system development. They provide a concise and
precise functional statement of exactly what any external or internal inter-
face is expected to do. They enforce abstraction on the design that conse-
quently simplifies implementation, debugging, system integration, and mainte-
nance. They greatly enhance the understandability of a design. They provide
a forum for discussion of design issues. Their understandability encourages
the manual discovery of design errors. They also make possible the intuitive
verification of certain desired properties that the design should satisfy.

THE ROLE OF THE PROGRAMING LANGUAGE

It is desired that the programming language used for the Kernel and the
Non-Kerael Security-Related software have certain strong properties. (The
Emulator may also take advantage of this language.) Thle desired properties
include such things as

*adequate compiler support for generating efficient code,
*suitable constructs for control and data abstraction,
*type safety,
*ability to support multiprogramming, and
*ability to handle machine-dependency when necessary.

Some of these desired properties (notably type safety and support of
abstraction) contribute significantly to the verifiability of the resulting
code. They also contribute to the avoidance of many characteristic security
flaws. At the momnentL, Eucl id appears to be highly appropriate, with an
extended Modula as an alternate choice. (It appears that some of the competi-
tive DoD/i languages would be appropriate, if adequate support were avail-
able.)

THE ROLE OF VERIFICATION

As noted above, specifications support proofs of specification proper-
ties, and also facilitate proofs of program consistency with the specifica-
tions. The ability to state and prove properties about a design (as
represented by a set of specifications) -- before that design is cver imple-
mented -- will have a significant impact on the system development. Neverthe-
less, no System can justifiably be thought to be secure unless appropriate
properties of its implementation can also be proved. On the basis of the work
to date, proving that the specifications for the KSOS design satisfy the
required multilevel security properties cam be straightforward and accord-
plished largely by automated tools -- many of which have already bee'n
developed at SRI. In addition, although more complex than such design proofs,
proving the consistency of implementation with respect to the specifications
is now becoming a realistic task, especially with the emergence of recent
theoretical advances and the prospect of suitable on-line tools. Furthermore,
the expected use of a language like Euclid or extended Modula would very help-
ful. In addition, the proposed use of review and testing is expected to
increase the confidence in the implementation.

-140-



THE ROLE OF ON-LINE TOOLS

The role of computer tools is indicated above, with respect to the syn-
tactic checking of specifications, the verification of the security of the
design, and the eventual verification of the consistency of programs with the
specifications. Experience in attempting to develop secure systems in the
past indicates that an enormous amount of mind-numbing effort would be

required under conventional approaches, and even then there is considerable
doubt as to whether security flaws still remain. The approach outlined here,
with its judicious use of on-line tools that support the Hierarchical Develop-
ment Methodology, is expected to result in considerably more confidence in the
security of the resulting system than is possible with conventional, largely
manual approaches. Further, the automated approach promises to be far more

cost-effective. For example, during the exercise of writing of formal specifi-
cations for UNIX*tm, various previously unknown flaws in that system were
detected. In the writing of formal specifications for the KSOS Kernel, vari-

ous minor flaws were detected by the hierarchical interface checker and the
specification analyzer. These flaws, many of which might give rise to insecu-
rity in the implementation, have been detected and removed during this early
stage of design. This is particularly valuable for various minor typographi-
cal errors in the specifications which otherwise might result much later in
significant flaws in the resulting system. In addition, because of the struc-

ture and constraints of the methodology, flaws in the implementation of even a
correct design may also often be detected by the implementation tools, e.g.,

the compiler and simple consistency checks.

THE KERNEL

The Security Kernel (KSOS.K) is structured into a hierarchically ordered
set of modules, each of which depends (for its implementation and for its
correctness) solely on lower-level modules. The set of accessible Kernel

calls has been chosen to be powerful and efficient for the implementation of
KSOS, but general enough for the implementation of other applications (e.g.,
dedicated). These Kernel calls support (among other things) the creation and

deletion of files and processes, the reading and writing of files, inter-
process communication, and the protected invocation of trusted software.

The Kernel has a "UNIX-flavor" to it. It was designed with the actual
implementation of the lower levels of UNIX*tm in mind. This, of course, does
not mean that the Kernel is suitable only for creation of UNIX*tm user
environments. Significant efforts have been made to make the Kernel both
machine independent and UNIX*tm independent. The Kernel design incorporates
many of the concepts from the existing prototype "Secure UNIX*tm" implementa-
tions. Its main departure from the prototypes is that the FACC design does not
employ virtual memory. This decision was reached because existing UNIX*tm
software has very large "working sets" that minimize the value of a virtual
memory architectur,. Also motivating against a virtual memory architecture are
the long delays associated with process environment switches on a PDP-11/70.

Satisfying page faults, even if the page is in core could significantly
degrade system performance.

The Kernel internally supports objects of program-definable types and
capability addressing. These are intended for use within the Kernel for
creating Kernel-supported objects such as multilevel secure directories
without requiring any of the directory mechanism to reside within the Kernel

-141-



-- the directory uianager is in KSOS.NKSR. I. ALI overview of a proposed design
decomposition of the Kernel follows, from highest lcv l of abstraction to the
lowest.

* Kernel calls

* process operators

* interprocess communication

* file capabilities
* file subtypes

* process segments
* process states

* mountable file systems

* file contents
* file states

* multilevel security
* privilege control

* device-independent functions

* type-independent information

* secure entity names

THE TRUSTED NON-KERNEL SECURITY-RELATED SOFTWARE

Only part of the Non-Kernel Security-Related Software must be trusted
(and hence ultimately verified). Although most of the Non-Kernel Security-
Related functions must contain a small amount of trusted code, most of the
code supporting these functions need not be trusted. A spectrum of design
decisions can be made either distributing or centralizing the trusted portion
of each function. Tile FACC design permits the portion which must be trusted
to be kept small. The Non-Kernel Security-Related Software as a whole sup-

ports the following functions.
* system startup and shutdown

* login and logout
* password changer

* user security-level changer

* fi)e security-level changer
* virtual terminal handler

* mount and unmount

* line-printer daemon
* file system maintenance, dump/restore

* system administration

As noted below, the spooler and the mailer are examples of security-
related programs that do not need to be trusted, because of the constraints
imposed by the Kernel and the trusted Non-Kernel Security-Related software.
The nontrusted functions need not be verified. Further simplifying the verifi-
cation effort of the trusted portions is the fact that they are composed of
autonomous modules which can be verified independently.

THE M2ULATOR

The KSOS Emulator interface supports the UNIX*tm calls, and implements
them in terms of the KSOS Kcrnel. It is protected from the user, and the Ker-
nel is protected from it. In general, it calls the Kernel directly rather
than going through the trusted Non-Kernel Security-Related software, except
for certain directory operations. In essence, the Emulator does whatever it
has to in order to provide compatihility with the desired UNIX*tm calls.

-142-



However, certain features of UNIX*tin have bLc removed from the user interface
to KSOS, in the interests of providing a secure system. Most notable among
these is the "superuser" facility. Also, the checks on certain user functions
have been strengthened.

The Emulator contains the bulk of the support for the interface to the
computer network. Only the multiplexing and demultiplexing of the data streams

to and from the network are trusted. The flow control and data stream
integrity functions- of the network are untrusted and are supported on a per-
process basis by the Emulator. This architecture is extremely attractive for a
number of reasons. First the size of the trusted software is reduced to a
minimum. Second, the flow control is truly end-to-end. Third, overall struc-
ture requires minimal Kernel support. Finally, the basic architecture can be
easily adapted to support other networks protocols.

THE NONTRUSTED NON-KERNEL SECURITY-RELATED SOFTWARE

As noted above, many of the Non-Kernel Security-Related functions require
some trusted code, although most of the code for the implementation of these

functions need not be trusted. In addition, the spooler and the mail facility
-- although in principle security related -- can operate entirely as untrusted
programs. The design thus allows great flexibility in its implementation. It
is also possible to easily extend the functions provided by the Non-Kernel
Security-Related software because they are not hard coded into the Kernel.

THE WORK PROPOSED FOR PHASE II

The aim of the proposed Phase II work is to develop an effective imple-
mention of the design Phase I KSOS design, to demonstrate that this design
completely satisfies the desired properties of multilevel security, and to
demonstrate the essential correctness of the implementation by illustrative

rather than exhaustive means. On the basis of the design that has emerged
from Phase I, and the structured methodological approach being used throughout
the development, there is reasonable evidence that this aim can be accom-
plished in a timely and cost-effective way. The proposed work for Phase II
will also provide detailed illustrations of how the implementation can be
demonstrated to be correct, that is, proven consistent with its specifica-
tions.

PRELIMINARY EVALUATION

The approach used here affords various significant advantages over previ-
ous competing approaches, but avoids incurring many of the risks typically
associated with high-technology attempts to advance the state-of-the-art.
Considerable success has already resulted from the use of this approach, and
such success is justifiably expected to continue.

From a systems viewpoint, the work described here is novel in many
respects. These include the following.

* KSOS will be the first full use of the formal methodology (11DM) for a

complete system development. However, HDMl has been well tested in the
design stage of several previous projects.

* The 1DM methodology can accoumodate the verification of a larger amount
of Kernel and other trusted software than can other approaches. This is
due to two orthogonal decompositions: the decomposition of the

-143-



verification process into stages (e.g., specification-to-model proofs,
followed by code consistency iroofs) and the decomposition of the design
into hierarchical levels of abstraction. These both simplify the verifi-
cation effort significantly. The automated tools offer a manyfold

further reduction in effort. In addition, the approach is dir:ctly
applicable to the verification of the security of the Non-Kernel
Security-Related software.

* KSOS is likely to involve the first use in the development of a
production-qual-ity computer system of a modern programming language
(Euclid, or possibly Modula) highly appropriate for such an (ffort. Note
that each of these languages is a conservatively designed variant of an
existing well-established programming language (Pascal).

* This will be the first implementation of a production system that

includes a Security Kernel designed to be provably secure, and imple-
mented using a programming language suitable for such verification.

* The design takes advantage of several innovative operating system con-
cepts, e.g., using objects of extended type (here called file subtypes)
within the Kernel. The use of Kernel-supported types is expected to pro-
duce significant advantages in flexibility and generality.

* Because of these innovations, it should be stressed that the risks are

minimal. The experience to date is very promising. For example, the
time required for FACC to master the methodology was shorter than
expected. The approach is significantly aided by well-used supporting
tools. The task of formally verifying that the specifications for the
KSOS design satisfy the multilevel security requirements seems reason-
able. The task of producing an efficient and secure implementation from
the existing Phase I design appears to be straightforward. The task of
demonstrating that the implementation is correct ultimately requires foi--

mal proofs that the programs are consistent with the specifications.
While complete proofs are not proposed, it is evpected that a combination
of illustrative proofs will demonstrate the feasibility of carrying out
complete proofs in the future.

The design takes advantage of the strengths of both of its prototype pre-
cursors, namely the UCLA Data Secure UNIX*tm and the MITRE Secure UNIX*tm,
although the present approach has numerous advantages over those prototypes,
as follows.

-144-



Re UCLA: The FACC design carefully considers efficiency and flexibility

in advance. (Note that the use of capabilities within the Kernel is also
found in the UCLA Kernel.) The use of formal specifications with a proof
methodology tied to those specifications permits proofs of the intrinsic
security of the design, based on the specifications, independent of sub-
sequent implementation and verification of implementation correctness.
The FACC choice of programming language seems to be better suited for
implementation and for eventual program verification than UCLA Pascal.

Re MITRE: The SRI formal methodology for specification and proofs of
specification properties is similar to that used by MITRE; however, the
concept of hierarchy, the specification language, the program proof
methodology and the tools for automatic specification checking and pro-
gram verification are more advanced than MITRE's.

The FACC KSOS design does differ from the protoypes in that it does not
use virtual memory. As discussed above this choice was motivated by perfor-
mance considerations, and analysis and experimentation with virtual memory
UNIX*tm systems.

GUIDE TO DOCUMENTATION

The following documents are included in the documentation of the KSOS
Phase I effort.

KSOS System Specification (Type A)
KSOS Computer Program Development Specifications (Type B5)
KSOS Verification Plan
KSOS Implementation Plan
KSOS Maintenance and Support Plan

KSOS SYSTEM SPECIFICATIONS (TYPE A)

The System Specification (Type A) establishes the requirements for the
KSOS system with respect to performance, design, development, and test. Devi-
ations from the behavior of the existing UN1X*tm user inerface are explicitly
cited.

KSOS COMPUTER PROGRAM DEVELOPMENT SPECIFICATIONS (TYPE B5)

The Program Development Specifications (Type 55) provide the detailed
design of the Kernel, the Non-Kernel Security-Related software, and the
UNIX*tm Emulator, with one document for each. The interface presented by the
Kernel is given in detail. A draft version of formal specifications (written
in SPECIAL) for the externally visible functions and many of the internal
functions of the Kernel is included as an appendix to the Kernel B5 specs.
These are not required in final form until Phase II, but are included at this
tire as illustrative of the approach, and demonstrative of the depth of con-
sideration given to the design. Preliminary fori,-a] specifications for the
existing UNIX*tm system exist and have been distributed previously, although
they are not required at this time. The process of generating these latter
specifications was very helpful in defining what KSOS should actually appear
to do, and was also valuable in ferreting out several hitherto unknown bugs in
UNIX*ti.

-145-



VERIFICATION PLAN

The Verification Plan provides the precise model for multilevel security
that the Security Kernel is expected to satisfy. It also shows how the formal
specifications for KSOS can be formally proven to be consistent with the for-
mal model for multilevel security. In addition, it discusses the choice of
programming language to be used in the Phase II implementation, the process of
verifiying that programs are consistent with the formal specifications (in
Phase II and beyond)-, and the tools that would be used to support the verifi-
cation effort associated with the Phase II development effort.

IMPLEMENTATION PLAN

The Implementation Plan discusses programming techniques, implementation
tools, testing, external configuration management, and the assurance of
integrity and performance of the implementation. FACC plans to utilize its
on-going work in development-support systems based on UNIX*tm to aid in the
creation of KSOS. The plan emphasizes tools that are well matched to the scope
and nature of the KSOS effort.

MAINTENANCE AND SUPPORT PLAN

The Maintenance and Support Plan discusses what will be required in order
to test, maintain, and modify the KSOS software. The long term maintenance of
KSOS is viewed as an extention to the procedures for configuation management
and trouble reporting that will be routinely used during the development
phase. Thus, the mechanisms will be well established and thoroughly "debugged"
prior to the maintenance phase. Also discussed in this document is the
mechanism for sysLem generation of KSOS at the individual user sites. The pro-

cedures are intended to allow a security officer (or other similarly
computer-naive users) to generate a KSOS system, and to be assured of its
security and integrity properties.

-146-



SOFTWARE ENGINEERING: TOOLS & METHODS I

Derek S. Morris

CEN TA CS

LI



SOFTWARE ENGINEERING TOOLS & METHODS I

SESSION CHAIRPERSON: Derek S. Morris

CENTACS

SESSION SUMMARY

This session explored the impact that the Department of Defense
Common Programing Language will have on program development methodology
and its unifying effect on tool requirements. The session began with a
discussion of the history of the common language project and a synopsis
of the language itself. A major portion of this language project has been
the development of a set of technical requirements on programming languages
for these kinds of applications. At the present time two competitive langu-
age designs are underway to satisfy these requirements, one of which will
be selected in the Spring.

It is recognized that various potential users of the language
are concerned that the resulting language may not be applicable to their
particular area and are further concerned that they may ultimately be
forced via DOD policy to use the language where they feel it does not apply.
It was the objective of the second paper to attempt to alleviate this con-
cern by discussing the technical capabilities of the language relative to
some of the major technical problems that arise in telecommunication system
software designs. As an example, a 50-line message switch such that would
be used in the worldwide defense communication system designed and coded in
terms of the features that the common language will possess.

Lastly, the discussion focused on the support tools and program
development environment needed by the language. Support software tools
are typically a collection of independently designed programs which support
no specific higher order language and which provide a non-uniform and often
unfriendly user interface. The third paper described an integrated system
of cooperating tools which supports DOD common language program development
in a friendly and powerful environment.

-147-



The Department of Defense

Common Programming Language Project

Serafino Amoroso

CENTACS

The Department of Defense is attemping to improve the quality
and reduce the cost of developing and maintaining the software for its
many computer-controlled systems. A major portion of this effort has
been the development of a set of technical requirements on programming
languages for these kinds of applications. At the present time two
competitive language designs are underway to satisfy these requirements,
one of which will be selected in the Spring. This paper reviewed the
history of the project and gives a preview of what the new language may
look like.

14

-148-



THE DEPARTMENT OF DEFENSE
COMIMON PROGRAMMING LANGUAGE PROJECT

Dr. S. Amoroso

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Software EnxineerinR Division
Fort Monmouth, New Jersey

Studies were conducted for the Department of Defense in 1973 and
1974 concerning the costs of software being procured by the DoD
(e.g., [1]), costs that were very high and increasing at an alarming
rate. These studies showed that the greatest software problems were
associated with what are now referred to as "embedded computer systems".
The total costs for the software for such systems exceeds half of the
total of all DoD software costs. Examples of non-embedded computer
system software would include management information systems which
account f or approximately 19% of the total software costs, and the
software for scientific computing which accounts f or only 5% of these
costs.

These concerns about software costs resulted in a major effort
directed by the highest levels in DoD to see what could be done about
reducing these costs and also improving the quality of the software
being procured, which was another serious problem. Since the greatest
potential benefits could be obtained by concentrating on the problems
with embedded computer software, and since it was determined that a
serious problem existed in programming language usage in this applica-
tion area, a DoD-directed tni-service working group was established.
We will refer to this group here as the HOLWG (the high-level language
working group). Its mission was in effect to set some standards for
language usage in this application area and to make available the most
appropriate languages and supporting tools. LTC William Whitaker has
represented DoD and chaired the group from its inception, and Dr. David
Fisher from the Institute for Defense Analysis has been chief technical
consultant also from the very beginning.

Before continuing with this history we should take a closer look
at what we have been calling "embedded computer software". This would
include the software for computers that are dedicated to and a part
of larger systems such as tactical systems, shipboard systems, aircraft
control systems, and communication systems. We would also include
under this heading the software necessary to design, develop, and
maintain such software systems.

-149-



Embedded computer software is often quite large, long lived, and
subject to a great deal of modification and improvements during its
lifetime. It is not unusual for anaual revisions to be of the same
magnitude as the original development. Personnel turnover for those
associated with the maintenance of such systems is rapid, typically
two years.

The reliability of such software is often crucial involving the
safety not only of costly equipment, but often of human life. Hence,
it is often essential that such systems continue to operate in the
presence of faults in the input information, in operator procedures,
as well as in the software itself. Such software must interface a
great diversity of input-output devices including control signals,
analogue devices, and sensor monitorings. Such software must support
the treatment of logically concurrent activity and must be capable
of responding to critical timing problems, i.e., service interrupts
often have to be handled within critical time periods to avoid
disasterous, consequences.

All of this implies the following major requirements for programming
languages for embedded computer applications:

- A capability of aiding the process of producing reliable, robust
software, i.e., software that is correct and capable of operating in
the face of various kinds of adverse conditions.

- A capability of aiding in the development of modifiable software,
i.e., software capable of being extended, changed, and improved in a
controlled rational manner.

- A capability of handling logically concurrent processes.

- A capability of interfacing a wide variety of low-level 1/O
devices.

-A capability of interacting with real-time clocks to control
devices in response to time constraints.

Although the use of high-level languages for embedded computer
software is widespread, most such software is still developed (and
hence maintained) in machine-level languages. There is little question
that the readability of such code is very poor, and making modifications
to machine-level code is as frustrating and error-prone as any imaginable
endeavor. Obviously, the unnecessary use of machine-level language
for embedded computer software is a factor contributing to the DoD
software problems.

-1 50-



Even when embedded computer software is programmed in higher-level
languages, serious problems still exist. At the time the HOLWG was
formed there was no control on usage of languages for these applica-
tions. It was not rare for a major project to begin by designing its
own high-level language, or at least modifying an existing language
to an extent that in effect a new language was created. These would
be no small undertakings. Systems programming capabilities would also
be needed to develop and maintain support software including translators,
software development tools, testing aids, as well as host operating
systems and special purpose executives. Such costly duplication would
obviously divert from the effort of developing the application system
itself. The cost of developing such language systems almost always
meant that only the most primitive programming aids could be afforded.
Finally, having systems tied to such special purpose language systems
would mean unnecessary further ties of maintenance to the original
developer.

The large number of duplications of these essentially similar
language systems, across the Services and even inside any one Service,
obviously has been another contributing factor to the high cost to
DoD for software. We should emphasize that the costs associated with
the development of the supporting software for these duplications is
especially severe.

Additional problems caused by using different languages for
essentially similar tasks are: the research problems associated with
embedded computer software are scattered and diluted due to a resulting
lack of focus. Related to this is the lack of communication and
technology transfer among software practitioners working with different
language systems.

This was the situation that existed at the time the HOLWG was
formed in January, 1975. One of the first early definite steps taken
to place some controls on this free usage of programming languages in
the DoD was the issuance of DoD Directive 5000.31. This is a small
list of "approved" high level languages that can be used to develop
new embedded computer application programs without further approval.
The use of any other language not on this list must be justified, and
such justification would have to show benefits over the life-cycle
of the project and not just developmental savings. This justification
was intended to apply to the use of machine-level languages as well
(in fact especially so). The directive has been in effect less than
two years with little adverse reaction.

Besides placing some meaningful controls on the free use of programming
languages in the DoD the mission of the HOLWG includes making available
for DoD software development the most appropriate languages and supporting
tools possible.

-151-



In order to appreciate the main activity of the HOLWG, which has
been developing for almost four years now, and which will be discussed
below, the following must be understood:

-Almost all the high-level languages currently being used for
embedded computer applications represent the programming language
technology of at least ten years ago.

- The entire history of high-level languages spans only some
twenty years.

- Programming language design is a very active and fruitful
topic with many important developments over the past ten years.

In the spring of 1975, the HOLWG issued a strawman on the require-
ments for programming languages for embedded computer applications.
The document resulted in a large number of worthwhile comments which
gave rise to a major rewrite of these requirements dated August, 1975
and called informally the Woodenman document. This document was widely
reviewed not only in this country but in many countries in Europe as
well. The comments of every potential user, of industry, and of the
research community were activily solicited. Again, a very rich response
of constructive criticism was received. The next major rewrite called
Tinman. issued in January, 1976 was at the time believed to be the final
requirements.

In 1976, a major effort was sponsored by the ROLWG with cooperation
by the three Services to compare the Tinman set of language require-
ments against a large number of existing standard programming languages
(in fact twenty-three languages!). Six US industrial firms plus many
voluntary teams contributed to this study. The results were surprisingly
free of disagreement, and can be summarized as follows:

-None of the existing languages satisfies the requirements so
well that it could be adopted with minor changes as a common programming
language.

- It was the consensus of those that worked on this effort that it
is currently possible to produce a single language that would meet
essentially all the requirements.

Based on the technical discussion from this effort plus the results
of a workshop on implementation issues (Cornel University, October, 1976),
another version of the requirements was necessary. This was the Ironman
document issued in January, 1977 [2].

-152-



Based on the Ironman set of requirements, language designs were
solicited. A large number of proposals were received, some from
European groups. Just about all of the leading names in programming
language design were associated with one or another of these proposals.
After a detailed evaluation, four of them were supported by Service
funds coordinated and administered by the Defense Advanced Research
Projects _&gency (DARPA). In February, 1978, four preliminary language
designs were received (from Sof Tech, Intermetrics, Stanford Research
Institute, and Cii Honeywell Bull). An extensive two month evaluation
of these designs involving over sixty technical teams, many from outside
the US, resulted in the Intermetrics design and the Cii Honeywell Bull
designs given another ten months of support to complete their designs.
This is the current state of affairs with the completed designs due
early in 1979.

Besides this language design work, the HOLWG is also developing
the requirements for supporting tools for the language, for compilers,
for controlling organizations, and for implementation validation
procedures. The details of all of this must be delayed for another
time.

We would like now to complete this paper with a brief preview of

some of the technical characteristics of the emerging new language.

An Encapsulation Facility:

The idea of programming languages having facilities for partitioning
programs into intercommunicating units, exporting precisely what is
needed by other units and hiding all detail irrelevant to other units,
began with the introduction of the CLASS concept in the SIMULA language.
This concept has been developing in recent years and is closely related
to the topic of abstract data types, a currently active research area
in language design. Such a program structuring facility is expected
to have major application in program maintenance and reliability.

The DoD language is expected to have an encapsulation facility
very much like that of the "module" found in the language MODULA [3).
The language allows the "encapsulation" of program units in that certain
data structures and operation designed explicitly for these structures
are explicitly made available for use outside the encapsulation. All
other parts of the encapsulation are protected by built-in compile-time,

language defined restrictions. Hence, modification to non-exported
parts of an encapsulation can have no effects on the rest of the system
(besides certain possible efficiency effects). Such encapsulations are
processed completely at compile-time and have no run-time associated costs.

-153-



The Treatment of Concurrent Processes:

The introduction of facilities into programming languages to directly
present to the user the notion of concurrently acting processes was
introduced in the mid 1960's. This again is one of the most active

research areas in computer science. The topic of synchronizing concurrent
processes competing for shared resources has developed from semaphores
to critical regions to monitors to a new technique published less than
two weeks ago. It is not clear what will eventually be used in the DoD
language, but safe, well-understood features are essential,

Those of us who have had some experience using languages with such
facilities find them extremely useful. The clarity and naturalness
that follows from such facilities are sure to contribute to readability
and maintainability.

The Treatment of Exception Conditions:

As we mentioned earlier, many defense software-driven systems must
continue to operate even in the face of abnormal conditions such as
damage to some part of the hardware or faulty inputs to the system.
These problems have been handled to one degree or another in most
languages (e.g., FORTRAN and ALGOL) and some languages, even as far

back as PL/I have designed into them facilities for dealing with these
problems in a direct way. The topic is known today under the name
"lexception handling", and is another current research area. A great
deal has been learned about this topic since the early attempt by the
ft/I design. Again, the DoD language is expected to have a conservative,
safe facility that should be an improvement over what is available.

Interfacing with Low-Level I1/0 Devices:

All of the preliminary language designs delivered in February
were disappointing on their interfacing facilities for low-level 1/0
devices. The hope was that there would be an improvement over the
usual treatment which is essentially machine-language descent. A recent
study seems to promise hope for the future [4]. The most we can
probably expect in the next years is an inspired use of the language's

library facilities for this If/0 requirement.

Summary:

The HOLWG has made a serious effort to solicit the views and advice
of almost every qualified person from the user community, the Services,
industry, and the research community. The development of the requirements
underwent continuous scrutiny and no constructive criticism was ignored.
The DoD language will obviously have its problems. Any new language will.
But it is our firm belief that the language that finally arrives next
year will be a useful language, significantly more suited to helping solve
the software problems of DoD than the programming languages currently
available.

-154-



References

[1] D. A. Fisher, "Automatic Data Processing Cost in the Defense
Department," Institute for Defense Analysis, Paper P-1046, AD-AO0484l,

October 1974.

[21 Department of Defense Requirements for High-Order Computer Pro-
gramnming Languages - Revised TRONMAN, July 77. (Now Steelman, June 78).

[3] Wirth, N., Modula: A Language for Modular Multiprogramming. Soft-
ware Practice and Experience 7 (1977), 3-35.

[4] Perry, D., High-Level Language Features for Handling I/O Devices
in Real-Time Systems. PhD Dissertation, Stevens Institute of Technology,
1978.

-155-



An Experimental Application of the DOD Common
Language to a Telecommunicat ions System Design

Derek S. Morris

CENTACS

It is recognized that the Department of Defense Common Language
may have wide spread influence as it embraces participation from the three
armed services, NATO and the European community. This recognition has lead
to leading international computer language designers contributing to the
design effort. It is also recognized that various potential users of the
language are concerned that the resulting language may not be applicable to
their particular area and are further coencerned that they may ultimately
be forced via DOD policy to use the language where they feel it does not
apply.

It was the objective of this paper to attempt to alleviate this
concern within the telecommunications area by discussing the technical
capabilities of the language relative to some of the major technical prob-
lems that arise in telecommunication system software designs. As an example,
we take a 50-line message switch such that would be used in the worldwide
defense communication system and design and code it in terms of the features
that the common language will possess. In order to keep the discussion
within a palatable scope, we concentrated on a particular important issue
and mentioned the others in passing. In that way we were able to treat the
entire design process from a functional description right down to code in
the language and include a discussion of the semantics of the resulting code.

-156-



A-A1O4 252 INTERNATIONAL BUSINESS SERVICES INC WASHINGTON DC F/G 9/2
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMSBURG, VIRIN IA-ETC(U)
1978 S M TAYLOR DAAKTO-7 O030

UNCLASSIFIED

NEMESIESEEEE
mEmhEEEEmhEEEIEIIhEEEEllllEI
EEIIEEEEIIEEI
IEEEEIIEIIIIEE
EEEEEEllEElI
IIIIIIIIIIIIIIm
mIIIIIIIIIIIIII



AN~ EXPERIMENTAL
APPLICATION OF THE DOD COMMON LANGUAGE TO

A TELECOMMUNICATIONS SYSTEM' DESIGN

Derek S. Morris

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Software Engineering Division

Fort Monmouth, New Jersey

1. Background of the Common Languagl ffr

The Department of Defense spends about $3.5 - $4 billion annually on
computer software. This includes the design, development and maintenance
(post-deployment correction and enhancement) of such software. Only a
small fraction of this effort is involved with what is considered the
mainstream of Automatic Data Processing; e.g. accounting, inventory,
payrolling, and financial management. These functions have their exact
analogy in the commercial sector and share a common technology, both
hardware and software. A much larger fraction of the DOD's computer
investment is in computer resources which are embedded in, and provided
as part of, major weapons systems, communication systems, command and
control systems, etc. Major factors contributing to the high cost, as
well as the acknowledged poor quality of DOD software include the pro-
liferation of high order languages (HOL), inadequate software tools, and
the widespread use of assembly languages in embedded computer systems.
These factors have been recognized and policy initiatives taken in DOD
Directives 5000.29 and 5000.31 to require the use of a higher order
language (HOL) instead of assembly language in embedded computer
systems and to achieve HOL commonality.

It was recognized that due to the nature of embedded computer systems
that a usable common language may have specific requirements. To
that end, a Tni-Service HOL Working Group, formed in January 1975,
generated, via a continuous open forum, a requirements document that has
now gone through five levels of refinement. The current version of the
requirements document is known as "STEELMAN". 7xisting languages
were evaluated against these requirements and i;t was determined that
none were satisfactory for the long term. Further, it was concluded
that a single language could suffice for all types of embedded computer
systems. Existing baseline languages were selected, however, as po-
tential points of departure (rather than starting "from scratch")
following which four parallel competitive contracts were awarded for
preliminary design of the common HOL (which is informally known as
"DOD-l"). These designs were delivered on 15 February 1978 and are
currently being evaluated.

-157-



Recently, three economic analyses were conducted to determine the
potential payoff, DOD-wide, from the establishment of a common language.
These analyses spanned the period from the early 1980's through 1999.
The results vary as a function of the specific scenario selected which
is based on a variety of factors such as time of introduction, rate of
acceptance, R&D investment, etc. It was anticipated that benefits would
f low from both commonality and new technical features. Commonality
elements included training, support software tool focus, experience,
communications, transportability, and increased hardware choice.
Technology elements included impact on the design process, ability to
handle non-standard 1/O, real-time features, parallel processing, mod-
ularity, readability, maintainability, object-code efficiency, ease of
programming, hardware independence, and error recovery. The first
analysis was deliberately based on very conservative scenarios (e.g. no
growth in software requirements). The cost benefits (over and above
investment and in 1977 dollars) in this were 110 to 900 million dollars.
The remaining two analyses were very close, with savings in the range
of 12 to 24 billion dollars.

2. Motivation for this Paper

It is recognized that this language may have wide spread influence
as it embraces participation from the three armed services, NATO and
the European community. This recognition has led to leading inter-
national computer language designers contributing to the design effort.
It is also recognized that various potential users of the language
are concerned that the resulting language may not be applicable to
their particular area and are further concerned that they may ultimately
be forced via DOD policy to use the language where they feel it does
not apply.

It is the objective of this paper to attempt to alleviate this concern
within the telecommunications area by discussing the technical capabili-
ties of the language relative to some of the major technical problems
that arise in telecommunication system software designs. As an example,
we take a 50 line message switch such that would be used in the world-
wide defense communication system and design and code it in terms of the
features that the common language will possess. in order to keep the
discussion within a palatable scope, we will concentrate on a particular
important issue and mention the others in passing. In that way we can
treat the entire design process from a functional description right down
to code in the language and include a discussion of the semantics of
the resulting code.

-158-



3. The Functions of a Message Switch

It is our view that the language can have a significant impact on the
design of a system; for that reason we do not attempt to duplicate any
particular existing message switch design but choose rather to begin
with a functional specification developed from the functions provided by
existing designs. We develop this functional descriptive material
beginning with a closed communications network of which several identical
message switches are a part.

It is the primary purpose of the network to route messages from an
originating subscriber to other subscribers in the network that are
designated to receive the message by the originating subscriber. A
message is considered to be a finite sequence of ASCII coded characters.
The character is the atomic entity of the message (as opposed to the
bit in other systems).

5wiTCHING

bV55CR16

NODES D

-159-



Consider the communications network of figure 1. It consists of two
types of node interconnected by means of two types of lines. These
entities of the network are described as follows:

a) Subscriber Nodes

A subscriber node consists of facilities for constructing and
transmitting or receiving and interpreting a message. We have
arbitrarily chosen subscriber facilities to be relatively primitive,
like a common teletype which generates or receives a single character
at a time.

b) Switching Nodes

A switching node consists of facilities to control the path any
message takes through the network. It is the design of one of these
nodes with which we are concerned. Each of the switching nodes can
connect directly to up to fifty subscribers and up to three other
switching nodes.

c) Subscriber Lines

Each subscriber line consists of a pair of transmitting and
receiving wires to give full duplex operation. Transmission over these
lines occurs a character at a time in an asynchronous manner. Acknowl-
edgement to the sender is on a complete message basis. There are
additional network control commands which we omitted for the sake of
brevity and the fact that they do not raise interesting design issues.

d) Trunk Lines

Each trunk can be considered for logical purposes as bundles of
subscriber lines. Messages are sent synchronously in 80 character
blocks each of which is checked for parity and explicitly acknowledged
or non-acknowledged by the receiving node. The trunk lines are used
to connect a switching node to another switching node.

4. Message Flow in the Network

A message is originated by a subscriber who sends his message character-
by-character to his local switching node. The local switching node
absorbs these characters until it recognizes a valid message. If the
message is syntactically correct, the switching node explicitly
acknowledges this fact by sending an "ACK" message to the subscriber;
if it is syntactically incorrect it explicitly non-acknowledges the

-160-



message by sending a "NAK" message to the subscriber. At the point in
time when the ACK is sent to the node transmitting the message, the
receiving node accepts responsibility for the message. The fact that
a node has responsibility means he in effect "owns" the message and
must be able to reproduce it in its entirety. A node is not allowed
to transmit a message until it has accepted responsibility for it.
The switching node now selects, based on data local to itself, a
trunk line on which to transmit the message (or a subscriber line if the
destination is local to the switching node). In a similar manner, the
"responsibility" is passed from node to node until the destined sub-
scribLc node accepts final responsibility for the message. Notice that
an originator by receipt of an ACK only knows that the rest of the net-
work absorbed his message; he does not know if the message ever
reached its destination. It should also be noted that this concept
of responsibility dictates that the store and forward concept of
message handling will be used. We have chosen two types of I/0
(subscriber and trunk) on purpose in order to raise the issues involved
with low-level and non-standard I/0.

5. The Message Control

In order for a switching node to control the path any message takes
through the system, the originating subscriber must append certain
information to the message text. A typical message syntax is as follows
where the ';' is used to separate syntactic entities of the message.

MESSAGE = SOM;PRECEDENCE;CLASS;TYPE;ROUTING INDICATORS:
ORIGINATING STATION;MSG SERIAL NR;DATE TIME GROUP;
SYSTEM ROUTING INDICATORS;TEXT;EOM

By convention we will refer to the syntactic entities preceding TEXT
as "header data".

The switching node scans an incoming message which is defined as
all characters between and including the SOM (Start of Message) and
EOM (End of Message). Among other things (which we will ignorefor the
sake of discussion) the switching node scans the message for the routing
indicators which are used to indicate where the message is to be sent.
Contained in the files of each switching node is a directory as shown
below. On recognition of a routing indicator, the node searches the
directory for a matching routing indicator and if it is found, determines
the line or trunk identification number listed for that routing indicator.
This number indicates which I/0 line is to be used to send the message.
For example:

-161-



DIRECTORY

ROUTING IND PRIMARY SECONDARY

RUEDBIA 51 52
RUKLDAR 23 -

If an incoming message contained the routing indicator "RUEDBIA", the
switching node would attempt to capture the use of line number 51; if
it could not, it would attempt to capture line 52. The "secondary"
entry is present for trunks where a destination can be reached by al-
ternate paths. Thus "RUEDBIA", as indicated, could only be a trunk line.
If the scanned routing indicator is not listed in the directory, the
message is non-acknowledged and a control message is sent to the message
originator.

6. Consequences of Local Control

A direct consequence of control local to a switching node is the fact
that messages can be routed into orbit patterns within the network and
never reach their intended destination. For that reason, we need a means
of detecting orbiting messages and changing their routing. In the system
under discussion we provide a human supervisor who has certain abilities
to deal with this condition.

A second direct consequence of local control and the concept of mes-
sage responsibility results if a switching node fails; there is no global
view of the status of the system. For that reason, we record on magnetic
tape, called en archive, each action that a switching node takes on a

message. In addition, in order to meet the responsibility requirement
each message is copied into the archieve. We then provide the human super-
visor with the ability to retrieve messages and log items from the archive

in order to establish a backup point and the ability to retrieve and re-
introduce messages into this switching node.

7. Supervisor Functions

The human in the system must, therefore, be able to access the archive
files to obtain log items and messages, to change the directory in order
to re-route messages, and to act as a subscriber to his own switching node
in order to send and receive messages from other supervisors and sub-
scribers. By the latter capability he can develop a more global view
of the network status.

-162i-



8. Design Areas

In our discussion so far we have implicitly raised several areas of
design, these are:

1. Memory Management - We show the requirement for magnetic tape
and now suggest that due to the potential volume of traffic some means
of secondary storage such as a disk is also necessary. If multi-media
storage is required then so is a memory management system. An HOL
applicable to this problem must, therefore, have the ability to express
the code associated with memory management.

2. Input/Output - We have developed the need for both an asynchronous
and (hence interrupt driven) character level input/output and a
synchronous (hence timed) blocked (or card image) input/output. An
HOL applicable to this problem must also possess the ability to express
low level non-standard input/output.

3. Program Structure - We have not developed the notion of complexity
of a switching node, but argue by example that the code for switches of
this type is relatively large; a 50 line message switch currently operating
in Europe much like the one described is expressed in 250,000 assembly
level program statements. In order for anyone to be able to understand
that system for change or upgrade purposes, some partitioning method is
necessary. In fact, due to another aspect of the nature of message switch,
the discussion of which follows, a clear partitioning or modularization
is mandatory.

4. Parallel Processing - The inherent nature of message processing
is such that many individual tasks are largely independent and the order
in which the processing of these tasks occur is irrelevant. In fact,
when arbitary, fixed order is imposed by the system, the results can be
detrimental to the performance of the system. We need the ability to
express the fact that such processes run in an order depending only on
specified dynamic aspects of the system. We consider that such processes
run in parallel or execute concurrently.

9. Applicability of Research & Development in Operating Systems

These four very important design areas of message switch design have
been the subject of intensive research during the last 5 years under
the computer science field of Operating Systems. An applicable
piece of this work is the study of languages for operating system
designs. The language that we will use is one specifically designed
for the implementation of operating systems. Rather then discuss all
the issues of system implementation languages, however, we choose to
concentrate on the fourth item as it applies to the design of a switching
node.

-163-



10. Parallelisms in a Message Switch

Consider the four subscriber nodes and single switching node shown
in figure 2.

Fiure 2.

The broken subscriber lines connecting the switching node to sub-
scribers A' and B' mean that, relative to our discussion, an arbitrary
arrangement of switching nodes could be inserted at these break points.

Suppose A wishes to send a message to A' and B wishes to send a message
to B' at the same time and the two messages are independent. If these
two messages were of the same precedence and classification then any
order that the switching node chose to process them would be completely
arbitrary. Logically, we would like the switching node to process
these two messages in parallel or concurrently and not impose an
explict order. If we had a switching node with many such messages
arriving at the same time, we would like to consider that all messages
are processed concurrently. There is inherent parallelism associated
with message switching. Hence if one wants to capture the functions
of a message switch in an HOL the language should be able to express
the notion of parallel processing. In fact, within the processing
required f or each of these messages there are activities associated with
each message that should also occur in parallel. For example, the
scanning of the message characters for the routing indicators could be
accomplished while the message is being stored in secondary storage.

11. If we had a system with infinite resources, independent parallel
processes could in fact be allocated each system resource that they
individually require, but such is not economic reality. Resources
such as disks, memory and the CPU(s) itself must be shared among
several parallel activities. For that reason, we need to express the
concept of mutual exclusion. That is if the nature of a resource is
that it can be used only by one process at a time, then once it is
captured by a process we need a mechanism to exclude others from using
it also. Implicit with the mutual exclusion concept is the necessity
of scheduling which of the excluded processes will acquire the resource
when it is eventually released.

-164-



A third design issue occurs for those parallel processes which are
not entirely independent. Consider a process which needs the results
of two independent parallel processes before it can continue. Some
sort of synchronization is needed to signal when these results are
available.

12. Language Features and Design Influence

We have found that the particular features for expressing parallel
processes, mutual exclusion of shared resources, scheduling and
synchronization have considerable influence on the system design.
In fact the "wrong" features, or lack of appropriate features, in this
area can actually hinder the design process. The language must pro-
vide the designer with the facility to express himself in a way that
is natural to his application and should aid his design process, not
hinder it.

For example, suppose one were designing a switching node such as
the one just discussed and say that the system must run on a uni-
processor for which a multi-tasking operating system was not available.
Suppose also that the available language did not express parallelism.
Such is often the case for military systems. Then, because of the
inherent parallel nature of the message switch, the designer would have
come up with a design for sequentializing his tasks to run on the
single CPU. This sequentialization method must be accomplished early
in the design process, as it touches most aspects of the switch design.
Projects designed in this way tend not to have clean modularization
in the overall design. Consider for example, the addition of a new
communications line with a different protocol. This addition may
require significant changes in the definition and scheduling of parallel
tasks; in fact the sequentialization method may not be generalized
enough to be able to accomodate the additional tasks required. This
can require a complete redesign of the sequentialization method and
its communications with other parallel acting tasks. The effects then
can affect many modules. Suppose, on the other hand, the language used
in the design offered an appropriate facility for expressing parallism.
Then these considerations are structured by the language and are more
easily identified and isolated. If a language cannot express parallism,
then the resulting designs are always contorted by the code used for
mutual exclusion, scheduling and synchronization with the result that
understandability of the program suffers with the consequence that
management and maintenance problems inevitably result.

-165-



13. Designing for Parallelism

If one were to attempt to design a message switch, one usually starts
with a given set of hardware which in turn dictates the operating
system and languages that are available. We choose to call this
collection of hardware, OS the language system. We will consider the
following three types of language systems that the present day designer
is confronted with relative to the system's ability to support
switching system design.

1. There are no language features to express parallelism and
there is no multi-tasking operating system. En this case, the designer
must partition his problem into sequential routines and express them
with an available sequential language (e.g. Fortran IV). He must
then build the operating system functions for process control, mutual
exclusion and interprocess synchronization. For efficiency reasons, and
the fact that these functions are called often in the course of message
switch operation (due to the highly parallel nature of the switch),
he will most likely code these functions in assembler language. The
resulting system program will look mostly like a higher-level language
program with a few interdispersed assembler statements. The logical
flow such an innocent-appearing program is not at all clear, however
as the process control assembly statements are akin to the COTO;
where the program control is transferred at this point in the program
is dependent entirely on dynamic conditions expressed in the assembly
code. Under what conditions the program control returns is usually
elusive.

2. There are no language features to express parallelism but
there is a multi-tasking operating system. This case is identical to
the former case except that the interdispersed assembler code is
replaced by calls on the operating system. The development of a
switching node using this system would be far easier than the first,
however, the logical flow of the program again is unclear as the
return from the calls on the operating system is dependent on the dynamic
conditions of the system and the internal functions of the operating
system. The designer now is at the mercy of the invisible internal
design of the operating system. We have found that often these
standard operating systems afforded generality at the price of efficiency.
In other words, too many checks are performed at run time and too many
registers are saved when a process context is switched in order to
be safe. Driven by the need for efficiency, the designer is usually
forced to modify the operating system which is usually written in
assembler level code. He must then go through the process of under-
standing someone else's assembler level program, a most difficult task.

-166-



3. A language is available that has unstructured language features.
This language is able to communicate with the operating system and
configure tailored run-time support for the particular application
program. There have been some experimental languages that have these
abilities. They usually use low level primitives in the language such
as the Dijkstra Semaphore for mutual exclusion and synchronization.
This approach is better than the other two as it results in a tailored
runtime support package for multi-tasking; however, the semaphore
allows few compile time checks when used for both mutual exclusion and
synchronization; it can only be checked at compile time to see if it
is a type semaphore. More sophisticated compile-time checking is
necessary in order for a higher order language to be effective for the
following reason. Those errors not detected at compile time result in
run-time errors. When a sequential program is checked for run-time
errors, the designer can repeatedly put in a set of fixed inputs and
observe the state of the program variables as it executes. For a set
of fixed observation points during the course of this running, the
state of these variables will be the same each time the program is run.
He can hypothesize what these states should be, make a run-time
observation, resolve the difference between his hypothesize and the
observed results, make a change and repeat the process. This debugging
broehavire ofNO the rogr variable idneton thalel dynamics of the
praodre ofNO bhe flowedm forale an ientetv paralel pramogrma the
system as a whole. If such a programa is repeatedly run with a fixed
input, the state of its variables will not always be the same at the
fixed observation points; the variable states are non-deterministic in
general. For this reason, we are motivated to consider more structured
language features so that more meaningful compile time checks can be
made.

14. Structured Parallel Processing - DOD-l

The IRONMAN requirements specify the need for structured parallel
processing features in the language. At this time the actual features
of DOD-l are unspecified. For that reason, we choose to use the features
of an available language called MODULA 5,6,7, a parallel processing
language based on PASCAL 4 9knowing that the features that it offers
cannot escape the attention of the DOD-l language designs. The following
features of MODULA are particularly interesting with regard to the
design of our switch.

1. The MODULE - This is an entity in the language used to encapulate
programs and data and restrict their use by other programs. A module
is a collection of constant, type, variables, and procedure declarations,
called objects. None of the objects declared within a module are
accessible from outside the module unless the particular object is
explicitly exported by a statement within the module.

-167-



2. The PROCESS - The process is like an ALGOL procedure except
that when called it executes in parallel with the calling program.
The process is the means for expressing concurrent activity.

3. The INTERFACE MODULE - The interface module is a special case
of a MODULE. In addition to the features of a module, the interface
module is based on the idea of the Hoare Monitor3 and allows only a
single program to use its exported objects at a time. This is a
structured mechanism for mutual exclusion. Programs that attempt to
use an exported object that has been acquired by a previous user are
automatically queued up in a prioritized FIFO queue.

4. The DEVICE MODULE - The device module is a special case of an
INTERFACE MODULE. It differs only in that it may contain a device as
one of its objects. Wirth in the design of MODULA recognized that
devices such as line printers can logically be considered as processes
running in parallel with their activating program. The reason for a
distinquished type of module to encapsulate a device process is that
communication to these devices are usually by command codes, bit
vectors and status registers all at machine code level. In order to
isolate the areas that machine code could be used in MODULA, machine
level coding is only allowed within a DEVICE MODULE. Within this
module we can identify particular machine registers by name and manip-
ulate their individual bits.

5. SIGNALS - A signal is a type in MODULA that is used for process
synchronization. A process can send a signal, wait on a signal or
check if any other process is waiting on a signal. Unlike a semaphore,
a signal has no memory and therefore is simpler to implement. If a
send operation is performed on a signal and no process is waiting on
that signal, no action is performed. We now demonstrate the facility
of these concepts in a design of a message switch.

-168-



S 3 .;C RI 16F 9V

O R

IN PUTS/

OUT13VTS

N'OCKS

LINE

-169-T



15. The Svitching Node Components

The switching node components as expressed In MODULA entities are
shown in figure 3. In that figure, the circle labeled"SWITCH" is a
process called by the main program that attempts to execute all the
time. The squares labeled "NOTICE", "ARCHIVE", etc are all interface
modules resolving contention for their objects by the numerous callers
that are indicated by the directed lines. The ink blot shape entities
are device modules: e.g. "AUJX STORAGE" contains a disk, "OPERATOR" a
teletype, etc. The triangles are not of themselves entities of the
language, but each contains the language entities shown in figure 4.
There is a separate triangle for each subscriber in the system (we
have 50). They are identical except for their names. There is also a
separate triangle (that differs from the subscriber triangle) for each
trunk line connected to the switching node (we have 3). We point out
that figure 3 is a complete description of a design for the switching
functions that we have previously discussed; it is a complete descrip-
tion of a whole switch. To convince the reader, we will now show how
these entities cooperate to input and output messages. To show the
power of this approach we will then focus on the operations contained
within the triangle and finally within a device module.

16. Inside a Subscriber Triangle

The entities of a subscriber triangle are shown in figure 4. A
subscriber triangle consists of a device module called SUBSCRIBER
which has exported the ability for an outside program to read a single
character or to write a single character. In addition, it has two
processes, SINPUT and SOUTPUT. SINPUT continually attempts to read a
character, perform some lexical processing, and buffer the characters
into 80 character blocks. SOUTPUT continually attempts to input 80
character blocks and write a character at a time into SUBSCRIBER. We
will discuss what it-means to read and write a character into "SUB-
SCRIBER" shortly, but first let us consider message processing by
the switch as a whole.

-170-



LL

00E

00

U7

4-f 4

F'tg~,vCL

-17 1-



17. Control of the Reception and Transmission of Messages

Consider the switch components shown in figure 5. This is a subset
of those shown in figure 3 in order to focus our attention on message
control. Let us trace the flow of a message being input from a sub-
scriber and output to another subscriber. SINPUT of figure 5 is con-
tinually attempting to extract characters from a particular subscriber
device module. SINPUT is the same SINPUT shown in figure 4; there
is one for each subscriber line. SINPUT makes a call on SUBSCRIBER to
read a character. We shall shortly see that if there is none, SINPUT
will be put in a wait state by reliaquishing control of the CPU.
SINPUT will be subsequently given control of the CPU if SUBSCRIBER can
produce a character. If SUBSCRIBER can produce characters, SINPUT
attempts to form the first 80 character block and, at the same time,
extracts header data from the message. SUBSCRIBER generates an internal
representation of this header data and places it in a buffer within the
interface module LINE INPUT. LINE INPUT now knows that SUBSCRIBER is
receiving a new message and generates an internal code "NEW MSG" which
he places in the interface module NOTICE. NOTICE serves as a mailbox
for the process SWITCH who is, in reality, the central manager of this
switching node. SWITCH is continually looking into NOTICE for directives.
He finds "NEW MSG" which causes him to extract the header information
from LINE INPUT. SWITCH as system manager keeps the log of all actions
the switching node takes on each message. He enters the time of
receipt, header data, and the fact that complete message receipt is
pending in his log. He then checks the routing indicator with his local
directory. If the indicator is valid he sends an internal message to
the interface module REPLY, indicating that the header data was good.
He then stores the header information in the interface module HEADERS.
In parallel with all this activity, SINPUT is sending 80 character blocks
of data to the MEMORY interface module where it will subsequently be
stored on AUX STORAGE. A recognition of "EOM" by SINPUT triggers a
message to NOTICE that the end of this message has arrived. SWITCH notes
this fact in the log, accepts responsibility for the message, posts an
"ACK" message to the interface module REPLY who sends "ACK" to SOUTPUT
who transmits it via SUBSCRIBER to the message originator.

As soon as SWITCH accepts responsibility for the message he looks
up in his log where the message is to be sent (there may be more than one
addressee) and notifies the interface module LINE OUTPUT to insert this
message in the appropriate line queue (located within LINE OUTPUT).
SWITCH instructs HEADERS to send the header information for the message
to LINE OUTPUT. When there are no higher priority messages to be sent
to the designated line, LINE OUTPUT sends the header information to the
designated SOUTPUT who forms syntactically correct header data and

-17 2-



attempts to transmit this data character-by-character to the appropriate
subscriber. After the header data is sent, SOUTFUT retrieves the sub-
sequent message blocks from MEMORY. When the last block has been
transmitted, SOUTPUT posts a message in NOTICE that the "end of output"
has been reached. SWITCH enters a log item to that effect.

Thus a description of switch functions can be held in terms of the
language entities. For completeness we will now take a closer look
at what is typically inside each interface module by looking at the
code for SUBSCRIBER.

18. The Subscriber Device Module

The code that enables the device module to input a character and
send it to the SINPUT process is shown below. We have omitted the
code that enables this module to accept a character from SOUTPUT and
transmit it to the subscriber device for brevity. The line numbers
are not part of MODULA but are for our reference purposes only.

DEVICE MODULE SUBSCRIBER;

10 DEFINE READ, WRITE;

20 VAR INR, OUTR, NRF : INTEGER;

30 NONFULL, NONEMPTY : SIGNAL;

40 IRBUF : ARRAY 1 : N OF CHAR;

50 similar output buffer declarations

60 PROCEDURE READ (VAR CH : CHAR);

70 BEGIN

80 IF NRF 0 THEN WAIT (NONEMPTY) END;

90 CH := RBUF OUTR

100 OUTR := (OUTR MOD N) + 1;

110 DEC (NRF);

120 SEND (NON FULL);

130 END READ;

-173-



140 PROCEDURE WRITE (VAR CHI : CHAR);

150 END WRITE;

160 PROCESS INPUT;

170 VAR CH :.CHAR;

180 BEGIN

190 LOOP

200 IF NRF = N THEN WAIT (NONFULL) END;

start read into BUF INR

220 DOIO;

230 INR := (INR MOD N) + 1;

240 INC (NRF):

250 SEND (NONEMPTY);

260 END

270 END INPUT;

280 PROCESS OUTPUT;

290 END OUTPUT;

300 BEGIN

310 INR := 1;

320 OUTR := 1;

330 NRF =0;

340 INPUT;

350 similar output initializations

360 END SUBSCRIBER;

-174-



NRF 3 IS 14LM?,ER OF

C~hRACTETRS IN 1Rt3l)p'

SFULL

IN R

R IBy r

'FIGURE G.

-17 5-



This is a MODULE so that the internal operations are hidden from
the other using programs and the ideas of "read a character"~ or "write
a character" can be abstracted from internal operations and exported
to the using program. It is an INTERFACE MODULE so that only one
outside process can obtain the ability to read or write at a time. It
is a device module because it contains a teletype (connected by a
long subscriber line) that can be considered an independent process.
In line 10 we explicitly export the ability to read and write with a
DEFINE statement. Line 20 declares and lines 310 through 330 initialize
the circular buffer as pictured in figure 6. READ is declared as an
exported procedure (which we know from previous discussion is called by
SINPUT) which passes by reference a variable named CH of type character.
Lines 160 - 270 declare a process INPUT which is called once in line 340
and runs forever. If we start the system from a "cold start", SUBSCRIBER
will initialize the circular buffer and start the process INPUT. The
LOOP statement of line 190 states that lines 200 - 250 repeat forever.
Within the loop, INPUT looks to see if the buffer is full (line 200)
if it is, the process waits on a signal called NON-FULL. Execution of
this wait means, INPUT relinquishes control of the CPU and gets
inserted in a queue associated with the signal NONFULL. En other words,
the buffer is full so INPUT cannot insert anything in it. Suppose the
buffer was not full, then INPUT would "start a read" into the circular
buffer. The english was substituted for an actual device code which
would be placed in a device command register at this point in order to
avoid discussion of a particualr machine's 1/O. Also at this point we
would assign a register to the interupt vector if I/O is controlled that
way. Line 220, DOIO, means wait for the device to interrupt. That is,
relinquish control of the CPU and wait for an interrupt from this device.
Note that all subscriber modules spend most of their time at this point.
If the subscriber presses a teletype key, the awaited interrupt will
appear. Lines 230 - 240 insert the incoming character into the buffer;
line 250 announces to any waiting processes that the buffer is now not
empty.

The Procedure READ (line 60 - 130) is called by the external process
SINPUT. Line 80 of this procedure causes READ to be suspended on
NONEMPTY of the buffer is empty. Suppose we have just put a character
in the buffer via INPUT. Then READ would remove it (lines 90 - 110) and
send a NON-FULL signal to indicate that at least another character can
be put in the buffer. (INPUT may be waiting for this signal on line 200.)

This program illustrates the fact that we have been able to synchronize
the two independent processes by means of signals and a buffer, and to
isolate that mechanism from the rest of the system by use of the module
and its explicit export mechanism.

-17 6-



19. Conclusions

Referring to figure 3, we have been able to express the structure of a
switch at a fairly high level using entities of an appropriate language.
Note that the addition of a subscriber or trunk line to this system is
trivial as is the implementation of a new protocol. It merely means the
addition of another triangle or the design of a new triangle respectively.

We have stressed that language expressiveness in the area of parallel
processing is important to the design of a message switch and claim that
this can be generalized to include a large percentage of the telecommuni-
cation processing at large. We must point out however, that other language
areas that were totally absent from our discussion are also very important
and can have a significant effect on telecommunication software design.
For example, IRONMAN requires EXCEPTION HANDLING (what does a system do
to recover when something goes wrong at run time) REAL TIME PROCESSING
(access to system clocks), SEPARATE COMPILATION (for building large systems).

By using the high level constructs of MODULA we coded all the entities for
a 50 line message switch in a total of some 1500 lines of HOL code. The
reason for this compact expression is the fact that message switching a-
bounds with parallel activity and that the language features were well
matched to this activity. We suggest that this fact alone ought to gen-
erate interest in the applicability of DoD-l to telecommunications areas.
We, therefore feel that the technical features found in the new Department
of Defense Common Language will be an asset to the design of telecommuni-
cations software.

20. Acknowledgements

This work was performed at the Center for Tactical Computer Sciences (CENTACS)
at Ft. Monmouth, NJ; the need for such a project was suggested by the Army
Communications Command at Ft. Huachuca, AZ. The project was conducted by
author, Dr. Serafino Amoroso of CENTACS and Prof. Gregory Andrews of Cornell
University 1,2

21. References

1) Andrews, G.R. "Modula and the design of a message switching com-
munication system". Technical Report 78-329. Department of Computer
Science, Cornell University, January 1978.

2) Gregory R. Andrews, "The Design of Parallel Systems: An Applica-
tion AND Evaluation of Modula", Cornell University Tech Report TR 78-330,
January 1978.

3) Hoare, C.A.R. "Monitors: an operating system structuring concept".
Comm. ACM 17, 10 (October 1974), 549-557.

-'77-



4) Wirth, N. "The programming language Pascal". Acta Informatica I
(1971), 35-63.

5) Wirth, N. "Modula: a language for modular multiprogramming".
Software - Practice and Experience 7 (1977), 3-35.

6) Wirth, N. "The use of Modula". Software - Practice and Experi-
ence 7 (1977), 37-65.

7) Wirth, N. "Design and implementation of Modula". Software - Practice
and Experience 7 (1977(, 67-84.

-178-



*

An Integrated System of Tools to Support
The DOD Common Language

Dennis J. Turner

CENTACS

Support software tools are typically a collection of independently
designed programs which support no specific higher order language and which
provide a non-uniform and often unfriendly user interface.

This paper described an integrated system of cooperating tools
which supports DOD common language program development in a friendly and
powerful environment.

-179-

L-



AN INTEGRATED SYSTEM OF TOOLS TO SUPPORT THE DOD COMMON LANGUAGE

Dennis J. Turner

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Software Engineering Division
Fort Mo~nmouth, New Jersey

Abstract

Support software tools are typically a collection of independently
designed programs which support no specific higher order language and
which provide a non-uniform and often unfriendly user interface.

This paper describes an integrated system of cooperating tools which
supports DoD common language program development in a friendly and power-
ful environment.

Mot ivat ion

Software problems associated with military embedded computer systems
are well known. "Excessively expensive, untimely, difficult to maintain,
non-responsible to user requirements, inflexible to change, unreliable...
are all coummon criticisms of most systems developed to date. The inad-
equateness and lack of standardization of the Program Development and
Maintenance Environment (PDME) has contributed significantly to the per-
petuation of many of these problems.

One aspect of the PDME involves the software tools which can provide
support in virtually all aspects of the programming process. However, sup-
port tools have fallen far short of their potential value. It is worth-
while to consider some of the problems which have impeded the progress of
support tools to date.

1. Non-Reus ability

The proliferation of programming languages and computers has given
rise to a situation where most developers find themselves with a unique
combination of language and host/target processors. Consequently, existing
tools cannot be used and they must develop their own.

2. Minimal Tools

Because tools have been developed by the project for the project, re-
source constraints (manpower, funding, time) have usually compromised tool
development in favor of the embedded application. The result is that only
the minimum number of essential tools are developed. There have been cases
where a language processor (compiler/assembler) was the only tool available.

-190-



3. Lower Standards

Because the tools are not the focus of a development (the embedded
system is) and are often not even deliverables under a contract, a sig-
nificantly lower level of quality results. Tools designs and implement-
ations are typically ad hoc and poorly documented.

4. "Bag of Tools" Approach

Tools have usually been viewed as semi-independent functions. Their
implementations reflect that view and the result is a "non-uniform" often
"1unfriendly" user interface. A command to one tool is often very different
than the command to another tool, even when the objective is identical. For
example, END, STOP, EXIT, HALT.., might appear across several tools as the
command for terminating the current activity. A "uniform" interface would
allow the use of a single command, independently of the tool being accessed.

Some tools are desigi.ed in a way that makes their use extremely awkward.
Command strings like **/% ... and the absence of feedback prompts to the
user, make a tool very clumsy to use and present a less than "friendly" in-
ter face.

The "bag of tools"approach also causes common sub-functions across tools
to be unrecognized and the result is a considerable amount of unnecessary
duplication.

5. Language Independence

Well intentioned tool designers often seek to maximize the utility and
flexibility of a particular tool and strive for language independence
rather than support for a specific language. Their objectives have been
narrowly focused on the tool rather than the larger environment of which
that tool is a part.

Each of these problems has contributed significantly to the present
day software dilemma of embedded computer systems. If they are to be
eliminated in the future, a new view of the entire PDHE must be taken.

A System View

It seems clear that if a dramatic impact on the software problems is
to be achieved, the PDME must be viewed as a system and standardized to
the maximum extent possible. One unifying aspect of the environment is the
language itself. The adoption of a standard DoD common language (currently
underway) is a major step in the right direction. But, it should be recog-
nized that the language is only one feature of the PDME and we must look
beyond the language to the entire environment.



Another aspect of the PDME involves the support software tools and
it is this area which will be explored in the discussion which follows.

Tool Objectives for a DoD Common Language Environment

In order to develop a unified concept for support software tools, con-

sideration must first be given to the following objectives.

1. Support of the DoD Common Language

Because the DoD Common Language will be defined and adopted in the near
future, we would like to consider the use of support tools which comple-
ment and strengthen the use of that language and which enrich the entire
PDME surrounding it. Whenever the dilemma of generality versus stronger
support for the language arises, the later should be chosen.

2. Integrated System

A collection of tools ought not be viewed as independent entities
("bag of tools") but, rather as an integrated system of cooperating
functions which are designed to provide a uniform and friendly user in-
terface. The tool system should encourage and, to the maximum extent
possible, enforce "good" programming practices.

3. Reusable

The tools should be written in the DoD Common Language in order to
maximize their potential for transportability. The DoD Common Language
Compiler should be structured and include a well-defined code generation
module. The tools can then be moved to a new host processor by designing
an appropriate code generator and by performing a self-compilation boot-
strap procedure. Tools written in the DoD Common Language will also be more
easily maintained and controlled.

4. High Quality Design and Implementation Standards

Unlike efforts of the past, the tools should be designed and imple-
mented in accordance with state-of-the-art software engineering standards.
They should be viewed as having a potentially long life cycle and should be
developed with a high level of quality.

5. An Evolving System

Instead of attempting a quantum leap, the initial tool system should
include only a modest set of known powerful tools which encourage convenient
use. As tool requirements become more clear through use, and as the state-
of-the-art advances, new tool functions can be incorporated into the system.

-182-



6. No Duplication

The tool system should be modular and structured in a way that encourages
shared access to common subfunctions. Duplication of code across functions
should be minimized.

7. Configuration Management

The tools which are used to produce an embedded system must be available
throughout the entire life cycle of that system. Archival tool storage
and upwards compatibility of tools must be carefully controlled in order
to satisfy this requirement. To the maximum extent possible, this process

soudbe automated by the tools themselves.

An Integrated System

We will now proceed to characterize a tool system that satisfies the
objectives stated above.

The objective of integrating a collection of cooperating tools suggests
a structure outlined graphically in figure 1. Here a central manager con-
trols and monitors tool access. The major tool functions call upon various
primitive functions for assistance and activities occur based upon inf or-
mation which is stored/retrieved via a common data base. This structure
lends itself to modularity, cooperation and integration. It also provides
the mechanism for elimination of duplication across major tool functions.

As an example, consider a compiler for the DoD Common Language as Fl in
figure 1. It should be structured in a way that not only allows information
about a particular compilation to be available to other tools, but, also
allows primitive tools used In the compilation process to be used by other
major tool functions. Figure 2 illustrates such a structure. Control re-
sides at the major function level and compilation proceeds as a series of
accesses to the primitive functions. The lexical analyzer and the parser,
comprising the compiler's "front end", could also be used by other major
tools such as a language dependent editor. Information stored in the data
base is also available for reuse. Symbol table and optimization data could
be accessed by a symbolic debugger. Knowledge of the intermediate language
would be of benefit to a symbolic program executor. The set of primitive
functions, and the data base information shown is not intended to be exhaustive
but only to illustrate the compiler concept being suggested.

It is not difficult to envision how this same structure could be applied
to each of the major functions of a tool system. The key concept is the
mechanism for sharing programs and data.

The initial tool system might consist of the following major functions:

A text editor strongly focused on the DoD Common Language for entering
and modifying source programs. The editor would be language structure oriented
(rather than line oriented) and would perform elementary lexical and syn-
tactical checking.

-183-



A DoD Coimmon Language Compiler which accomodates the language require-
ments and whose design is modular and compatible with the structure il-
lustrated in figure 2.

A configuration/module manager which oversees the activities of module
generation, interconnection and maintenance in an environment strongly
oriented toward the language.

A linkage editor which integrates separately compiled modules into
larger units.

A symbolic program executor (static debugger) which provides statistical
information based upon the symbolic execution of a source program.

A collection of Documentation Aids which assist in the generation and
modification of software documentation and which supports the user in
selectively reading it.

A dynamic symbolic debugger which supports program debugging in the
target environment at the DoD Common Language level.

Concluding Remarks

For many systems initial program development represents only a small
fraction of overall life cycle costs, the major cost being that of main-
tenance. The availability of a PDME such as that described above would
enable maintenance to occur in the same environment as that of development.
The complete history of a program would be available to implement and
'Validate changes. The view of maintenance as an extension of development
(and not as a detached exercise in field "patching") hhould be a goal of
the future.

It should be recognized that the main thrust of this paper has been to
call for the application of the same state-of-the-art principles to tools
as are applied to other software. A "system view" of tools is not a unique
notion, only a late one.

Summary

A standardized system view of the PDME must be taken if the problems

associated with embedded computer systems are to be successfully solved.

A standard DoD Common Language in combination with an integrated system
of language dependent tools will have a dramatic impact on the present day
software problems.



Acknowledgement

The author wishes to acknowledge the contributions of Dr. A. Nico
Habermann (Carnegie-Mellon University) and Dr. Dewayne Perry (Pegasus
Systems).

-185-



USERS

ICEtIhLI

MAJOR
TOOL FUNCTIONS

PRIMITIVE
TOOL FUMCrIONS

... COMMON

DA TA BASE

FIGURE I
INTEGRATED SYSTEM OF TOOLS

-186-



MAJOR TOOL FUNCTIONS
VD

ILP%t~AI

Tftt um

TAWZ

PR|MI WilE TOOL FUNCTIONS COMMON DATA BASE

FIGURE 2
COMPILATION IN AN INTEGRATED SYSTEM

-187-

' a o



REQUIREMJENTS II

John MitheZZ

AIRMICS



REQUIREMENTS II

SESSION CHAIRPERSON: John Mitchell

AIRMICS

SESSION SUMMARY

The objective of this session was to present user experience with
three software requirements systems which have been designed to meet the
objectives of ensuring that requirements are complete, consistant, and
unambiguous.

Much attention has been given to tools that are used to enhance
our ability to program a solution to a problem. New and better programming
languages are designed, structured programming concepts are implemented,
etc. However, these techniques are of little value if the wrong problem
is being solved.

Despite the existence of tools for aiding requirements analysis,
their use is not yet widespread. This session examined three such tools
and presented a summary of their use in various types of software develop-
ment. We showed that the existing tools can be used, are being used, and
that the use of any of these tools is far superior to the manual methods
of developing, analyzing, and documenting system requirements.

Dr. Pei Hsia, University of Alabama, Huntsville, presented an over-
view of existing software requirements systems, examine different approaches
to developing requirements, and present future research directions.

Mr. Charles Everhart, Teledyne Brown Engineering, presented the
Input-Output Requirements Language (IORL).

Mr. Mac Alford, TRW, presented the System Requirements Engineering
Methodology (SREM).

Dr. Paul Merrithew, LOGICON, presented the Computer Aided Design
and System Analysis Technique (CADSAT) which is based on the Problem State-
ment Language and Problem Statement Analyzer (PSL/PSA).

-188-



DEVELOPMENTS AND PROBLEMS IN SOFTWARE REQUIREMENTS

Pei Hsia and Bill Buckles

SECTION I. INTRODUCTION

The "software crisis" is a term expressing the conclusion drawn
form culminated experiences and reports on spiraling software costs,
uncertain software quality, and frequent schedule and cost overruns
of software projects. Many researchers are engaged in finding the
cause and cure of this crisis. So far they have revealed many
different causes but no cure. During the present soul-searching
period, they have come to realize and accept three important facts:
(1) there is lack of an understanding of software; (2) that "software
is soft" is a misconception; and (3) there is an inherent technology
push in software.

The lack of understanding about software is very well demonstrated
by an inability to define and measure such software terms as reliability,
complexity, and quality. Many such software terms are directly adopted
from the hardware field. Although professionals in the field have
similar conceptions, they are unable to reach a commonly accepted
definition for them. This confusion is reminiscent of the early
histories of many fields. The medieval cathedral builders, for
example, labored without an understanding of material stress analysis.
Though many of their structures collapsed, enough survived to demon-
strate the viability of large architectural endeavors. The same way can
be said of the early software projects. Only through diligent research
and maturity will the true identities of the relevant software pro-
perties be unveiled and ways devised to measure them.

One of the most important lessons learned is that "software is
not soft." Given a fixed hardware configuration, one cannot always
assemble a set of functions to be accomplished by software that meet
desired performance standards inherent in the environment. In other
words, the theoretical concept that "software can do anything"* is
not at all true if limited resources and expected performance are set
in advance. Although the original purpose of the term software was
only to distinguish it from hardware, the "ware" has been associated
with "soft," "pliable" functions. This has caused many problems.
For example, the practice has been to "shoe-horn" the remaining
functions not easily incorporated by hardware into software, because
software is "soft" and can accommodate. Many projects using this
shoe-horning software practice had to be either abandoned or drastically
revised. For the projects that were successful, one Lan use Figure 1 [1)

*This is a derived concept from the generally accepted hypothesis that
any procedure can be realized by a Turing machine. Therefore, "tany-
thing" used in the sentence should be qualified by "that is doable

through a procedure." But in a Turing machine, unlimited resource
(tape) is used and timing is not a consideration.

-189-



to explain the cost of software resulting from the squeezing effect.
This figure indicates how costly it is to squeeze too many functions
into software, if it can be done at all.

The inherent technology push in the software industry, the trend
toward larger and less numeric based projects, is evidenced by the
ever increasing complexity of software. Although a formal quantitative
definition of software complexity does not exist, there is a qualita-
tive notion of the term. (Software complexity is different from
computational complexity, which is a well defined term [2] .) An
analogy can be drawn between housing construction and software develop-
ment. The professional builders constantly build houses to the same
blueprints. The only difference between houses is their location.
The professionals in the software field seldom have the opportunity to
develop the same product more than once. This is because a software
product can be copied; once a FORTRAN compiler is developed, an exact
copy of it can be used on all the computers with the same model number.
Thus, in the software library, all development projects are untried
projects. This phenomenon makes software a one-design, one-development
industry, whereas housing construction (and many other industries) is
a one-design, multiple-development industry. All one-design, multiple-
development industries have a naturally built-in feedback system to
check design and development methodologies. The one-design, one-
development industry has a much broader domain to search for good design
and development methodologies and much uncertainty to combat when
achievement of a viable approach is claimed.

-190-



4J

U

4J

bo
3 "3

0.Experiece~

0 2

~Folklore
0

0

0 25 50 75 100

Fiur1. Software Shoe-Horning Aftereffect

FigFoko

-191-



SECTION II. THE ROLE OF REQUIREMENTS

It is obvious that improvements in any one of these three
problem areas cannot fully be attained through more productive
implementation methods. The most important problems lie in the
area of software requirements [31 . What are requirements? Simply
stated, one can say that software requirements are a statement of
need -- a set of statements that describe the needs.

One more substantive definition of requirements states that
requirements consist of any information generated prior to and in
support of implementation 1101 . That is, any document, either
formal or informal preceding implementation but to be used in the
subsequent design or implementation step is part of the body of
requirements. Although this definition has some merit, we believe
the following definition will be more useful in focusing attention
on the problem areas in software.

Software requirements consist of all knowledge
concerning a problem at a given stage of develop-
ment that has not yet been incorporated into an
algorithm.

This definition enforces a "conservation of information" as
indicated by Figure 2. As development progresses, the information
simply changes form. The advantage of this definition is that it
tends to direct attention to the area most in need of new methods and
is less arbitrary than the former one. A computer code is, after
all, an algorithm and differs from previous statements of the algo-
rithm only in form, not substance. Thus, any statement of the algo-
rithm is (or should be) equivalent to the coding.

But again the question: Within this framework, what are require-
ments? To be specific, software requirements can be classified into
three categories: functional, performance, and resource. To obtain
software requirements, one has to undertake a translation process that
takes operational (or applicational) requirements as inputs and gives
a statement of the functions to be performed and how well they should
be performed as the output [4 1 . The functions are then allocated to
different parts of a system within the resource limit to achieve the
desired performance. This allocation process involves a considerable
design tradeoff and feasibility analysis. The functions allocated to
software and their corresponding performance and/or resource character-
istics become the set of software requirements. Functional require-
ments dictate the set of functions that the software is to achieve.
Performance requirements set a minimum standard on how well (accuracy,
timing, etc.) functions should react. Resource requirements define
the resources that can or should be used to implement the software.

-192-



---

E-4*

z0

zr
0 U

OZ0

04

o -I

o193



In the analogy between software development and housing
construction, the architectural plan, electrical/plumbing systems,
and cost can be compared to the functional, performance, and resource
requirements of software. One of the problems in constructing a
house is to put the three different and distinct systems together in a
way that is both aesthetic and convenient for household activities.
Similarly, one of the big problems in software development is to put
the three sets of different, distinct, but interrelated requirements
together so that the final product satisfies all of them. However,
in housing construction, the structure of a house is a dominant part
and the electrical and plumbing systems have to comply. The length
of the wires and pipes used will generally be considered unimportant.
Consider a hypothetical question: How does an architect produce a
house plan (all the drawings of a house, including electrical systems)
if the requirements are given in terms of X yards of wires, Y feet of
pipes, and maximum cost Z dollars, in addition to the regular require-
ments? Obviously, this creates a more complicated problem than
currently practiced. The architect may conclude that either uncon-
ventional house structures need to be used or some requirements are
not feasible. This hypothetical situation is more nearly the problem
that the software professional faces.

Still another parallel can be drawn from the design of the house
and the role of software requirements. Given a solution to part of
the problem (e.g., floor plan) one can make more intelligent demands
on the other solution parts (e.g., wiring and piping). This is the
classic ill-structured problem--one for which a symbiotic relation
exists among the solution parts [I11] . The impact this has on require-
ments is that it places constraints on what form information may best
be stated at what stages of development. Specifically, providing
information may best be stated at what stages of development. Specifi-
cally, providing information at a level of detail which has no impact
on the next increment of algorithm development is as productive as
specifying the length of the piping at the outset of design of the
house.

-194-



SECTION III. A HIERARCHY OF REQUIREMENTS

Figure 3 is an illustration of the software development process.
The three vertical edges of the pyramid stand for the functional,
performance, and resource requirements of software. The top cross
section represents a set of software requirements that encompass all
the three major aspects. The software development process can be
summarized as a sequence of transformation processes that bring the
software requirements to the final product. Each cross section
represents an abstractedI solution of the problem with a certain set of
primitives. Each transformation includes the realization of the
higher level primitives by the lower level primitives. This trans-
formation involves the conventional connotation of refinement, design,
and implementation. Three basic activities in this process of trans-
formation are: (1) allocated performance and resource requirements
from the level n primitives to level (T) + i) primitives; (2) realize
the primitives in level n by the primitives in level (n +1); and
(3) demonstrate that the abstracted solution in level (r +1) does
exactly the same as the abstracted solution in level n and that the
allocated resource and performance requirements are feasible and
correct. Two points need to be clarified before any meaningful dis-
cussion can continue. The first point is that, at any stage, both
requirements and algorithms may co-exist in a single document called
the software specifications. Most people agree that a software
specification is the product of software design written in a specified
form. Therefore, a specification is a realization of requirements by
a specified set of primitives. Requirements without a partial design
that can fulfill them are impractical. A partial design is a flow
model or some other equivalent representation that is used to demon-
strate feasibility to some extent. For example, one may develop a
complete set of requirements for a magic carpet in terms of a complete
and consistent list of functions to be performed. Without a baseline
design, however, this set of requirements is simply a wish list not to
be taken seriously. On the other hand, the baseline design should be
used only as a reference -- a starting point subject to feedback. Any
future development/transformation should not be bound by it as its
main purpose is to demonstrate feasibility. From actual practice, it
is natural to write requirements according to some specific design.
Thus, the feasibility of the requirements can be kept within known
bounds. This is the reason why specifications should thoroughly
integrate requirements and algorithm.

The second point is that there should be intermediate levels of
specifications from pure requirements to pure algorithms. The number
of intermediate levels needed is different from project to project.
This represents an opportunity for an alternative measure of software
complexity. The complexity of software may be defined by the number
of intermediate levels needed to carry out successful transformations.
Currently, the software complexity is defined by the number of lines
of code in a programming language. Simple programs do exist with

-195-



Requirements

4- Final Product

Figure 3. Software Development Process

-196-



large numbers of lines of codes, and difficult (complex) programs exist
with only a small number of lines of code, for example, the notorious
APL one-liners. By using the number of specification levels necessary
for the successful completion of transformations, one may find the real
meaning of software complexity. At the same time, this proposed con-
cept encompasses all the conventional notions of complexity that
current intuition conveys. For example, the assembly language program
that implements a design is more complex than its corresponding FORTRAN
program, because the former program obviously requires a more detailed
specification than the latter to carry out a successful transformation.

Essentially, system design is a mapping process that maps a set
of requirements into abstract, feasible solutions. Obviously, each
level of solution is closer to implementation than the previous one.
This hierarchical approach portrays a sequence of transformations from
one level of abstract solution into the next level of abstract solution.
Eventually, a development process is needed to transform an abstract
solution into a real system. The last process is called implementation.

A widely used illustration for developing software from
requirements is depicted in Figure 4 [12 1. This figure probably arises
from the frequent contractual obligation for a requirement review,
preliminary design review, detailed (or critical) design review, and
acceptance test. As useful as this model may be in some contexts, it
seems to dictate a transformation process that allows only discrete
changes in level of intermediate specifications. For any existing,
fairly complicated software, no one would deny the use of other levels
of specification before the final software specification. Because the
other levels are not contract deliverable items, however, no one docu-
ments them. The apparent sufficiency of this tri-level specification
conceals the necessity of more levels for complex systems. The
failure to document those needed intermediate levels of specification
can often be pinpointed as the cause of errors/modifications or
even project failures. Omitting levels usually means higher comple-
tion risks.

-197-



%-TI

E-4J

0

-4

a

0

1-44

-18



SECTION IV. SOFTWARE REQUIREMENTS PROBLEMS

The major requirements problem has to be identifying how many
and of what form should the intermediate levels be. Is there a single
answer or even a single approach to an answer? Current wisdom
indicates a unified approach to implementation (e.g., higher order
languages, structured programming, and levels of abstraction), but
indicates there are different paths leading to implementation.
Figure 5 indicates why. There seems to be a continuum of applica-
tions extending from those that are data dominated and requirements
emphasize functional characteristics to those that are control domi-
nated and emphasize performance criteria. Without losing sight of
this separation (to which we will return) let's examine some of the
unifying characteristics.

For the moment, let's concentrate on how software requirements
are derived from the total system requirements. Given an existing or
speculative problem that demands some automated processing capabilities
in its solution, one must go through many steps to completely develop
a system that solves the problem. The steps involved typically are
represented as follows:

Requirement Analysis

System Design

Subsystem/Interface Design

Subsystem/Interface Development

System Integration

Checkout.

Requirement analysis is a process that involves mapping inputs to
the desired outputs and deriving the functional requirements and their
corresponding performance and resource requirements. System design
consists of at least four important activities: subsystem identifica-
tion, function and performance allocations, tradeoff analysis, and
feasibility studies. Subsystem/interface design is very similar to
system design except that a finer detail is to be achieved. At present,
during the system design step, many hardware subsystems are easily
identified, and their capability limits can be extrapolated from pre-
vious experiences. Portions of the system requirements can be
assigned to different hardware subsystems. While the remaining portions
of the system requirements are assigned to be performed by the data
processing subsystem, the data processing subsystem requirements are
then used to produce software requirements. Unfortunately, in many
projects the type of computer hardware to be used had been decided long
before the data processing subsystem requirements are derived. Under

-199-



Control
Dominate

Emphasis Spacecraft Guidance

on
Performance

Airport Safety Control

Interactive Query System

"C Mathematical Programming

-4 Language Processors

Emphasis
on

Func t ion Payroll, Inventory

Figure 5. An Application Spectrum

-200-



these situations, software requirements are a set of required func-
tions that have to work on the given computer hardware to achieve the
data processing subsystem requirements. Because software is less
tractable than hardware, frequently it is difficult to determine from
the requirements if th'ere exist feasible software solutions. This
sometimes causes a considerable amount of trial and error in the
system development process.

To illustrate se~veral additional problems, if one considers the
base of the pyramid in Figure 3 as an actual solution, more than one
pyramid may be associated with a given set of requirements. That is,
given one set of scftware requirements, one can derive many different
software structures to fulfill the requirements. The subfunctions should
be one step closer to the software code. This process is sometimes
called composition. Many levels of functional decomposition may be
performed before the software is actually realizable by a special
programming language as shown in Figure 4. As rentioned, the complexity
of a software system should be measured by the level of decompositions
needed. If the decomposition step can be formally defined, then a new
definition based on the number of decomposition~ steps needed will be
more reflective of the term "s~oftware complexity."

A still more difficult problem is demonstrating that one level of
a functional decomposition actually satisfies the performance and
resource requirements. How does one allocate performance and resources
to subfunctions systematically and optimally? Even after the perform-
ance and resource requirements have been allocated to one set of sub-
functions in a decomposition, how may it be known that all subfunctions
are realizable? At any level there are many different ways of allocat-
ing the performance and resource requirements. As the levels of decom-
position grow larger, the problem grows more complex.

Another major problem in software requirements is "what constitutes
a necessary and sufficient set of software requirements?" Requirement
errors have been classified [31 as:

Missing/Incomplete/Inadequate Requirements

Incorrect Requirements

Inconsistent/Incompatible Requirements

Unclear Requirements

New/Changed Requirements.

Without intending to slight consistency analysis, a measure of
sufficiency or completeness is more difficult to obtain. The reason
is that consistency is based on internal coherency. Thus, the
universe of discourse is the requirements document itself. Completeness,

-201-



however, pertains to the entire problem domain of the application--
accepting the relevant and rejecting the irrelevant.

Summarizing, the current problems in software requirements can be
grouped into six categories:

1. Software Requirement Statements--How may software
requirements be extracted from system requirements?

2. Software Requirement Feasibility Demonstration
Technique--How may the feasibility of software
requirements be economically demonstrated?

3. Software Functional Requirement Decomposition

Technique--How may functional requirements be
decomposed into subfunctions?

4. Software Performance Requirement Allocation
Technique--How may performance requirements be

allocated to subsystems in an optimal way?

5. Software Resource Requirement Allocation Technique--

How may resources be systematically allocated to
different functions?

6. Specification Completeness--What constitutes a
necessary and sufficient set of software require-
ments?

-202-



SECTION V. CURRENT PRACTICES

Existing software systems are produced from given software require-
ments. This does not negate what has been discussed in the previous
section about software requirements problems. It only indicates that
there are software requirements that are feasible and that can be used
to guide the development of software systems. The majority of the
software problems are overcome in those developments by a trial-and-
error process. This, as mentioned before, is part of the problem of
cost and/or schedule overruns of software projects.

The great majority of current practices in developing software
systems from software requirements can be roughly described as follows.
First, the software requirement statements are studied by a (group of)
highly experienced staff. Then an abstracted functional diagram that
may fulfill the set of software requirements is produced. This pro-
cess is highly dependent on the experiences of the people who perform
this task. At this level the problems in requirement statements
usually are not fully discovered. This leaves sifnificant problems
during the software development process. Some of the problems
dis.cove~red later may require a totally new start.

After an abstracted functional diagram is produced, some functions
in the diagram are allocated with the performance requirement if the
functions are detailed enough to allow this analysis. The allocation
is done through a combination of the participating personnel's
experiences, analysis, and random judgment. This also leaves plenty of
room for future corrective effort. Very little attention is paid to
the resource allocation at this step. There may be implicit resource
allocation consideration during the performance allocation phase.

From this point on, an iterative decomposition process will be
performed. Each function in the abstracted functional diagram is
divided into subfunctions. A more detailed level of functional diagram
is formed, but there does not exist a formal concept of levels of
abstract solution. The same process of performance allocation as before
is done here. This decomposition will be done repetitively until a
level is reached in which each subfunction is implementable by a
specific programming language.

At each level of decomposition, the performance and resource
allocations are derived according to the participating personnel's
experience analysis and judgment. The feasibility of the abstract
solution at each level is also considered subjectively but seldom
simulated. Whenever a problem is found (i.e., infeasibility of certain
subfunctions), a level-by-level trace back of redesign is Initiated.
The impact of any design change will have to be analyzed and an assess-
ment of the impact studied before continuing to the next level of

-203-



decomposition. Many serious software requirement errors are discovered
in this process. Sometimes the feasibility of the original software
requirement is in doubt to the extent that some requirement will be
changed to carry out the project. Much wasted manpower and time is
incurred because of the latent discovery of errors in software require-
ments [3, 5] .

Because of trial-and-error practices used in the software develop-
ment process, there is no systematic way of checking the successful
completion of each step during the software development process. Many
errors in software requirement statements were not detected until much
effort had been wasted to try to satisfy the wrong requirement.
Research is needed to identify and state clearly the necessary and
sufficient software requirements and the associated processes and
techniques that must be used in development.

A summary of the problems in current practice is:

The technique used in transforming software requirements to
the final product is ad hoc and problem-dependent. No
systematic approach is employed to solve the general
problem of the transformation process.

The steps and levels needed in the transformation are
not well defined. This vagueness contributes many
problems for any potential modification.

Too many new start possibilities are in the existing
development process. This makes an accurate estima-
tion of eventual project effort most difficult.

-204-



SECTION VI. RESEARCH ISSUES

Many experts are initiating important research to correct these
problems [6, 71] . This section provides a summary of existing problems
in the software requirement area, with justification and rationales for
each.

1. What information is necessary and sufficient in software
requirements?

Currently, software requirements are voluminous for large
projects. It takes much time to read through them, not
to mention analyzing them for errors. If software require-
ments can be characterized by a list of items, one can
simply check them individually and apply the divide-and-
conquer technique. One can definitely use this characteriza-
tion to write better software requirements. Also, the
characterization can be used to evaluate given software
requirements.

2. What are the characteristics of software requirements and
how to check them?

Many professionals have tried to determine the desired
characteristics for software and requirement statements.
Completeness, consistency, feasibility, testability, etc.
are all included. Nevertheless, these characteristics,
if defined according to the natural meaning of the terms,
are very difficult to check. Therefore, precise definitions
of these desired characteristics should be given and
research conducted in problem detection.

3. How may a hypothesis on software requirements of large-
scale systems be tested without actually performing a
similar scale project?

Brooks [81 and Weinberg [9] noted that it is difficult
and unrealistic to try to extrapolate conclusions drawn
from small-scale projects and try to apply them to large-
scale projects. At present no sponsoring agent would
support large-scale experiments on software hypothesis.
Without any reasonable substitution, one will either
perform a small-scale project and try to extrapolate the
results to a large-scale software or implement a real
project using an unfounded hypothesis. The effort proposed
and practiced at Toronto by Horning [7] belongs to the
former category.

-205-



4. How may software performance requirements be allocated to the
next level functions?

It is known from the model of software development process
that every function in level i will have to be refined to a
group of subfunctions in level (i + 1). At the same time,
the performance requirements set for the function in level i
should be optimally distributed to the subfunctions in level
(i + 1). Presently, this is done by personal experience and
subjective reasoning until errors are found. Trial-and-error
is by no means a scientific process. Clearly the performance
allocation problem is not simply a linear programming problem.

5. How may software resource requirements be allocated to the
next level functions?

Because resource allocation problems may directly affect the
performance of a function, it is crucial that this problem
be solved before any true advances can be achieved in
large-scale software development. A typical example to show
that the resource allocation directly affects the performance
is an information retrieval system. If such a system is to
be developed and the response to any retrieval command is
very stringent, then the use of core, disc, drum, or tape for
certain functions will play a crucial role in the success of
the eventual system.

6. How may it be demonstrated that (1) the functions in level
(i + 1) actually realize the functions in level i and that
the performance and resource requirements allocated to the
level (i + 1) functions are properly derived from those
requirements set for the functions in level i; (2) the functions
in level (i + 1) with their respective performance and
resource requirements are potential candidates for hardware?

In the hierarchical software development process, the
specification in level i should be transformed and realized
by the specification in level (i +1). To ensure that the
transformation is valid and that the specification in level
(i + 1) is feasible, one has to find ways to answer problems
1 and 2, respectively. The entire development process depends
on the satisfactory answers to these problems. Until a
satisfactory answer is obtained, software development will
remain a totally individual-experience-dependent, trial-and-
error process.

-206-



SECTION VII. COMMON FEATURES IN AUTOMATED REQUIREMENTS SYSTEMS

All the existive automated requirements systems, including SADT
(SofTech), SREM, (TRW), DAS (Hughes), and IORL (Teledyne Brown
Engineering), are trying to rectify the present software development
problems. All of the requirements systems have claimed that usage of
their systems will result in savings of software cost and attaining
better quality software. We would like to point out that because of
the ad hoc and the trial-and-error nature of the existing practice in
analyzing software requirements, it is not a surprise that the newly
developed automated tools work as this. This is by no means to slight
the effort and goals of the software requirements systems. On the
contrary, we believe the achievements in software requirements have
been promoted by these automated systems. It is due to these automated
systems that we have shown that software can be produced less
expensively and with higher quality.

After studying the existing software requirements systems/
methodologies, a list of summary of the common features of these
systems were derived. They are described and explained below.

(1) Graphic techniques are used to represent system structures
to facilitate human analysis and communication. It has
been pointed out repeatedly that the main problem in large-
scale software development is communications 181. Due to the
sheer number of people involved in a project, the chance for
one to misinterpret another person's work is tremendous.
With the aid of graphically representing a structure in
addition to linear text description can help eliminate a
majority of the misinterpretation problems.

(2) Hierarchical structure is used in describing requirements.
This is due to the fact that in order to arrange a large
amount of data into an easily understandable form, hierarchical
structure is the only way we know how to do it efficiently.

(3) Modular approach is adopted to describe requirements. No one
can sensibly analyze a large textual description without losing
some finer details during the analysis. Our abstraction
capability is, therefore, again adopted in this problem and
modularization of requirements becomes a dominant feature in
requirements analysis. It is also caused by the graphic
representation of structures of requirements, since without
modularization no output of graphic representation may be
feasible for comprehension.

-207-



(4) More effort is demanded in analyzing and describing require-
ments before actual design and implementation of a project can
begin. This is because of the rigor needed in input, the
requirements in an appropriate language and review of the out-
put textual analysis of the requirements (and sometimes dynamic
simulation of the requirements). The significance of all these
methodologies/techniques seems to point out that more effort
spent in the requirement analysis phase will provide greater
benefit in the entire life cycle of the software. However,
at the current time, no one can determine the optimal alloca-
tion of effort in the requirements phase. This is our next
research problem, viz. deciding the proper allocation of
resource/effort in a software development model to produce
the best product.

-208-

now



REFERENCES

1. Boehm, B. W., "The High Cost of Software," Practical Strategies for
Developing Large Software Systems, ed. Ellis Horowitz, Addison-
Wesley 1975.

2. Hopcroft, J. E. and Ullman, J. D., Formal Languages and their
Relation to Automata Theor, Addison-Wesley, 1969.

3. Bell, T. and Thayer, T., "Software Requirements: Are They Really
A Problem?" Proceedings 2nd International Software Engineering
Conference, October 1976.

4. Schwartz, J. I., "Construction of Software: Problems and
Practicalities," Practical Strategies for Developing Large Soft-
ware Systems, ed. Ellis Horowitz, Addison-Wesley, 1975.

5. Meseke, D. W., "Safeguard Data Processing System: The Data
Processing System Performance Requirements in Retrospect,
Bell System Technical Journal, Special Supplement, 1975.

6. Boehm, B. W., "Experiments on Software Specifications & Design,"
Private Communication.

7. Horning, J. J. and Wortman, D. B., "Software Hut, A Computer
Program Engineering Project in the Form of a Game," to be published
in July 1977 issue to IEEE Transactions of Software Engineering.

8. Brooks, F. P. Jr., "The Mythical Man-Month," University of North
Carolina, 1975.

9. Weinberg, G. M., "The Psychology of Computer Programming," Van Nostrand-
Reinhold, 1971.

10. Hamilton, M. and Zeldin, S., "Higher Order Software--A Methodology
for Defining Software," IEEE Transactions on Software Engineering,
SE-2, I (March 1976), 9-32.

11. Simon, H. A., "The Structure of Ill Structured Problems,"
Artificial Intelligence, 4,3 (Winter 1973), 181-202.

12. Reifer, D. J., "Automated Aids for Reliable Software," Proc. Intern.
Conf. on Reliable Software, April 1975, 131-142.

-209-



USER EXPERIENCE WITH A FORMALLY DEFINED REQUIREMENTS LANGUAGE
IORL (INPUT/CUTPUT REQUIREMENTS LANGUAGE)

Charles R. Everhart
Teledyne Brown Engineering

Huntsville, Alabama

ABSTRACT

A formally defined requirements language (i.e., complete syntax

rules and semantics) with the appropriate characteristics is necessary
for precise system definition. In addition, a disciplined application
of this language during the system requirements definition phase can

provide information necessary (and usually not available) for the subse-

quent phases of system development. This paper describes such a

language (IORL) which has been used in both system requirements defini-

tion and design phases. The description includes a brief example of

the language syntax and semantics, as well as a description of an
interactive graphics system used to store, modify, and retrieve IORL
symbols and tables.

Finally, user experience with and response to IORL is discussed in

terms of its success in controlling a project effort relative to the

rigor with which IORL is applied.



USER EXPERIENCE WITH A FORMALLY DEFINED REQUIREMENTS LANGUAGE
IORL (INPUT/OUTPUT REQUIREMENTS LANGUAGE)

Charles R. Everhart
Teledyne Brown Engineering

Huntsville, Alabama

ABSTRACT

A formally defined requirements language (i.e., complete syntax
rules and semantics) with the appropriate characteristics is necessary
for precise system definition. In addition, a disciplined application
of this language during the system requirements definition phase can
provide information necessary (and usually not available) for the subse-
quent phases of system development. This paper describes such a
language (IORL) which has been used in both system requirements defini-
tion and design phases. The description includes a brief example of
the language syntax and semantics, as well as a description of an
interactive graphics system used to store, modify, and retrieve IORL
symbols and tables.

Finally, user experience with and response to IORL is discussed in
terms of its success in controlling a project effort relative to the
rigor with which IORL is applied.

INTRODUCTION

A number of recent articles have indicated that the costs of
developing software will represent 50 to 90 percent of the total costs
of data processing systems by the mid 1980's [4,6]. In spite of the
proliferation of programming languages [1] and software development
techniques devised during the past 20 years, the industry has been
unable to change this upward trend in software costs. Software develop-
ment productivity has actually decreased over the last 10 years
according to one source (31.

The reason new prograimming languages and techniques may have been
ineffective in reducing software costs is that they solve the programming
problem but do nothing for the "System Requirements Definition" problem.
The signfificance of this fact is illustrated by a recently developed
large software project. It was reported that only 17% of the cost of
this 7.5 year development effort was associated with software coding
and unit testing [6]. The major cost (83%) was in system definition,
system design, system testing and system integration activities. The

last three (design, testing, and integration) are very much dependent onI
the quality of the first (system definition). That is, system definitio'n
(if properly applied) can provide: the requirements for design, the

criteria for testing and the structural plan for integration.

-211-



Therefore, it would appear that what has been commonly referred to as a
"Software Development" problem is in reality a "System Definition"
problem. If the industry expects to see large reductions in software
development costs, it must honestly attack the system definition problem.

The overall motivation behind the development of IORL is to pro-
vide a precise, comprehensive, yet convenient language for describing
system definition and design requirements. In order to effectively
deal with the subtle (as well as obvious) problems of a large system,
it was assumed that the language should have the following characteristics:

" The language must consist of quantitative, scientific!
engineering notation controlled by a set of formal
syntax and semantics.

* It must allow the comprehensive description of a total
system including hardware, software, and manual functions.

" It must be a unified language which allows both system
definition and design requirements to be specified within
a hierarchical structure.

" It must be modular in that precise communication of
information at one level in the requirements documentation
structure does not require understanding of information
contained in levels above and/or below.

" The language must provide visibility through clearly
defined placement of requirements information independent
of the system type to be described.

* It must provide requirements traceability to determine
where a particular requirement was originated and/or
implemented.

" It must provide a hierarchical structure which ensures
the ability to resolve requirements and/or design con-
flicts and responsibilities.

" The language should be basically graphic in order to
take advantage of the available interactive computer
graphic systems as well as providing a more natural
interface for the system analyst.

Teledyne Brown Engineering has been actively involved in this
type of development since 1971 and has devised a requirements language
called IORL (Input/Output Requirements Language) which claims the
objectives of the preceding discussion.

-212-



IORL

IORL is a formally defined language (syntactically and semantically)
12,5] which uses a combination of both graphic symbols and mathematical
notation to express system definition and design ideas. Block diagrams
(analogous to those used in control theory) organized in a hierarchical
manner identify the parts of a system and the interfaces between these
parts at all levels of system definition and design. Descriptions of
each interface identified are contained in a set of tables called IOPTs
(Input/Output Parameter Tables). Another diagram called an "IORTD"
(Input/Output Relationships and Timing Diagram) is used to define the
total transformation function from input to output as well as the response
time requirements for each and every block in the hierarchy. These
diagrams (analogous to a "Transfer Function" in control theory) provide
the symbols for specifying the sequential, simultaneous, logical, mathe-
matical and timing requirements between inputs and outputs of each given
block. The elements of IORL and hierarchical structure of requirements
information are characterized in Figures 1 and 2.

IORL STORAGE AND RETRIEVAL FACILITY

Storage, retrieval and modification of IORL diagrams and tables
have been implemented on a standalone PDP/ll based graphics terminal
(GT44 and GT46) with 16K memory. The interactive graphics system
includes a 17 inch refresh type graphic screen with lightpen capability
as well as an electrostatic printer plotter, which produces 8.5 x 11
inch copies of the screen. In edit mode, IORL information is entered
by pointing the lightpen at a location on the screen and then pressing
the keyboard button associated with the desired symbol. In display
mode, system details are accessed by directing the lightpen to points
of interest on the higher level diagrams of the hierarchy. This results
in the subsequent display of these details on the screen. Requirements
diagrams are stored on and retrieved from disk packs which are also a
part of the facility.

BND (BALLISTIC MISSILE DEFENSE) PARTITIONING STUDY EXAMP2LE

Not only is a formal requirements language necessary in specifying
precisely the functional and performance characteristics of the system
at all levels of definition and design, but at the same time this
information can be used to predict the costs in time and money required
to develop, implement, operate, and maintain a proposed system. Other
benefits derived from this information include the direct generation of
system and environment models used in the analysis of design solutions,
direct generation of test criteria to be used during the test and
integration phases of system development and the providing of a vehicle
for maintaining configuration control throughout the life cycle of the
system.

In an attempt to determine the feasibility of the preceding thesis,
a study (entitled: "BMD Partitioning Study") was performed. The

-213-



21

SBD

2
IOPT I ____ ____IOPT 6

G PRAMTERVALUES UNITS

7RAMETERIOPTs

3 START START
IORTD 1 IORTO 4

IORTDs

C0

FIUE10OLEEET

* 214-



r--~ --------------------------------- 1

- -- - -

------- - -I -

- -- --- -- ~2 u --- --_ - I

L~ -- -I -___ ----- ----- --I -_ _

FIUR 2. IOR INOMTO HIERARCHY DIAGRAM__

obetv ofti td a odmntaeta etiunitaiv
characteristics reae tosse eeomnadoeaincss

coud e erve dretl ad ECANIALY ro frmll dfiedsyte
reureet spcfiaios IR was use astelnugefrseiy

set ~ IGR 2. IORL syFmRolsO HIERARCH adigrm.TsinoIrmatinhc

obecrsetiedo thirstd wasli te deostrte heachcertan qtitatLYieor
chatueisics rhelatseedt sysemuidevelopmentlsi and perain cttis

rfeurceen speifiatos level waseusdcasthelgug for spnssadcif-

sigec the efniton ad dtesinrequireeins.wdfeenoutost

ste m requirements, adais envronetweedfiessing the completen ORLan

rpresnted nomaini the firstd level in the system hierarchy,. NYifr
mTion pupse in thecsubsequet reqiremenlton anass and designe tivties.
Afste ceckin thih frsutlel spomeacfcton forucompletens and con-d
ssten, he sopeond secinvoed desiniong two differtedansoltionsto
teDrequirements, gai expressing theseetBD solution nodeLlan

platingaths Inforismaon it wseondblevedo thateacsysluhirrcy
Tesppoe in seeniynrwensltonsen wastl to compareb the toreureetl
system) cost whiche reseifog ecno h solutionswscrrce. In the thirdsep
sepeccmlteysecfe solution was validated agdtrieis feto oanstem

instrfaces Inaluthiomnne with was estabnishe thateahstioddnai

analysis of only that information contained in the IORL specifications,

-21 5-.



produced the summary partition evaluation results shown in Table 1.
These summary results were derived from a series of intermediate results
which plotted for example bandwidth for each interface as a function of

time, storage required as a function of time, functional speed required,
etc.

Our experience with this study has resulted in the following
conclusions:

" Quantitative measures related to the costs of a system
can be determined from an analysis of system definition
and design requirements.

" The requirements language used to specify system
definition and design facts is the key factor in the
success of the preceding demonstration (i.e., the language

must have certain characteristics and enforce certain
disciplines).

" The proper specification of definitior and design require-
ments can provide information necessary to all phases of
a system development (definition, design, implementation,
test and integration).

TABLE I. PARTITION EVALUATION RESULTS

PARTITION 1 PARTITION 2 _

TOTAL TOTAL
OR GROUND OR

GROUND TRACKER SENSOR WORST SYSTEM STTCOR SENSOR WORST

RELIABILITY 0.975 0.900 0.975 0.941 0.980 0.980 0.980 0.941

STORAGE (kbits) 23.5 389.3 2.67 804.8 138.6 284.4 27.9 432.7
(2)

PROCESS SPEED 5.44 5.85 5.56 5.44 0.814 0.814 0.814 0.814
177 sec)

PROGRAMMING 35.65 26.3
COMPLEXITY
(MAN-MONTHS)

PEAK BANDWIDTHI 2.52 20.94
Mbits/uc)

-216-



USER EXPERIENCE SUMMARY AND CONCLUSIONS

Comments on IORL user experience should be accepted in light of
the following background. Approximately 45 analysts have used IORL
both manually and with computer support during the past three years.
No formal instruction on the proper application of the IORL technique
has been given to these users. Their instruction has consisted of
reading three manuals (77 total pages) which define IORL syntax rules
and semantics. No formal study has been performed to determine user
experience and in most cases the user comments were qualitative and
quite subjective.

The IORL technique has been applied to a number of different
systems, including weapon systems (BCS, HWS, TSQ-73, PATRIOT, MINISD,
MSMXI, etc.), development of simulation programs, analysis of manage-
ment plans, development of interactive graphics systems, the develop-

ment of a remote batch entry system (UT200), MIS project and others.
The approximate size of each of these projects ranges anywhere from
50 pages or IORL information to several thousand pages. Currently,
the largest system is about 3800 pages.

IORL has been used as an analysis tool for determining faults
within existing and/or proposed systems. It has been used to obtain

control of poorly or undocumented existing systems (this usually results
in the uncovering of previously undetected discrepancies). It has been
applied to the total development of several systems (from initial con-
ception to testing the final product). IORL has been used to describe
new and/or existing systems from the top down as well as existing

systems from the bottom up.

In general, the degree to which IORL syntax rules are followed
determines project success. However, when some of the rules are violated,

attempts to follow most of the rules usually result in the detection of
inconsistencies, ambiguities and incompleteness not otherwise observed.
The explicit nature of the language tends to force vigorous pursuit of
unanswered questions. Discrepancies and unspecified information is
quite noticable. This is exemplified by the following excerpt from a
report describing the use of IORL on the analysis of a software develop-
ment management plan (7].

"The aspect of the structured analysis that exposed the
problems were the additional careful scrutinies and
analyses of the SWDMP required in order to develop the
IORL graphical representation of the plan."

Other comments of a qualitative nature which were made by users are:
"Invaluable in control of large projects, especially during evolution",
"Very valuable in highlighting inconsistencies, incompleteness",

"(The) finished product and the ease of creation/modification of same

outmode the difficult typist/artist/draftsman approach to documentation."

-217-



The IORL facility has been in operation almost 20 months. The
fact that during this period, 23 different systems have been entered
consisting of approximately 6000 formally accounted (charged) IORL
pages, is the best indication of user response to IORL and the facility.
A portion of this usage can be attributed to appeal 'of the computerized

IORL storage and retrieval facility. However, IORL has been used
successfully prior to the facilities existence. These prior applications
include the development of a "Ballistic Trajectory Simulation" program,
the development of a "Interactive Missile Design Tool", the development
of the IORL facility itself, and a 650 page requirements description of
the BCS (Battery Computer System). Table 2 indicates user success
with IORL relative to the first three systems just mentioned. Although
productivity (in terms of "Lines of Source Code Per Hour") is not the
best measure, it provides an order of magnitude in determining the
success of these projects relative to the application of IORL. Com-
parison of the first line in Table 1 with the last three indicates an
increase of approximately double productivity when the IORL facility is
available.

TABLE 2. TBE EXPERIENCE

IORL
LINES FACILITY SYSTEM

JOB LANGUAGE OFCODE AVAILABLE EXPERIENCE PRODUCTIVITY

200 UT ASSEMBLY 8,650 YES NONE 8.5 LINES/hr

GRAPHICS ASSEMBLY 8,200 NO NONE 3.4 LINES/hr
FACILITY

BALLISTIC FORTRAN 2,000 NO MODERATE 6.5 LINES/hr
TRAJECTORY
SIMULATION

INTERACTIVE FORTRAN 39,500 NEW NO MODERATE 3 TO 3.5 LINES/hr
MISSILE 6,000 OLD
DESIGN TOOL

CONCLUSIONS

From the above information, it is difficult to draw any strong

conclusions concerning the effects of IORL on each of the applications
individually. This is due to the subjective nature of user comments,
the lack of quantitative data generated under controlled conditions,
the incomplete state of many of the application systems and in general
the newness of the current IORL technique. Where informal application
of the IORL syntax rules has been used, evaluation of IORL usefulness
must be based on subjective comments of the project managers. Where
rigorous application of the IORL rules has been enforced, project
success has been easier to measure and more pronounced. In either case,
IORL users expressed satisfaction in general with IORL over previous

methods.

-218-



REFERENCES

1. Shea, William E., "DOD-I, A Common Language", ISRAD in Touch,
Volume 2, No. 1, February 1978.

2. Everhart, C. R., "IORL Analysts Users' Manual", Section 1 -

Syntax, Teledyne Brown Engineering, May 1977.

3. Dolotta, T. A., et al, "Data Processing in 1980-1985",
John Wiley and Sons, 1976.

4. Boehm, B. W., "Software and Its Impact: A Quantitative Assess-
ment", Datamation, pp.48-59, May 1973.

5. Everhart, C. R., "IORL Analysts Users' Manual", Section 2 -

Semantics, Teledyne Brown Engineering, May 1977.

6. Ramamoorthy, C. V., et al., "Software Requirements and Specifi-
cations: Status and Perspectives", Engineering Research
Recommendations, Draft Appendix A, August 12, 1977.

7. Polan, Marvin and Sansone, F. J., "Software Design Methodology
Interim Report", Technical Report SD78-BMDSCOM-2211, prepared
for Systems Technology Project Office, U.S. Army Ballistic
Missile Defense Systems Command (Contract Number DASG60-78-C-0002),
May 1978.

-219-



Software Requirements Engineering Methodology (SREM)

M. W. Alford

TRW Defense and Space Systems Group

The Software Requirements Engineering Methodology (SREM) was
developed for the Ballistic Missile Defense Advanced Technology Center
(BMDATC) to address the generation and validation of Software Require-

ments for Ballistic Missile Defense Weapons System. At that time, REVS
was operational only on the Texas Instruments Advanced Scientific
Computer (TI ASC), and the methodology had been applied to one moderate-

sized "proof of principle" demonstration.

-220-



SOFTWARE REQUIREMENTS ENGINEERING METHODOLOGY (SE)
CURRENT (1978) STATUS

M. W. Alford

TRW Defense and Space Systems Group
Huntsville, Alabama

1.0 INTRODUCTION

The Software Requirer. 'its Engineering Methodology (SEEM) was pre-
sented two years ago at the Second International Software Engineering
Conference [1]; the SEEM support software, the Requirements Engineering
and Validation System (REVS), was also presented then [2]. SEEM, was
developed for the- Ballistic Missile Defense Advanced Technology Center
(BMDATC) to address the generation and validation of software require-
ments for Ballistic Missile Defense Weapons Systems -- the motivation
and environment for this research has been previously described [3].
At that time, REVS was operational only on the Texas Instruments Ad-
vanced Scientific Computer (TI ASC), and the methodology had been applied
to one moderate sized "proof of principle" demonstration problem. The
research results were presented at ISRAD in Arlington, Virginia on
23 and 24 May, 1977.

Since then, SEEM has been successfully applied to both the genera-
tion and independent validation of software requirements for several
systems. REVS has been transported to a number of other host computers,
and its performance has been improved. The methodology has been success-
fully transferred to a number of other organizations, and applied to a
wider class of problems. The purpose of this paper is to provide a
status report of the SEEM requirements development procedures, require-
ments language, support software, and transfer of this technology to
other organizations, and to provide an overview of plans for extensions
and improvements.

SEEM is based on a Graph Model of Software Requirements [4] which
is an extension of the Graph Model of Computation (5]. The basic con-
cept underlying SRE4 is that design-free functional software requirements
should specify the required processing in terms of all possible responses
(and the conditions for each type of response) to each input message
across each interface. Thus, functional requirements identify the re-
quired stimulus/response relationships, and autonomously generated out-
put. These required actions of the software are expressible in terms
of Requirements Networks (or R-Nets) of processing steps. Each pro-
cessing step is defined in terms of input data, output data, and the
associated transformation. Figure 1 presents an R-Net for a Hospital
Patient Monitoring System [6] which accepts a measurement of the blood
pressure, temperature, skin resistance, etc., for a patient, tests it
for validity, records it, requests the next measurement, and tests the
measurement against a pre-specified set of upper and lower limits. Note
that five paths of processing are identified, which combine into three

-221-



E4

p4 4 Ow M
U &4 cn 00

t

> rn
w w zf4 0

-40, l
4 0 " >a 14

0

z z 0 E4

014 0
z

.4
0 fnw

0

0 In
z

0

0 14
E4

1-4

04 w

OR
Z 4
H W

W E-f z

E4 z04

>

04
z

CY 0

w 4

ra ul
u

;or-1-4

F4 w

-222-



possible stimulus/response requirements -- the paths to request the next
measurement and record the current measurement occur regardless of whether
the measurement violates the constraints.

These concepts are embodied in the Requirements Statement Language
(RSL). RSL is composed of 21 types of elements, 21 types of attributes,
23 types of relationships, and three types of structures. It is the
structures (R-Nets, Subnets, and Paths) and their formal mathematical
foundations, and the stimulus-response orientation which distinguish RSL
from the traditional techniques for stating software requirements (e.g.,
the PSL [7] approach, or standard DoD Military Specifications [8]). Table
1 presents a subset of the requirements for the Patient Monitoring System
expressed in RSL.

REVS is a large software tool that handles a potentially large data
base of requirements, therefore requiring a host computer with a large
effective memory space and a moderately fast instruction rate.

REVS accepts RSL as input, translates it into an automated require-
ments data base, and provides a set of capabilities for analyzing and
manipulating this data base. Specific capabilities include the following:

" Translation of an RSL expression of requirements into a
central requirements data base.

" Extraction, under user control, of information from the
requirements data base for analysis and documentation.

" Identification, under user control, of subsets of the data
base for automatic consistency, completeness, and trace-
ability analyses.

" Automated checking of the requirements data base for specific
properties of data flow consistency (made possible only because
of the underlying formal foundations).

" Graphical representation of the requirements structures, both

on-line and off-line.

" Automated generation and execution of simulations directly
traceable to the requirements definition.

The REVS program itself consists of over 40,000 executable PASCAL
statements, making it the largest PASCAL program known to us. (In com-
parison, the PASCAL compiler consists of approximately 6,000 PASCAL state-
ments.) An additional 10,000 FORTRAN statements perform data base
management functions. The RSL Translator is produced from the Backus-
Normal Form (BNF) definition of RSL using the Lecarme-Bochman Compiler
Writing System from the University of Montreal, plus additional code for
the definition of the semantic actions.

At the time of our presentations two years ago, SREM, RSL, and REVS
had been applied to one moderately sized BMD problem to demonstrate capa-

-223-



Table 1 Example RSL Definitions

MESSAGE: DEVICEREPORT.

PASSED THROUGH: INPUTINTERFACE FROM DEVICE.

MADE BY: DATA DEVICE NUMBER
DATA TYPE MESSAGE
DATA DEVICEDATA.

DATA: DEVICEDATA.

INCLUDES: DATA PULSE
DATA TEMPERATURE
DATA BLOOD PRESSURE
DATA SKIN RESISTANCE.

FILE: FACTOR HISTORY.

CONTAINS: DATA MEASUREMENT TIME
DATA HPULSE

DATA HTEMPERATURE
DATA HBLOOD PRESSURE
DATA HSKIN RESISTANCE.

TRACED FROM: SENTENCE 2
SENTENCE_3.

ASSOCIATED WITH: ENTITY PATIENT.

ALPHA: STORE HISTORY DATA.

INPUTS: DEVICE DATA.

OUTPUTS: FACTOR HISTORY.

DESCRIPTION: "THE DATA PROCESSOR SHALL RECORD EACH VALID
MEASUREMENT FOR EACH PATIENT".

VALIDATIONPATH: MEASUREMENTOUT OF LIMITS.

PATH: VALIDATION POINT VI, VALIDATION POINT V6.

MAXIMUM TIME: 1.

UNITS: SECONDS.

-224-



bility and to illustrate the sequence of steps and associated outputs
of the methodology. At that time, it was concluded that the research
objectives had been achieved, but that SREM's applicability to other
environments and utility in realistic software development environments
had yet to be determined.

Section 2.0 contains a summary of the status of REVS installations
and the transfer of the SE technology to other organizations. Section
3.0 contains an overview of the results of several diverse SEEM applica-
tions. Section 4.0 contains an overview of planned extensions to SREM
and REVS. Section 5.0 contains some conclusions of our experiences to
date.

2.0 WHERE WE ARE TODAY

The availability of SREl4 technology for use on software requirements
development projects is dependent on two factors: the availability of
people who are knowledgeable in the SEEM concepts, techniques, and proce-
dures; and the availability of REVS to support the use of SEEM. The sub-
stantial progress which has been made in both of these areas in the past
two years is discussed below.

2.1 TECHNOLOGY TRAN4SFER

Technology development is fruitless without the mechanism for its
transfer to others working in the field. Here existence of tools, or
codification of experience, does not necessarily lead to a transfer of
working knowledge which can be exercised by others in operational envi-
ronments. The true test of a methodology is whether it can be absorbed
and applied by others.

To successfully transfer SREM technology to others, three techniques
have been used: transfer of documentation of the SREM procedures, lan-
guage, and software capabilities; presentation of a "ishort course" in
Requirements Engineering; and on -the-job training. Table 2 presents a
list of the organizations which are applying these techniques. More
details of the transfer are provided below.

Some individuals at the University of California at Berkeley, and
at TRW, relied only on the published documentation and achieved mixed
results in later applications. Requirements engineers from Johns Hopkins
University/Applied Physics Laboratory (APL) and TRW have been provided
with the basic documentation and with some on-the-job training consisting
of assistance in SREM on a problem of their choice. The on-the-job
training provided an intensive information transfer, and the opportunity
to correct any misconceptions about the software requirements engineering
process and misunderstandings of the language concepts. For example,
requirements engineers with previous experience writing software require-
ments usually have an overwhelming urge to try to define a queueing scheme
for buffering input messages in RSL; elimination of this design leads to
statements of response time requirements which allows software designers
to decide which buffering scheme meets such requirements.

-225-



Table 2 Technology Transfer

TRANSFER APPLICATIONS
METHOD

ORGANIZATION Av

APPLIED PHYSICS X x X X

LABORATORY

HUGHES X K

McDONNELL DOUGLAS X X x

ASTRONAUTICS CORP.

RCA X K x

TELEDYNE BROWN K X
ENGINEERING

TRW K X x K X

UNIVERSITY OF X X K
CALIFORNIA,
BERKELEY

U.S. ARMY x x
COMPUTER SYSTEMS
COMMAND

-226-



In November 1977, a three-week course was held at McDonnell Douglas
Astronautics Corporation (MDAC) in Huntington Beach, Cal., sponsored by
BHDATC, to assist the technology transfer to a wider audience. Partici-
pants included req~uirements engineers from MDAC, Hughes, RCA, Teledyne
Brown Engineering, and the U. S. Army Computer Systems Command. Course
notes were provided to detail the methodology and to provide examples of
inputs and outputs of each methodology step. All participants had the
opportunity to define functional requirements for two example problems:
a common example for the whole class, and then independent team projects.
The course was evaluated by all as successful. Table 2 indicates partial
results of this transfer: APL, MDAC, RCA, and TRW all have performed, or
are performing, demonstration and/or operational projects for generating
and/or validating software requirements using the technology.

Although continual on-the-job training is the ideal, the training
course approach was found to be an effective and cost-effective mechanism
for technology transfer. Several future courses are under consideration.

2.2 REVS AVAILABILITY

A critical element in the availability of SREM is the availability
of REVS to support its application. Two years ago all REVS capabilities
were operational, but REVS was available only on the TI ASC in Huntsville,
Alabama, which had no remote access capability. This severely limited the
scope of its application. Since then, REVS has been installed in several
more locations on both TI ASC and CDC host computers with remote access
capability. Table 3 summarizes the current installations of REVS. The
version at TRW is currently being optimized to reduce execution time and
on-line memory requirements.

3.0 APPLICATIONS

SREM was an out-growth of research addressing the statement of soft-
ware requirements for BMD systems which are fully automated (no man-machine
interactions), and are real-time control and engagement oriented (engage-
ment rules defined before software requirements definition is initiated).
In addition, SREM addressed only the development of requirements for
software to be executed on a single processor (no distributed processing).
Although the mathematical foundations of SREM, were believed to be appli-
cable to other types of software requirements development efforts, no
explicit claims were made about the efficacy of SREM for those requirements.
Since the SREH approach was published, it has been applied on a variety
of projects and environments. Tacle 4 presents characteristics of a number
of these projects. Some of these projects are competitive in nature, thus
sensitive details have been omitted. Results of these applications are
discussed briefly below.

Projects A through E were performed at TRW under the direction of
those responsible for the development of the methodology and tools. Pro-
ject A involved the definition of top-level software requirements for air
defense engagement control software during the conceptual design phase of
the project. This project involved the definition of requirements for
processing to be distributed across more than five processors, and inclu-
ded the definition of man/machine interactions.

-227-



Table 3 Current REVS Installations

1/0 CAPABILITIES

LOCATION HOST

ADVANCED RESEARCH CENTER, CDC 7600 X X X
HUNTSVILLE, ALABAMA

NAVAL RESEARCH LABS, TI ASC X X
WASHINGTON, D.C.

MDAC, HUNTINGTON BEACH, CDC 7700 X X
CALIFORNIA

TRW, REDOINDO BEACH, CDC CYBER X x
CALIFORNIA 74/174 TSS

-228-



(SHOI13MU~SNI)
MZs MI&OS 0 0~ 0 0 00 1 -I I n i 0O 0 1--

'-4~~> >NHvwNw

DRISSMDOUId >4 x4 x

a~ingnmsia

~HII-Tfni >4 >4 >4 >4 >4 >4

0 .4
H E
HOz

-4H rz4 Hz

PJr4  P4 H
Ow E4 0 0 000

C.N)

>4 0C.)2 H

-229--



Project B involved the definition of the requirements for an
existing operating system f or which software requirements were undocu-
mented; some extensions to the operating system were contemplated, and,
hence, requirements on the existing operating system capabilities had to
be definitized in order to address requirements for the augmented system.

Project C involved the application of SREH to the redefinition of a
software specification for an interactive (man/machine) near real-time
information management system. A major conclusion from this project was
that the redefinition of software requirements follows essentially the
same steps as the generation of software requirements using SREH. The
major problem in performing the validation was the identification of the
required sequences of processing steps defined in the various processing
"functions", and identification of the data flow between processing
"functions" -- just the problems that would have to be addressed to make
the requirements testable.

Project D involved the redefinition and validation of requirements
for existing air defense engagement software, in order to address the
inclusion of requirements f or new capabilities involving distributed
processing. Again, the requirements were extracted from a combination of
existing requirements and design documents, and sometimes from interpre-
tation of the code itself. Conclusions from this project included the
following:

" The SRE Methodology is, with little modification, applicable to
requirements redefinition. The technique of first redefining
the requirements, and then modifying the requirements to assess
the impact on the existing software, yields significant advan-
tages in comparison to "patching the code one more time".

" The simulation generation capability of REVS provides a rapid,
cost-effective means for the generation of both functional and
analytical simulations of required processing. In particular,
the consistency and completeness checking capabilities of REVS
speed up the process of debugging the simulation of the pro-
cessing, and produce a simulation directly traceable to the
requirements.

Project E involved the redefinition of top-level man/machine proces-
sing requirements for existing distributed software in order to provide
an orderly means of defining augmentations, modification, and up-grade
in performance requirements. This project is still on-going.

Projects F and G involved the generation of requirements for soft-
ware during the conceptual development phase at TRW. Project F addressed
the definition of requirements for a real-time distributed information
management system, while Project G addressed requirements for software
to control a radar and process its data. Both of these projects started
with a customer-furnished system concept, and were to generate prelimi-
nary software requirements, a preliminary design of the software, and a
fixed-price bid on the software development in about six months. Similar
conclusions were arrived at in both projects:

-230-



" It is difficult to develop complete and consistent, testable
software requirements on that kind of schedule with any technique,
even SREM. The software requirements development process is
squeezed between the system design (selecting hardware, system
operating rules) and the preliminary software design (to a suffi-
cient detail to enable a fixed-price bid). Traditionally, the
specification problems are swept under a rug by writing a fuzzy
software specification; SREM makes the requirements and the qual-
ity quite visible (e.g., it is entirely obvious from the automated
checks of REVS whether or not all messages have been generated by
the proposed functional processing, and whether or not the input/
output data relationships are consistent).

* The use of S1REM, particularly in the initial stages of drawing
the first R-Nets, provides the communication mechanism for more
meaningful discussions for clarifying the initial customer require-
ments. The necessity of identifying stimulus/response relation-
ships in the R-Nets makes the top-level system logic meaningful
to the user, identifies ambiguities in the initial requirements,
and provides the benefits of structured walk-throughs in the very
early requirements phase so the customer can identify misconcep-
tions on the part of the requirements engineers. The customer
expected perhaps a dozen questions of clarification on the require-
ments; to define R-Nets, he received many more questions and then
commented on the R-Nets to identify misconceptions.

Project H was performed by RCA to successfully demonstrate the
utility of SREM in defining requirements for test software. SREM had
the effect of making the requirements more clear and understandable than
the traditional methods of writing requirements for such software.

Projects I and J have just begun; no significant conclusions have yet
been reached. They are, however, being carried out as demonstrations to
provide information about the utility of SREM in operational environments.

In Project K, two independent teams of analysts (one academic, one
industrial) wrote requirements in RSL for a portion of reactor control
software, with little consultation with TRW. A significant result of the
study was that the two sets of paths were identical (as predicted by the
theoretical foundations).

Projects L and M took advantage of the user-extensibility features
of REVS to define a new language for creating a relational data base. One
significant feature of REVS is that RSL is user-extensible (i.e., new ele-
ments, attributes, and relationships can be defined by the user), and in
the same (or subsequent) runs, information of this type can be translated
by REVS into the automated data base, and then REVS can use these defini-
tions to document and analyze these relationships.

3.2 EVALUATION

Only one of the above applications involved the definition of require-
ments for U.S. Army Ballistic Missile Defense software, the original target

for SREM creation. The other projects involve SREM usage in roles not

-231-



originally addressed (e.g., specification validation, specification
redefinition, and augmentation), and having characteristics not origi-
nally addressed (e.g., distributed processing, man/machine interactions).

The specification validation role is a natural application for SEEM,
requiring very little modification of the steps, and no modification of
RSL or REVS. It can be applied to a project with a preliminary software
specification in order to methodically identify specification problem
areas, or to a project already in software development in order to verify
the completeness, consistency, and testability of the requirements. This
role has been found to be a near-ideal type of project to demonstrate the
utility of the SREM concepts in specific operational environments, to
provide the vehicle for on-the-job training, and to provide useful results.
It is one of the best mechanisms available to satisfy the new regulations
(e.g., DoD Regulation 5000.29) requiring validation of software require-
ments before proc~eeding with engineering development of a large system.

The specification redefinition role is similar to the above role in
that the requirements for a piece of software are defined first and then
augmentations are defined with respect to the baseline specification.
This approach provides significant advantages to this software augmenta-
tion process, i.e., it provides for a precise cefinition of the required
augmentations, allows augmentations to be discussed in terms of require-
mernts Instead of specific design approaches, and provides testable require-
ments for the end product -- the software.

Both SREM, and REVS are applicable to the definition of distributed
processing and man/machine interaction software requirements as they
currently exist; improvements have, however, been identified. The appli-
cation of SREM to these types of software provides a top-down viewpoint
and testable requirements on the processing as a whole, in addition to
detailed requirements directly traceable to these top-level requirements.
It thus provides the framework for making the decisions for allocating
the processing to the distributed nodes, for identifying comunication
requirements, and for allocating the total processing requirements be-
tween the software and the manual procedures. Experience with these
problems has led to the identification of extensions and augmentations
to RSL, REVS, and the SEEM procedures. These will improve the ability
to develop the detailed specifications from the top-level specifications
which are directly traceable, and to provide automated support for the
partitioning process.

4.0 PLANS FOR EXTENS IONS AND IMPROVEMENTS

The applications discussed in Section 3 provided experience in
addressing a wider class of problems (i.e., distributed processing man/
machine interactions, operating systems, on-line information systems) in
various roles (i.e., specification generation, specification validation,
specification redefinition and augmentation) and in various operational
environments (e.g., conceptual development phase working with system and
software designers vs. independent validation). Assessment of this ex-
perience has led to the identification of several types of extensions
and improvements to SEEM, RSL, and REVS. Specific areas of research and
development currently underway include the following:

-232-



e REVS operational improvements.

* Distributed Processing Augmentations.

a Smoother transition to Process Design.

* Smoother transition from System Engineering.

e Smoother transition to Software Validation and Test Planning.

* Extensions to Business Data Processing problems.

5.0 CONCLUSIONS

There has not yet been time, since the availability of REVS, for a
project to go from a conceptual design to a software specification writ-
ten using the SREM technology, to a complete software design development,
and test. However, from the current experiences of using SEEM, in both
demonstration and actual software requirements development activities,
we can draw the following conclusions:

1) With the increasing availability of REVS on CDC computers, REVS
is maturing to the level of capability necessary to support the
definition of software requirements in operational environments.

2) SEEM and REVS now have demonstrated utility in operational
environments in defining and validating requirements for a wide
class of software, with the domain of demonstrated applicability
increasing. Augmnentations to REVS have been identified to im-
prove the capabilities of SREM to deal with an expanded class
of problems.

3) The SREH technology has been successfully transferred to others
for specification generation, and specification validation
activities.

Thus, it appears that SREM, even after two years experience, successfully
addresses the problems of defining and validating software requirements.

6.0 REFERENCES

1. M. W. Alford, "A Requirements Er, .~ Methodology for Real-Time
Processing Requirements", IEEE -.ansact.Lns on Software Engineering,
Vol. SE-3, No. 1, Jan. 1977, pp. 60-69.

2. T. E. Bell, D. C. Bixler, and M. E. Dyer, "An Extendable Approach to
Computer-Aided Software Requirements Engineering", IEEE Transactions
on Software Engineering, Vol. SE-3, No. 1, Jan. 1977, pp. 49-60.

3. C. G. Davis and C. R. Vick, "The Software Development System!', IEEE
Transactions on Software Engineering, Vol. SE-3, No. 1, Jan. 1977,
pp. 69-84.

-2233-



4. M. W. Alford and I. F. Burns, "An Approach to Stating Real-Time
Processing Requirements", presented at Conf. on Petri Nets and
Related Methods, Massachusetts Institute of Technology, Cambridge,
MA, July 1-3, 1975.

5. V. C. Cerf, "Multi-Processors, Semaphores, and a Graph Model of
Computation", Dept. of Computer Science, University of California,
Los Angeles, CA, Report UCLA-ENG-7223, April 1972.

6. W. P. Stevens, G. F. Myers, and L. C. Constantine, "Structured Design",
IBM Systems Journal, Vol. 13, No. 2, 1974, pp. 115-139.

7. D. Teichroew, E. Hershey, and M. Bastarache, "An Introduction to
PSL/PSA", ISDOS Working Paper 86, Department of Industrial and Opera-
tions Engineering, University of Michigan, Ann Arbor, MI, March, 1974.

8. Department of Defense, "Military Standard Specification Practices",
Report MIL-STD-490, October 1968.

-234-



AUTOMATED ANALYSIS OF SYSTEM SPECIFICATIONS

Dr. Larry A. Johnson

Dr. Paul B. Merrithew

Mr. Daniel G. Smith

By LOGICON, INC. 18 Hartwell Avenue

Lexington, Massachusetts 02173

ABSTRACT

CADSAT is one of several automated tools which have

been developed to help define quality requirements. This

paper discusses the application of CADSAT to the analysis

of high level, functional-performance specifications.

A practical application of CADSAT has prompted several

modifications and extensions. The CADSAT changes aid

the construction of a requirements data base, help maintain

the connection between the data base and other system

documentation and perform special tasks. Experience

reveals several essential aspects of a successful method-

ology for the use of the tool. This methodology and the

changes to CADSAT are discussed in terms of the intrinsic

capabilities of automated tools and the restrictions

imposed by their use.

-235-



INTRODUCTION

The complexity of military systems development has continued to outpace the
management and technical resources supporting the acquisition process. The
decline in DoD manpower resources over recent years has had a two-fold effect
on military systems development. The higher reliance on automated systems
has been constantly increasing over the past decades and has been heightened
in recent years by the desire to reduce the system's operational crew require-
ments and associated support functions. In conjunction with the decreasing
operational personnel, the military system implementing agencies have also been
impacted by staff reductions. The net effect is that systems are rising in
complexity at the same time that military engineering resources responsible for
the acquisition have been effectively reduced to managers of the engineering
efforts. The lack of engineering staff resources is even further complicated
by the lack of well-defined system engineering approaches for managing and

accomplishing quality systems requirements definition and analysis (Figure 1).

Partly in response to these conditions, the Air Force Systems Command has
initiated numerous programs to improve the Air Force system throughout the
life cycle of the system through improved technologies and guidance. One
program has been to develop automated means for defining and analyzing system
requirements and encouraging the application of these computer aids in the
early phases of systems acquisition. This paper describes the application
of an Air Force computer aided analysis tool, CADSAT, which is being employed
by Logicon system analysts in defining and analyzing the system requirements

for a large surveillance system. 1The presentation describes the goal of
requirements definition and analysis, the characteristics of quality require-
ments, the requirements engineering process, and how automated aids are
effective in accomplishing the system engineering activities for defining and
analyzing system requirements.

The Computer-Aided Design and Specification Analysis Tool (CADSAT) is an
Air Force owned requirements analysis tool developed by the University
of Michigan. The extended version is a modification developed by Logicon
for applications to military systems. CADSAT's Problem Statement Language
and Problem Statement Analyzer (PSL/PSA) is basically equivalent to the
User Requirements Language/User Requirements Analyzer (URL/URA) developed
at the University of Michigan.-26

----- 36-..



LL)
-j -

-

0V
LL-j G11
at Lii

ILiJ

0 -J

'D LO ) )
c., 4 r .

C)

o U m
a)fO ~O

Ln rY - 0
1- IL-.

a))
Q) (A a)

00 0

0 ) CA. In )0

LL . -V O >LI
-1.u u Ln -

~ )0)

~~0 E~j S. J-
-0 oo41 s W4J 0)II4-

4. >C Ln LI

L)) o)~ w0 - p
Ln CooO) - a - LI

a)' CL

C/) r

CIO)
0 40)

LIE
C,

-237-



REQUIREMENTS ENGINEERING GOAL

A system in the context of this presentation is an aggregate of equipment,
personnel resources, capabilities and techniques which collectively perform
an operational role. The composite system includes all related facilities,
items, materials, services, and personnel required for the system's self-
sufficient operational deployment. System requirements engineering is con-
centrated upon defining the system as a whole in operational mission terms
including associated performance requirements. In early system requirements
engineering the analyst must avoid orientations toward specific solutions by
concentrating upon defining the system in terms of what must be accomplished.
As previously discussed, the lack of specific approaches and techniques for
military requirements engineering allows even the best-intended analyst to
digress rapidly from the "need" category to the "how-to" or solution-oriented
requirements definitions. This is a natural tendency especially for any
implementation-oriented engineer, such as a software engineer. Preconceived

ideas from past engineering experience or operational experience with existing
systems naturally come to mind. The results are "system requirements" which
are semantically riddled with solution overtones or specific design details
without conscious realization or justification. The thought process simply
shifts to a solution oriented position (images) at the point of conceptual
thought. Therefore, the requirements engineering process must recognize this
tendency and must allow for effective feedbacks into the process. During the
course of requirements engineering, the analyst must also be aware that non-
design-oriented system documentation, such as functional-performance and
development specifications, is the media for communicating the system require-
ments to the implementing engineers. The requirements engineering goal is to
identify "discrete" requirements of the system and to "organize" these require-
me-Is in effective ways for further analysis.

QUALITY REQUIREMENTS CHARACTERISTICS

Therefore, quality requirements are dependent upon the analyst first identi-
identify the discrete requirements of the system and then organizing these
requirements in effective ways for further analysis (Figure 2). Initial
documentation for identifying user system requirements may include early

-238-



LUJ

LULJ

LUJ

(D a

C))

-i
LU 0

F- L..

LUI
LLJ w)

CD,

uj ccr

LU) M

cm)

-239-



planning documents and specifications for similar systems, for system inter-

faces, and for existing or previously defined subsystems. In addition, docu-

mentation derived from engineering studies and prototyping or experimental test

systems may be available. If the engineering activities have advanced beyond

the planning and study stage, certain specifications may have already been

developed. These early requirements documents have one prevailing character-

istic: The system requirements are not typically distinguished (discrete) or

collectively defined (well-organized). This is partly because of the frag-

mented nature of the early planning and study efforts which are formulative and

investigatory. Another factor has been the lack of guidance in requirements

engineering and the orientation of engineers to the specification documents.

The specification documents in many instances become products to meet acquisi-

tion requirements and schedules as opposed to the specification being a repos-

itory of quality system requirements.

Figure 2 illustrates the first characteristic of quality requirements, the

development of discrete requirements. Source documentation is analyzed and

broken down in an iterative synthesis-analysis fashion throughout the require-

ments engineering activities. The key to identifying discrete requirements is

to break the source documentation into individual parts which represent non-

overlapping requirements. Requirements are categorized as functions the system

must accomplish or system constraints (performance, physical, system opera-

tional effectiveness). At this point missing or incomplete requirements will

begin to be more readily identified. This itemization and categorization of

requirements introduces clarity where the source documentation typically is

overstated, ambiguous, redundant, incomplete and inconsistent. This itemi-

zation also provides the basis for verifying the quality of the requirements

and to assess the ability to test the requirements in the target system.

The second characteristic of quality requirements is the organization of the

requirements in effective ways for additional analysis and for communicating

them to the using agency and to implementing engineers. The identification

of discrete requireents provides some awareness of omissions and gaps in

the requirements. This awareness is further heightened by organizing the

requirements in various ways which show the relationships between the discrete

requirements (Figure 2). These relationships are logical organizational

relationships, system flow relat.ionships, and traceability relationships.

-240-



Logical organizational relationships are accomplished by structuring the

discrete functions and the information requirements (external and internal

input/ output) of the system into hierarchical structures. The concept of a

functional hierarchical structure was introduced into military systems dev-

elopment through initial systems engineering practices dating back to the late

1940s. The concept has been maintained in military systems development and

documentation throughout the 1960s and is an integral part of the current

military standards for system documentation, i.e., MIL-STD-490 [1], MIL-STD-483

(USAF) [2], DoD 7935.1-S [3], and others. Current techniques for system

development, such as the HIPO [4] visual table of contents and automated

requirements analysis tools (PSL/PSA, CADSAT), retain the principles of func-

tional hierarchical structures for communicating the functions to be accom-

plished by the system and the relationships between the functions. This form

of organization provides a view of the system as an aggregate of functions

broken out into a logical arrangement of subordinate discrete activities which

must be performed. A sample portion from the Logicon-Extended Structure Report

(Figure 3) demonstrates the functional break out of a surveillance system.

This section of the report shows the hierarchical structure of a function

(CADSAT process) at the seventh level of the hierarchy (srch-iff-data-account-

ing, count 1) broken out into four level 8 subordinate functions (counts 2, 3,

6 and 7). Over the course of requirements engineering many missing or incom-

plete functions can be directly identified from the functional hierarchical

structure. Similar logical organizational relationships can be realized by

structuring the internal and external information requirements of the system.
The discrete system inputs, outputs (external I/0) and the internal information

requirements necessary for the system's operation can be logically structured

in the same manner as the functional hierarchy. The emphasis on the inform-

ation structures is to arrange the information requirements into structures by

breaking the information into logical subordinate parts or simply as groupings

of information. The well-organized structure is effective in communicating

the information requirements and for identifying incomplete or missing inform-

ation requirements.

System flow relationships represent another way to organize the discrete
requirements in terms of control flow and information flow. As the functions

of the system are identified, the control relationships between them are

-241-



0.

-4

u-s-

00

I I

-4 -44

.j = n I I I I I I kn I C

Sv- ? . N.4 I IL 0 "-
II m I r, I CU

¢'4 ('4 -4 4 - 4 C 4 ¢ I I -4l -4,
,,- ,;' -,l II Ii I -I'- rN (I..,- I .., I

.. ' _ 4' I'"' I I ).I -4 I" I'I C"'! "

L -I4Il 11 -4 1- .-4 0

I 10, 404 0 0410).- I- 04- 0 '4

41 ,- . LI ..," u ,)- .,, 11 0 1 0) 00 1) I O
L44 14- L101 L .4 I>

110) ,)0I 0) -l-I ) Y

N. U '4-1 I a)'I '-
SI--

LL -4 L. Il '4- l. -
'. C. II m "

• , C.. 4 4-A z4- U
0 0 'M- C. - ~ 41-j- 4- 4U. "0 -I L 'wC '4-

. -, I i I u go- 4 4 I - - 0 1 V 1 I 41 '4,. u %'-

IV- r . I '0 I f m IV a I fV tV - Z I U Z" I C '4- 1 C''i-
. . 4-1 0 ' 0 ,= ' 1 Z I I I I .4 I U . - .'o - .,

(L Dz f V0t I5 1 C-51 40 UA. ( L 41 fV L A1C

-L 0 IE 'a I u o to . " u '4. 4- 4 SA 14-L %A u U Z 0 W =

40 1 -M . 1 4. I Zr I '-41, v 0 I m -.4 to to I "'o re I I I u li I U

> A JJ0'A ZLV 1 V) I4 VIQ'~ V54 41V40 V i. I I

I I 'I a -O .v', V0l A C ' 4- "4-,%

t0 4-0 ZV-~ Z O~ 'VV'0 L~ df' 0 L0 0UV4- 0' C4-

034,, ,- IV U , 0 , 1 I to q I I 1 ".4, M -- C.- U -C L. U I I r -

Ig 0 'A '3 6 I I C a
I- 4 0 m to I I " 0 '4-'VVL4J0 COt

I4 L6 I MuOu C'. - ' 1 ot -4-. I 0 91 -4 LU > L U
IL 'J--I.M I'4'V.-@ -1'V0IV L -o 0 L C 0

%.. tIAw-3m'Vmm'm)- II4JM 1M.1 '-

w .4 04 z, m .- 0 m N 4z Z---"J-iA40' A L0 M4- -

C;C

..4 ,. -242-

I ,- "IE...]



identified in order to describe the logical order in which the system acti-

vities should be accomplished to satisfy the operational requirements. Figure

4 illustrates a typical CADSAT control-flow report for a portion of the

surveillance system. In this report (CADSAT Process Chain) the flow of

control is from left to right. Conditions which determine the flow direction

when two or more branches occur are not represented in this form of CADSAT

report. Control-flow analysis provides a means of viewing the system from an

activity-oriented perspective and is often referred to as functional-flow

analysis. As a result the requirements are viewed in a well-organized manner

and missing or incomplete functions and relationships between the functions are

identified. Final control-flow documentation becomes another effective means

for communicating system requirements to implementing engineers. The infor-

mation-flow builds upon the information hierarcy structure by providing a means

of viewing the system from an information systems perspective. During this

analysis the flow relationships between external system inputs and resulting

outputs are identified. Quite often the most effective means of information-

flow analysis is to trace an output back to system inputs, either external

data, messages, or stimuli. As a result the various relationships between the

associated functions and the identification of internal information necessary

to support the derivation of the output are identified. Control-flow and

information-flow analysis will necessitate changes and additions to previously

defined functions and constraints as well as the hierarchy structures and other

previously defined relationships. Missing or incomplete requirements are again

determined and the deficiencies corrected.

Requirements engineering for systems which are primarily activity oriented,

such as command and control systems, will naturally be concentrated on control-

flow analysis as opposed to information-flow analysis. On the other hand, the

system may be primarily information-processing-oriented, as a communications

system or management information system. Under these circumstances the re-

quirements engineering activities will quite naturally concentrate on infor-

mation-flow analysis rather than control-flow analysis.

System traceability relationships are another effective means of identifying

incomplete or missing requirements. During the requirements engineering

activities source documents are referenced for each requirement identified.

-243-



* -. + +- + +- ----I I III I I I

a- L Al I LL 0 ,

6 4 A0 4 44 9 GoA d. 1-

v to C4 4 ' 1 L 4 1, 4-
I 49'0-4' I O-q 4' iCO'.. +0

+ +. . + +.. + +I ...

* E
0
4-

L + 7 T . - -- o . ++ - + +-- -- + .I .1 - . .- . +--. . . 4 - .
I L I 1 v1 1 I I I V I ". III I Ii'i I Io I I I .)-I I "

AC 0 A1 49 A^ -D Ah .4 0 49
(- (AL- A (

VDLC A 4u 1 14 40 V GA 49 09 Go91 ,49 44') 0
J~i'o ch U 00 V'AMt V4 4 loot Uae .oM t444t

* I ' . l 0 4 ' 0 fC L- - - 0 L. . 4" M .. . .. L 4-
L IA. - Li 0 4' I L L 0 C- Li L' - L(- L.'

1'0 IL I I L v A

N" I II I L U

VL v >L E I u > IS- I...

. .. , 0 , .L

SI I@4- I I .. in.

' I LI I .

O A. .. . A . .. 0)

r. 9 4
'.3 I L I I I I4v

L L 4- -4 V---)

o o

(- 0

LI I

' 4 . 0

S0 L Z I

'4 L. 10 M
4- I '04 A" l

o a-----
+ +

e.,.

U--- LL1.

- I

+ +

4 0. ... - 4

_I
-24

Z I I - . . ,. . . . .



Traceability analysis gives the analyst a means of verifying the requirements
by linking each requirement to the many and varying forms of source documen-
tation. The Requirements Tracability Report (Figure 5) shows the traceability
between specifications, as contained in separate requirements data bases.
Figure 5 traces the requirements from the functional -performance specification
of the surveillance system to the allocated requirements contained in the next
level of specification, a development specification. This form of analysis is

pertinent to validating the requirements. Relationships can also be defined to

other pertinent studies, analyses, and plans which are being accomplished
concurrently with the requirements engineering activities, such as program
management directives and plans, system sizing and timing studies, prototyping,

simulations, test planning, and the like. System test requirements (quality
assurance), as well as subsequent test plans, procedures, and reports, can be
effectively related to the system functional -performance requirements. The

links to associated system plans, analysis, and studies accomplished prior to,
during, and subsequent to the start of formal requirements engineering are

crucial to the overall systems engineering concept. The traceability relation-

ships also provide a bridge between requirements engineering activities and
subsequent implementing engineering, since the requirements can be traced from
functional -performance specifications to development specifications to product
specificati.ns and system test activities during the later phases of the system

acquisition.

Throughout the requirements engineering activities the need exists for the
analyst to be able to evaluate the impact of changes to the requirements.
Whatever the reason (policy, economics, study or analysis results, engineering

change proposals, etc.), the analyst must be in a position to determine the
ramifications to changes in the system requirements. Once the area of impact

is identified in the system requirements, (functions, constraints, control-flw

and data-flow relationships, etc.) the traceability relationships provide the
capability to readily identify associated impacts to the system as well as
trace the impacts to all other associated documentation such as the program
directives, plans, studies and analyses, test plans, associated system specifi-

cations (functional -performance, development, product) and the like. The

impact can be determined with exacting visibility, and the appropriate actions
taken.

-245-



0 uuu 0 UUCUU UUUQUQCUU U JL) U

UL 0 0 0 UI
.1 X -L 0 0 :. 1 S US U

00 60 0 . a4*1 0 >4 >4 >

1. -C L IN 04 &. UU 10 UL1 1 .C U 0W
'6'g Is CL * C I C

L- L 6 0 - ' 0C C I 4 1 4,Zh0l 0a0 i A.O UC O 4L . 46 We ). re r
0 ~ o I L 4'S44'L 40 4,> C>

Wa . u 0CIIC L 0CE0 0cCI if 0 v IL *U0 U 4U

*o 0 0 - - o-004--S -C.000 I- I-CIc : > :: OC *4' 41 L C >U4C, ! L41- . V 1 1 . 1

U d0 C18 0w UILB E X444X l1010604C CC ,

0 1 1 1 4 41IIA I 1eC !4, OIL 0 '4 0 - c I

-C0 -aWaL4 L W 6 oA 4C ' C C LC C X X ! C 'L'0 L. 0 CO
L L LLU 0U:4 =0 L L C 2 20f- 0 w U>LU>Lu>

W 0 *0 U . C, 04 4' C 0 ~. 0 L 0L1 11 uI u AIo 0 L L LI L.VL0l

0Ii I I I i I I 1 1 2 1 .0l 'V S L O

(4M(4C4 NNNN N N C4N N ' N

0 c 0 III- lIT lIIIT lII-TT II liii lii lii ,ii T
N z NNN N N N N N N N N N N N N N t C I 1 -

0 0,

o E
w S..

IL

L 00

A-4 4' 4-o c cc

-~~~ W C 0 ! ! '''444
W E E - .6,+ ., 4 4 :
5- U ' 6-1 ::: = :- :- z :- : --- - : - c i c

Im Z 0 le to 0 --0~ -es 0O V0o
LC "' ' ' V. " 'v L
Ca I- *1i 4.1l II 11 11 1 ISI 0 E00---.C.C 0

cnI II W 4I 1 C 0 00 0 0 0 00 I ' E 1
e ,IE a ~ U C CC C C C C C C E0Ca 1 ICz ECu

I- W In C L- .600z CC> 000 0000 L LLO 00c
w 4I4 c 4> S E E EE E S E U ' I * i 9 LL& LLL -0 4

Ej a 4' p - o I ~ l 4.11 Wii Wm~ W .W% .U. w& 6 I

..~ I >>>>>> >LLeLLLLLIidLLLU ULL I I IE

O 4 L4L EL 0 0 .0 - - C0 .0 . . .C 'I I 1I 50 0 0

>b 6

ws

qw~~~~~~~~~~C It00. V U 4... 00UC0AC0C...

ir ----- NNNNNNNNNNNNNNN~NNN----------T

Lb - - - - - - - - - - - - - - - N N N' N N N N N N N N

-246-



Discrete and well-organized requirements support the primary goal of defining
the operational mission needs of the using activity while giving the analyst
visibility and control over the system definition process. Discrete and
well-organized requirements become effective prerequisites for the creation
of system functional -performance or development specifications. These docu-
ments then achieve a secondary requirements engineering goal of communicating
the system requirements as a whole to implementing engineers.

REQUIREMENT ENGINEERING

The quality of system requirements balances upon a requirements engineering
methodology as illustrated in Figure 6. The requirements engineering method-
ology is a well-defined approach for defining and analyzing the system's
functional-performance requirements. The methodology incorporates the re-
quirements engineering procedural issues, tools and techniques, and products,
usually in the form of specification documentation. Each application of the
methodology necessitates considerations for management visibility and control,

qualified systems analysis, analyst team organization, and specific appli-
cations planning. The requirements engineering methodology applied by Logicon
to military systems has principally evolved from work on a surveillance system

currently under development. The application of automated aids in the surveil-

lance system development has resulted in Logicon extending and modifying CADSAT

for initial systems definition and analysis activities in order to provide the
analyst with requirements analysis capabilities that were otherwise unavail-
able. The approach taken in identifying and analyzing the surveillance system

has been refined and applied to other Logicon contracts.

Two factors which influenced the application of automated aids to the surveil-
lance project were previously reported by Johnson and Merrithew [5]. First,

the requirements were analyzed at very high levels and the computer maintained
requirements data contained only the high level requirements of the surveil-
lance system. Second, the large number of requirements for the surveillance
system had to be analyzed completely with limited personnel and computer
resources. As a result the basic approach was to keep the methodology as
direct and uncomplicated as possible. The requirements data base served as a
repository of high level requirements which were organized to aid the analyst

-24 7-



0 )

toO0

to co too0
C:) C:

I- E Q-to

_ -

Li.. o7 0

4-d)

a M LLi C)to 0) -
to~~ C).S. L

'm/ = )>

4- (1)

Li.. LL
= - Z: - EE

_ (A ea '4CC

LU cr LU Q~ 4-E'f

-~~~- -4-)~-C

01 tAo

tto

L-

-248o



in answering key questions about the system. As such the data base repository

was not necessarily developed to provide detailed answers to every system

requirement. In addition, some liberty was taken with several CADSAT features

in order to achieve a quality requirements system definition. The extensions

and modifications of CADSAT were primarily oriented toward increasing the

analyst's visibility into the evolving requirements data base.

Two source documents were analyzed for the surveillance system. One require-

ment document was an early user requirements list (Figure 7) which preceded

the development of the system functional-performance specification (system

specification). The principle requirements, however, were derived from a

500-page system specification. Traceability was maintained between the two

source documents throughout the requirements engineering activities.

The actual requirements engineering activities for the surveillance system

proceeded in a series of steps [5]. The initial step identified the discrete

requirements of the system and categorized them by type (CADSAT Objects), such

as functions and constraints. The requirements were given unique short des-

criptive names such as radar-input-capacity-timing (line 1 of Figure 8). The

naming convention was consistent throughout the development of the requirements

data base and was predicated upon giving a subject-verb meaning to the object

name. In addition synonyms were established for each object to aid in further

analysis and to facilitate the format requirements of certain automated reports

(Figure 8). Over the course of the initial requirements engineering activities

the logical organizational relationships (functional hierarchies and inform-

ation hierarchies) were entered into the CADSAT requirements data base.

Inconsistent and incomplete requirements were identified by the analyst as

being difficult or impossible to integrate into the logical hierarchies.

Redundancies in the source document were realized as similar names or synonyms

were given to other CADSAT data base object names already in the hierarchy.

Reports such as the structure report (Figure 3) were used to determine the

completeness of the definition of the system functional requirements. As

incomplete requirements were realized, the synthesis-analysis process continued

and discrepencies were corrected.

-249-



EC4

4~ 0 V44 m' .. I

N- M n-MV MV - v -,

w

a: 0
z

v -

.- L - orNU U

w E

4. I

40

- L w w
cc 0 0 0 0a

x 0 1c

Ix -

WC - V

.4 C i 4. -

U. aQ w L I9 W

c- L 40 L LA

x -- A, 4. 41 4

L :; VV U- u
41 -u >. IV L
£. wU -W 0 .

-A 0 W 0U
if a - W

L 1- *L a 4 1, -
.2 4 C0 * 4 C - of

rI 0 so 4L1 C.

0 . 0 c. .4 4 a 0S - 0c
L p L- L C S f-

Sin E v IL L 9L " 0 IL It I

in U. ->a' .

1 4. 0 - 4C. '
0 I- Cl qV 4. C'S.

U. Z )*

> U. . O~l C 0-250C



m oo00000No0°°°NOC000000000

n 000OO000000OO0O 3 3
m 00000000000000080080
U 0) O000~0O) ~ tOOO O00NOOO0- .4oooolooomoo-omomo OOO

-- oo----------
-

-

i0000000,0000-ONO-NNVOO0ON
0 0 0000-0000-0-0 ---- 0----

0 0000000000000800000880000
m 0000000000000 0000000

0 0000000-00-0-0-0-NN-0--C)
D 0000000NOO-ONO-ON-mo0--- M

Y- 00000000000000000000000002 N - - -N N - - N N1 -, O -N - 0- 4 M - -

m 0000000000000000000000000
U)

WU 0000000000000000000000000

0

0.: N, o o o oo- -oo o o

CA

x 0000000000000000000000000
z

I "" -I I . E E .' ci c.a.,,,. a. a a. I o. L i

CO- 00000000o00000000o00000
0U UUUUUUUU U.II ,U U- U U (. IJO

* 0

C- . (. ) m (1 (1 l m.,- it m - -I- - -I -I - -a 4 0 w

w wr

U. I U )I I -l ~ ,"(,

~ 0

uj <x L L IL I L C. L_. C i- L L L L. L L L. L L 4.

Q)

k- > V. L L -oLLo0(oL Lo- L6 oLooL.C.L - oL"o-oo9
Q. L- 4L $ L ( L L LLL& L . L EL LL L L L LL

U) c

0ff 4 Z%6 L~-v EL a u -*- I--- L

0 Iz I V iI V LC L L IN L aAI IM

~ 0 C C 4 040 A- 10 1 'A a L L 0 W V

V) L L I U & c
z S-

0

- I I I I I I I I I I

111 ~ L U C .. g -
- * * U L - I 40 & -u

0 LL I C I IIE L WI g
0~ X - . ox-- . In ug4
u of-C +0 1& L4 16 1. 4.0 C I
a. V~O~ -) 4 L V XI'' I~,

hl I C i I 0 I 1 1 C -I 4 .4 I I I I I II

II W MP 0 0e L L i 4 1 L wuUw w 4-C I
E L A 12 !-L C I L C 1 .1 1 LL I- & w -
(Z 4 -0 '0is C- ug a >L = O~w6I I UC
Z U.. -Eu I-L- UU*U I14-I E0,0 *

I 1~ L > I 9 a) >.4.&I..c IL Eg. 4'.CVE
-W 05 -6 0 1 &1 1 1i'4- L 01Ok 6 0 U 40 44

Z D.-C I ( v 6C. E- I a*v -4CL V V00
W IL A L 4-0 -I CL V4-- 0U 0 1 1
r 1I I 4- CL C4*-C 6CO ))L1 3,C L'
LU A. ~ ~ o ai utA4 uItI E 0 A mm0a 0OS. o

L- !f( L.e L L L rLU4. L 4-1 4- - 1 C0
to v uV ti 4- i *i 0 0 1 -C > II I

w f QU OLL L 04 U W V W- - - -- >)

ILI

Q

" ------

- 11 11 11 1 11111111 111

2 if 1ii1 1111 1111 111 lotII
MM - -MM M --mm o - -



AODAI04 252 INTERNATIONAL BUSINESS SERVICES INC WASNTN 0 C F/6 9/2
US ARMY SOFTWARE SYNPOSIIM (2ND) HELD AT WILLIAMSBURG, VIROINIA--ETC(Us

UC1978 S M TAYLOR, DAAK70-78-0-0O30

lIIE EEElEE ll

I.EIEEE...II
IIIIuuumIIIIII



The second level of analysis for the surveillance system identified the system

flow relationships, i.e., contol flows and information flows. This analysis

proceeded as previously described. The information flow revealed significant

ill-defined and ambiguous requirements as a result of the analyst being unable

to identify the information flow within the sct":;e documentation.

The final step for analyzing the surveillance system identified the relation-

ships between the CADSAT-maintained requirements data base and the source

documentation. Once these relationships were identified, CADSAT trace keys

were added to the requirements data base. The Requirements Traceability Report

(Figure 5) presents the requirements traceability relationships in a convenient

format while providing the analyst with a complete list of requirements (not
shown) which remain to be traced. The application of CADSAT to the surveil-

lance system is being continued by Logicon. Analysis activities are being

performed on computer program development and product specifications in order

to establish the traceability of the system requirements from one requirements

data base to another (i.e., functional performance to development to product

specifications).

This continuing traceability analysis provides the additional capability to

evaluate the impact of changes to requirements. For example, the impact of a

change to a paragraph in the source documentation such as the surveillance

system functional-performance specification can be evaluated through the use of

a series of CADSAT-generated reports beginning with the Formatted Problem
Statement Report (Figure 9). This example shows all the requirement types

(CADSAT Objects) relative to the specified paragraph number (line 3, "keyword"

r-3-7-1-2-3-1-1-j is a reference to the system specification paragraph 3.7.1.2
3.1.1j). Once the requirement has been identified, any of several reports can

be generated which may reveal possible impacts. As any military system acqui-

sition continues, system developers propose changes to the requirements as

technical issues are identified. These engineering change proposals (ECPs) can

be evaluated using similar analytical techniques and CADSAT report generation

capabilities. ECP impact analysis is enhanced by the traceability relation-

ships which link the acquisition specifications together through various

requirements data bases.

-252-



-4

'0
-4-

L, 4- 0CoU

4--4C..-. C . ,

-'- %4 a
• E- -I- 4-

I, -'- I
E

C,". 1- '--L 2 4j '4

.L.
11 q . 4LLVaL

L - t Ir) L ti 4-)

C. 4 . I Ol c*4L-fi
1

-
Ll f. 0 -4 - . Ii 0 l.-

U oE.4 I r v 'L'UC4
L, L I o 4 .'- .4 ', Li I, ,a''w -4,' a' c 4i .0 1 1 L

L-~ I- IIVv c
to4 ,X g 1 - c- u .'z I 1-)
4j 11 0. I Z IO-

14 V -V f 4I -_4- ~ U 3.C > aJpS

C~4 *.AN IV'. ~ i~c..>

L - a I I ! 40u I I4 -, L
•r ,- V . U '0 S B 3 4- 41 if, U. I

{.U ,.0' L M . "j fo f o S l

Lf u Lt L L L" -L d tih t VI C41

L CI 0

r,

itof .45IIl C q-

E 'oD 0u4 V L

3C-- L 1a. -4U

W1 L ap.4 L-.4
41 feLfi 4i. L L

w e

LiL

0

0
J

-253-,



AUTOMATED AIDS

The emphasis of this presentation has been on the goal of requirements engin-
eering, the characteristics of quality requirements, and the principles and
practices of requirements engineering. Automated aids such as CADSAT must be

viewed only as tools in defining and analyzing system requirements. Automated

aids usually lack many of the capabilities which are necessary for early
requirements definition and therefore require modifications and further
development. The origins of these tools within academic and R&D enviormients
and the lack of pragmatic applications to complex military systems development

are evident in the performance and design of the initial tools. Logicon CADSAT
extensions have been effective and additional1 needs have been identified but
have not been implemented because of resource limitations. These needs are
currently being documented in a Logicon study in which the requirements for
automa*:ed aids are being defined within the context of a standard for require-
ments engineering (Figure 10). Many of the issues addressed in this paper will

be incorporated into the standard. As illustrated in Figure 10, requirements
analysis tools like CADSAT can be effective in the early acquisition phases of

system development in conjunction with standards for requirements engineering.

The general capabilities of requirements definition and analysis tools are to
(1) provide a medium for formal definition of requirements, (2) perform rudi-
mentary analysis, (3) allow for a flexible and iterative approach to require-
ments engineering, and (4) to produce documentation. The formalism is provided

by the automated tool's ability to evaluate the syntax of each requirement
defined and to maintain and manipulate the requirements data base. Language

features and other characteristics naturally encourage rigor where manual
methods are less exacting. Requirements definition and analysis features of
current automated tools provide the primary benefits of quickly correlating the

requirements and relationships. Additional analysis capabilities are assuring

compliance with the requirements language, manipulating raw source documen-
tation requirements, and identifying incomplete requirements.

Automateti tools must allow for an evolutionary technical definition of the

system. Each system has unique system engineering management problems which

-254-



LLL

-- = -j I 4J

LLI -j C) 0 tn 0r

LLJ4 Q-

C) V)

oL
(A CU' 4-

cm~~I 4-S( 1S
r- 0- aSl

ClC
ui < < uj < cu b

CD c' N D

LU C) = -

Lj - == -ua4 -- 4C
o- ui C wuCCI-.00

-j C-wwI-

t---'

CD (A0 -0

+ 4 - 4
V7 cc l :3.

Jw wi -cc -
(n~ to

LiiC/U
C) 20-

(I IN C.
N- V- < u

M.~ <U a,

UU-

C'-,.

LUJ

CC,

C/~) C=) =. V :

7- u I-- LU

/D F- C:)

C,))

LU-255-



evolve over the course of the early acquisition phases. Because of the con-

fusion of requirements documentation and the technical and management direction

of the early acquisition phases of military systems, automated aids must permit

a natural flexible iterative approach which recognizes the complexity of
issues which must be addressed. Finally, the aid must provide a means for

intermediate and final documentation of system requirements in timely, up-to-

date and easy-to-read formats. Additional CADSAT capabilities for impact

analysis (specification changes, ECPs, etc.), traceability between specifica-

tions and system testing documentation, configuration control of system docu-
mentation, and automated specification updating are currently being addressed
by Logicon.

CADSAT provides benefits to the requirements engineering approach in several

ways. CADSAT assures a certain rigor is achieved in the requirements engin-

eering activities which other techniques must enforce manually. The analyst's

technical perspective is improved by the ability to define the discrete re-
quirements of the system and to organize them into effective representations.
CADSAT provides a means for identifying inconsistent and incomplete require-
ments and representing and correlating the requirements of very large systems;

this would not be practical by manual methods. CADSAT reduces many of the

eierical problems which burden the analyst, such as providing up-to-date
working documentation, revised specification requirements, and identifying and

correcting clerical mistakes. The lack of this clerical burden allows the
analyst to concentrate on the requirements definition and analysis activities.

Three other benefits of CADSAT analysis have been to reduce the time for

analysis in the surveillance system activities (Figure 11), increase confidence
in the results of the analysis, and introduce technical management visibility

into the requirements engineering activities.

-256-



:I-

LLU
cJ

3z--tn %r ILO 0l '- C) - C

LLI~~~4 C/ )- 0 I

Z!4 CD

I- U.- C.

LUCD 2:2CD

Ul O L" = mLUw * L
m I LnM D1- 3 nxi

oD CCa. a:~

0 2 CD 0-LUC

LU LU a_ C-

LU (A Of E

M: of CD CD :Z

w LU C) CC or U- (D -a 0.JL U(

F- (D x ~ w w
;r V) '--. c CD , LU 0a_2 L

LU U- 0 < ~ _ I- L-m C
. - CDJ CD U- W- LU CD

< : PD 0.. LU 0 '-

cc '4" 2: F-2 w- C- 2: 0D w-

C t-- -. t/) X-) Ln-C/ LU L.) U.
IXl LU) LU - Of ~ .V - LU 0 -C

(- LU = UL 2m-C-L 2L

U-.- LU pLw U- ULO LU LU LL CD) W2L

C>0 2: " =D C:0 2:0 a i ~C->Cw 2: 0U 02:-
LUC- CyD I- CD L"O W- L w ~ w1 LU L"a ~Ln

02D wu LU LU m m 00 2: c:- 0

W- * C) .JD Lftn~ O : -

-257-



REFERENCES

[1] MIL-STD-490, "Specification Practices," 30 October 1968.

[2] MIL-STD-483 (USAF), "Configuration Management Practice for Systems,
Equipment, Munitions, and Computer Programs," 31 December 1970.

[3] DoD 7935.1-S, "Automated Data Systems Documentation."

[4] "HIPO - A Design Aid and Documentation Technique," IBM Manual, 1974.

[5] L. A. Johnson and P. B. Merrithew, "Automated Support for Requirements
Analysis and Traceability," Logicon Paper, IEEE 1978 National Aerospace
and Electronics Conference, 18 May 1978.

-258-



PATRIOT SOFTWARE SYSTEM

Edward U. Lee

Rayethon Company



PATRIOT SOFTWARE DEVELOPMENT

SESSION CHAIRPERSON: Edward U. Lee, Jr.

PATRIOT Software Development
Raytheon Company Missile Systems Company

SESSION SUMMARY

PATRIOT is a highly automated air defense system designed to
combat the air defense threat of the 1980's and 1990's. This presen-
tation provided an overview of the functions, management, development,
and validation of the operational software for PATRIOT.

The presentation began with an operational description of
PATRIOT, its advanced multiprocessor computer system, and its operational
software. Operating in a floating executive environment, the software
resident in the PATRIOT weapon control computer manages and controls the
sys~tem's initialization, surveillance, guidance, communication, and corn-
mand and coordination functions. Operator intervention is provided via
a :ituation display, which also presents a real time summary of system
st tus. After discussing the software and its functions, the presenta-
ti~n went on to describe the PATRIOT software development cycle.

Initially, support and diagnostic software development was paral-
leled by an extensive systems analysis effort that led to the production
of detailed software performance requirements. When the requirements were
placed under configuration control, the software functional design began,
and the requirements were allocated to over a hundred program units. After
the individual program units were designed, coded and acceptance tested on
a UNIVAC 1108-based simulation of the target multiprocessor, the recomposi-
tion process began. Groups of program units were integrated with a real
time executive program into a series of software builds (software ensemble
that provided significant levels of control of PATRIOT real time operations,
such as surveillance, display or guidance control). The functional builds
were then acceptance-tested on the PATRIOT multiprocessor computer system,
operating under the stimulus of a comprehensive real time computer simu-
lation of the PATRIOT system and its environment. This simulation provided
a relatively complete dynamic test environment, with a large degree of
scenario variability.

.259-



Build testing via simulation resulted in the detection and
correction of approximately ninety percent of the software "bugs" prior
to the start of hardware/software integration at the system level. Sub-
sequent PATRIOT surveillance and flight text operations provided feedback
to enhance the utility of the software test bed capability.

The final software builds, obtained by the sequential integration
and test of the earlier builds, required over 200,000 words of on-line
storage. The total PATRIOT software developed to date approximates
3,000,000 executable instructions, which were developed using a comprehen-
sive in-process software documentation and configuration management system.
This software development system is in many senses prototypical of the
latest DOD software management initiatives, and contains many features ap-
plicable to both large and smail scale software development efforts.

-260-



TEST BEDS

John M. Cole

CEN TACS



TEST BEDS

SESSION CHAIRPERSON: John M. Cole

System Validation Division
CENTACS

SESSION SUMMARY

This session discussed how the Teleprocessing Design Center
(TDC) test bed supports experimentation in the development and validation
of Army tactical data systems, evaluates technical concepts and performs
interoperability experiments so that technical data can be gathered for
detailed analysis.

The first paper dealt with the overall establishment of the TDC
where, with on-line emulation, simulation, contemporary communications
equipment, and the use of actual tactical equipments, systems could be
tested and evaluated in a benign environment where repeatability scenarios
could be executed and dat on performance could be gathered and analyzed.
The use of a family of equipment and emulation/simulation of non-available
devices allows reconfiguration of current/proposed systems in an affordable
manner. The TDC laboratory test equipment, library of emulators and
scenarios, allows data to be taken and analyzed to provide the development
system manager with the criteria to make management decisions which in
turn provide the Army with cost effective, austere, automatic command and
control systems.

The second paper dealt with interfacing the system within the TDC
to the ARPANET. The Army has a requirement to achieve interoperability of
its systems, both intra-Army and with other services and defense agency
systems (JINTACCS Program). The Communication Research and Development
Command (CORADCOM) teleprocessing Design Center (TDC) at Fort Monmouth has
proven that emulation is a viable tool to validate the performance of
computerized systems.

The Army plans to use the TDC to support Army interoperability
validation. However, there may be cases where emulation of systems of
interoperable sets may not be practical, desirable or even feasible. To
connect or utilize actual tactical equipment for interoperability testing,
a method of connection to the TDC is necessary. The Army plans to connect
remotely located tactical systems to the TDC via the ARPANET to permit the
interconnection of emulated and actual tactical systems.

-261-



Toward this end, the Army is developing a special general purpose
interface unit that will provide hardware, software and protocol combat-
ibility between tactical systems (real or emulated) and the ARPANET's com-
munication computer, the Interface Message Processor (IMP). In addition,
remote users will be able to develop, test and check out their software on
the TDC's emulation system.

The third paper dealt with the Software Development Support System
(SDSS) which is a planned Government-owned computing facility configured
to satisfy the program development needs of users/contractors engaged in
the MCF-TOS demonstration model development effort. SDSS is intended to
provide a centrally located facility of commercial off-the-shelf hardware
and software augmented by a variety of advanced, specialized software tools
required to support the various life cycle development activities of mili-
tarized computer systems. SDSS will provide a working environment where
such activities as configuration management, test, verification and valida-
tion, training and post-deployment support can be conducted. The SDSS will
address the problems of uncontrolled tactical software development arising
from non-government ownership of development software and the proliferation
of development tools. SOSS will attempt to reconcile the conflicting re-
quirements of support software developers and support software users.

-262-



Emulation of Tactical Data Systems
in the

Teleprocessing Design Center

John M. Cole

CENTACS

This presentation dealt with the overall establishment of the
Teleprocessing Design Center (TDC) where, with on-line emulation, simu-
lation, contemporary communications equipment, and the use of actual
tactical equipment, systems could be tested and evaluated in a benign
environment where repeatable scenarios could be executed and data on
performance could be gathered and analyzed. The use of a family of
equipment and emulation/simulation of non-available devices allows re-
configuration of current proposed systems in an affordable manner. The
TDC laboratory test equipment, library of emulators and scenarios, allows
data to be taken and analyzed to provide the development system manager
with the criteria to make management decisions which in turn provide the
Army with cost-effective, austere, automatic command and control systems.

-263-



EMULATION OF TACTICAL DATA SYSTEMS
IN THE

TELEPROCESSING DESIGN CENTER

John M. Cole

US Army Communications Research
and Development Command

Center f or Tactical Computer Systems
Systems Validation Division
Fort Monmouth, New Jersey

INTRODUCTION

The Teleprocessing Design Center (TDC) was established within the Center
for Tactical Computer Systems (CENTACS) at Fort Monmouth, New Jersey, for
the purpose of supporting experimentation in the definition, development,
acquisition, and validation of individual tactical computing systems and
to support the validation of interoperability among tactical data systems.

The use of high speed digital computers, digital entry message devices,
remote battlefield sensors, and other state-of-the-art devices in real
time command and control systems has presented the system developer with
many complex problems that have lengthened the development cycle which,
in turn, makes the systems expensive and dated before they are fielded.

One effort to resolve technical uncertainties and ambiguties, and to
validate technical concepts prior to building hardware, was the activation
of the TDC where, with on-line simulation, emulation, contemporary communi-
cations equipment and the use of actual tactical equipment, systems could
be tested and evaluated in a benign environment where repeatable scenarios
could be executed and data on performance could be gathered and analyzed.
The use of a family of equipment and emulation/simulation of non-available
devices allows reconfiguration of current/proposed systems in an affordable
manner. The TDC laboratory test equipment and library of emulators and
scenarios allows data to be taken and analyzed to provide the development
system manager with the criteria to make management decisions which, in
turn, provide the Army with cost effective, austere, automatic command and
control systems.

-264-



MISSION AND FUNCTIONS OF THE TDC

The mission of the TDC is to support experimentation in the development
and validation of Army tactical data systems, to test and evaluate
technical concepts, systems integration, and to perform interoperability
experiments so that technical data can be gathered for detailed analysis.

The mission of the TDC is accomplished by executing the following functions:

(1) Evaluate candidate Army tactical data systems and equipment to determine
the merit of incorporation into the field Army.

(2) Identify, test, and evaluate telecommunications support required by
the Army.

(3) Perform tests to provide objective measurements of performance against
prescribed standards and assess military worth and technical suitability.

(4) Evaluate hardware and software configurations as changes in (or
additions to) user requirements occur and/or advances in the state-of-the-
art make future generation ADP equipment feasible.

(5) Investigate the technical implementation alternatives to satisfy Army
and Joint/International compatibility and interoperability requirements.

(6) Experiment with and analyze performance of new tactical ADP hardware
and software.

(7) Analyze man-machine interface.

(8) Analyze currently acceptable performance thresholds and, if necessary,
develop more appropriate ones.

(9) Develop and maintain a current comprehensive technical software and
test library for TDC use.

(10) Evaluate prototypes of non-standard equipment and software.

It is our intention to accomplish the TDC mission by being a laboratory
type facility that will have the capability to test and evaluate technical
concepts, systems integration, man-machine relationships, and to confirm
communications interoperability by "hands-on" experimentation and demonatra-
tion with innovative hardware and software techniques.

-265-

L .......... ..



Approach:

The development of sophisticated ADP equipment is expensive in the

commercial world and even more so in the military one. The severe mili-
tary environmental requirements place an additional burden on the
developer which is reflected in the system costs. The high costs result
in a minimum set of equipments being built during the engineering develop-
ment phase; consequently, this results in tight scheduling, with all the

contractors and agencies involved in the development not having enough
equipment for as long as they require it. The TDC recognized this problem
and is minimizing its effects by emulating the equipments not readily
available.

In December 1972, the Army let a competitive procurement for a Micropro-
grammable Multi-Processor (MMP) System that would have the capability of
simultaneously emulating up to three tactical data systems. The systems
would have the capability of intercommunication, and the MMP the capability
of doing performance monitoring and reducing the data. The procurement

resulted in a contract being awarded in May 1973 for the MMP System
depicted in Figure 1.

THE MICROPROGRAMMABLE MULTI-PROCESSOR SYSTEM

The MMP System block diagram is shown in Figure 2. Seven processors are
included in the existing MMP system. Five of the processors (5605) have
32-bit data widths, while the remaining 2 processors (5601) have 16-bit

data paths. The fundamental architecture of the 5605 and 5601 is the same
except for the size of the data paths and the number of interrupts and
status registers. There are currently 5 Large Plane Memories (LPM) in the
system which are designated 5603. The 65K words per memory bank provide a
system capacity of 327,680 words. The basic cycle time is 950 nanoseconds
with a maximum cycle time of 1.1 microseconds when connected with maximum
cable length in the multiport configuration. The 8 ports on each memory
allow each processor to simultaneously access a different memory bank.
Priority is on a first come/first serve basis with the scanner mechanism
working on a rotating basis so that no processor gets locked out.

One 32-bit processor (5605) performs the overall system control function
(MP-60), and the remaining 3 are used for independent system emulations.
(The fifth 32-bit processor is used for disk I/0.) The 5605 is housed in
a ruggedized 80-card enclosure and is partitioned to allow implementation
in word lengths of from 8 to 32 bits in 8-bit increments. The micromemory
consists of 4096 microwords of 32-bit length. The micro-architecture has
an eight field microinstruction with 80 nanosecond cycle time. The micro-
architecture accepts both read/write (R/W) and read/only (R/O) micromemory.

-266-



V)

>-4



00

z '.4

H 04
00

E-4)

314

0 (.4

Li 0

-268-



The MMP system utilizes R/W micromemory because of the requirement to run
emulations of many different computers. The read/write micromemory can be
loaded from paper tape, disc, or memory.

The remaining 3 processors are used for system input/output (I/0). The
32-bit I/0 processor, Mass Storage Controller (MSC), is used to control
the 844-2 mass storage disk. The disk has a capacity of 869 million bits
with a transfer rate of 6.8 MHz and a latency time of 8.33 milliseconds.

One of the remaining I/O processors, designated the Unit Record Controller
(URC), is used to control the standard ADP peripherals which include an
1150 line/minute 136 column line printer, 1200 card/minute reader, 250
card/minute punch, 400 character/second paper tape reader, four 800 BPI
magnetic tapes, 2 low speed printers, and 7 alphanumeric displays.

The last I/O processor, designated the Real Time Equipment (RTE) is unique
in that it allows actual peripheral equipment to be used in the system
when available. The RTE currently has interfaces for the TACFIRE and
AN/TSQ-73 systems and an NTDS interface which permits it to be driven by
another computer within the TDC.

In performing emulations, a significant amount of execution time and
micromemory are taken up in deciphering (cracking) the operation code of
the target machine so that the host machine can perform the proper
machine operation. A completely generalized emulator would perform this
operation through a sequence of shifts, masks, compares and gates, and,
depending on the complexity of the target machine's operations code and
its similarity to the host machine, the emulation can result in large
usage of microcode and correspondingly long execution times. The transform
modules, which are an integral part of the emulator hardware, improve the
emulator efficiency in terms of speed, instruction manipulation, and usage
of micromemory. The basic function of the transform is to allow efficient
cracking of the operation code of the target machine. It accomplishes this
by gating fields of the instruction being emulated into selected registers
of the host machine where microsubroutines can be implemented to perform
the function to be emulated. Some transforms are so general that they are
used in many tactical emulators while others are obviously tailored to a
peculiar architecture. These transforms have been implemented with
special purpose logic boards on the MMP system, but the latest technology
utilizes Field Programmable Logic Arrays (FPLA)which are more flexible and
cost effective.

Software/Firmware:

The MMP software consists of conventional software normally provided with
a system of this size and special software that permits the generation of

-269-



emulators, control of a multi-processor system, and performance monitoring
capability. The real time operating system, MP X/RT, executes in the
controlling CPU and is written in MP-60 assembly language. MIP-6O is a
pseudo architecture that was developed by Control Data Corporation for
the 5605 series machines. All 5605 machines are completely interchange-
able so that at any one time, any one of the 4 machines can act as 1.P-60.
The operating system, MPX/RT, simultaneously supports both background and
foreground jobs where the foreground job involves control of the emula-
tions running and the background job is for batch processing, such as data
reduction of previously run experiments. System Nucleus (SN) is an exten-
sion of the real time operating system that can simultaneously control
the emulation of three independent systems. Typical functions performed
by SN are the mapping of tactical peripherals onto simulated peripherals,
recording of time of events, coordination among emulated systems, and
allocation of overall system resources.

In addition to the operating system, the 1MTh! has a COMPASS assembler,
FORTRAN compiler, source program maintenance (COSY), object program
maintenance (PRELIB), mass storage file maintenance (OCARM), relocatable
loader, program checkout utility, System Nucleus utilities, and a micro-
assembler. The microassembler is a unique tool that permits the genera-
tion of emulators. It provides listing control, conditional assembly,
cross reference listing, multi-assemblies, and diagnostics.

Performance Monitoring:

A real time tactical data system has to have reserve processing capacity
to allow the system to respond in a timely manner to a stress condition.
The allocation of internal priorities in a tactical ADP system needs to
be analyzed to prevent system lockups, or the case where a low priority
task with very small processing time not being serviced because a higher
priority job with large processing times always being in the queue before
it. It may well benefit the system designer to develop a strategy that
would prevent this from happening by permitting the lower priority job to
interrupt the more important task after some preset time in the queue.
Unfortunately, to even know the condition exists is a challenge in that it
is very difficult to obtain correlative data in tactical data systems
because of the lack of performance monitors and scenario drivers. Perform-
ance monitors used on commercial systems are either software (and part of
large operating systems) or hardware with literally hundreds of probes
used to monitor key registers and data paths within the machine being
measured.

The military construction of computers (e.g., shielding) does not always
allow all points of interest to be accessed by the hardware monitor.

-270-



The advent of medium and large scale integration (MSI and LSI) has
compounded this condition bwcause the interconnection of registers that
contain data, addresses, and machine states are done on the same chip and
do not provide access to the outside world. The software monitors are
typically embedded in the operating system and usually rely on recurring
events so that sampling theorem can be used to analyze operating condi-
tions. This technique has been used effectively for many years to optimize
batch systems. The main intent is to determine where the bottlenecks are
within a system so that allocation of resources can be optimized for a
maximum return on investment. Insertion of the software monitor contributes
to overall execution time and takes core and secondary memory space.
Tactical data systems typically have asynchronous inputs, limited storage,
and require fast response. Some of the key parameters to be measured such
as interrupt response time, channel utilization, time in queues, etc.,
would be distorted by the software monitor.

The MP system achieves this goal by embedding the performance monitoring
capability in the microcode so that object code runs unaltered on the
emulated system. Breakpoints, traces, and instruction count within program
levels are examples of data taken without interfering with normal program
execution. Each emulator keeps track of its own CPU performance monitoring
data. System Nucleus, which is an extension of the operating system, keeps
track of input/output utilization and periodically collects data from each
of the emulators for file recording on disk or tape. This type of collection
is typically done on a predetermined basis such as when there is a change of
a program level, when a performance monitor register is at some predetermined
percentage of its capacity, or when a unique event has occurred on the
target system such as an I/O event, overflow, or a certain part of the
object program being executed.

THE TACFIRE EMULATION

The TACFIRE system is a tactical ADP system that provides flexible fire
support for combined arms operation. The principal functions of TACFIRE
are tactical and technical fire control. This includes evaluating
targets, selecting units to fire, munitions to be used, and computation
of firing data. The TACFIRE Battalion was the first system to be emulated
on the MP. The TACFIRE Battalion system that was emulated was comprised
of an AN/GYK-12 CPU, IOU, two 8K 32-bit word memories, 131K 32-bit word
memory (MCMU), artillery control console, two magnetic drums (RAM), and a
removable magnetic tape cartridge. The MKP system allows the miy of simu-
lated and actual peripherals, but, since there were no tactical peripherals
available, all the peripherals were simulated on the MMP system. The
AN/GYK-12 CPU was emulated on emulator I under the control of MP-60.
The AN/GYK-12 processor has the following characteristics:

-271-



(1) 32-bit instruction word.
(2) One, eight, sixteen, thirty-two, or sixty-four bit data word.
(3) Cycle time of 2.2 microseconds for the two BK memories.
(4) Cycle time of 2.8 microseconds for the MCMU.
(5) Memory access control and protection for program and I/0 separate

and internal parity checking.
(6) One-hundred basic instructions and fifty extended instructions.
(7) Nine addressing modes.
(8) Sixty-four program levels.
(9) Sixteen 32-bit general purpose registers and 16 page registers per

program level and special purpose registers.
(10) Up to 126 I/0 devices, each with program initiation but independently

operated. Queuing for each program level provides stacking of
interrdpts and high speed multiprogramming switching.

The mapping of the TACFIRE system is shown in Figure 3. The AN/GYK-12
CPU is emulated on a 5605 (emulator 1). The microcode to perform the
emulation, which included performance monitoring, consisted of approxi-
mately 3700 32-bit microwords. This included some instructions that are
not currently part of the AN/GYK-12 instruction repertoire, such as
floating point. The IOU function is mapped into System Nucleus (SN)
where the translation is done between the codes used for the tactical
peripherals and the standard instructions used for NMP peripherals.
Memory management is handled through requests to SN which provide the
emulator with page register assignment to translate TACFIRE MCMU to MMP
memory. In the original MHP system, there were only 162K words of memory
and, consequently, the 131K MCMU could not be mapped completely into MMP
memory. SN handled memory management by swapping pages of MCMU between
core and disk as they were needed by the emulator. When a page was not
available in core, a page fault would be set in the emulator which would
cause SN to initiate a page swap.

The TACFIRE artillery control console (ACC) consists of a receive display
(RD), compose and edit display (CED), and a switch assembly. SN maps the
three functions onto the alphanumeric display which permits both the CED
and the RD to be displayed on the same screen. The indicator lights of the
switch assembly are mapped onto unused portions of the CRT while the
control keys of the alphanumeric display are used to implement the switch
assembly functions.

In a similar manner, TACFIRE drums are mapped onto the system disk while
the cartridge tape unit is mapped onto the system tapes. Devices that
have no functional counterpart within the lMP system, auch as the 4-foot
by 4-foot Digital Plotter Map, are mapped onto the disk where the output
data can later be dumped and analyzed.

-272-



~1-4

ppq

>4 PL4

E-4 r-'4

H q >4 to~

U0 Cf)

040
E4

C144

rrz4

AC
H CEll

-2 73-u 1



The TACFIRE system emulation behaves exactly as the actual TACFIRE. The
application software is executed directly with no modifications. One
difference that results, due to the lack of having actual tactical
peripherals and the taking of performance monitoring data, is the differ-
ence in execution time. To achieve the objective of gathering performance
monitoring data on program execution time, the emulator uses a translat-
able real-time clock called the virtual clock. The AN/GYK-12 is a hard-
wired machine with an internal cycle of 125 nanoseconds. The emulator has
implemented 29 counters, each corresponding to the duration of an internal
AN/GYK-12 state. As stated earlier, the performance monitoring data can be
collected at a prescribed time or when the counters get to some percentage
of their total capacity. The integrity of the peripheral equipment execu-
tion time is performed by SN where the characteristics of both the MMP
peripherals and the tactical peripherals are compared, and plus and minus
delta times are computed.

A complex scenario was used to exercise the emulator. It was an adapta-
tion of the same scenario used in the development and validation of the
TACFIRE system. The scenario consisted of 8 firing units, fifty-five
targets, and applicable geometry. The scenario was run and the same results
were obtained as on the actual system.

The performance monitoring features embedded in the microcode of the NMP
system are one of the key attributes of the emulated system. The use of
microcode probes permit system performance parameters to be measured,
completely transparent to the running of the application programs.

The system just described represented the DT/OT II TACFIRE configuration.
Since that time, the magnetic drums and 8K core memories have been replaced
by three 131K words of core memory at Battalion and four 131K words of core
memory at Division. While this was a major change for the Project Manager
for the actual hardware, it was accomplished on the lIMP with minimum effort.

FEASIBILITY DEMONSTRATION

The success of the laboratory emulation prompted the Army to initiate an
experiment to determine if an emulator could replace an actual tactical
computer with no change in software, hardware, or degradation in mission
response time. The cost of developing a tactical computer is a very small
part of the total life cycle cost. Development of system software,
doctrine, maintenance philosophy, training, and testing so out-shadow the
cost of the basic computer that it became very attractive to determine if
there could be injection of technology in the computer area with no impact
on software. This would allow the Army to benefit in areas such as reli-
ability, availability, maintainability, weight, power, and all the other
parameters that are associated with the latest technology.

-274-



The TACFIRE Battalion with the AN/GYK-12 computer was used'to obtain base-
line mission execution times on various maintenance and diagnostic (M&D)
routines and, subsequently, a complex scenario. The actual AN/GYK-12

computer was then disconnected and the emulator inserted; then, the same
set of M&D's and the scenario were rerun. The results proved that the
emulator could drive the peripherals and run the software unaltered at
an approximately 20% faster rate.

INTEROPERABILITY

Interoperability within the Army is the ability of one system to receive
and process intelligible information transmitted by another system.

Interoperability includes communications, message structure and format,
operational processing, operational procedures, and function requirements.

Trevious ADP systems tested, the normal hardware and software problems
are associated with system development were uncovered and fixed,

because of differences in multiple system philosophy, there were
Iditional system deficiencies that resulted from operational procedures and

.an/machine interface.

The Army has many ADP systems either under development or proposed for the
near future. Interoperability among these systems is currently undergoing
intensive investigation since it is obvious that a human being will not
be able to receive, digest, and forward the vast stores of information
that will be acquired by these systems. During interoperability of some
of the systems that have been tested to date, the tests had to be halted

because of software problems, and the developer had to go into a "find-
and-fix" mode. The other systems stand idle for this amount of time, and

when system 1 is fixed, a similar cycle results when the other system
develops faults.

Since emulators permit the execution of the target machine software without
modification, the developer has the opportunity to run/debug software being
written while the actual hardware is being used elsewhere (e.g., environ-
mental testing), and also allows for software to be run prior to the
actual hardware being built. One point that should be stressed is that
emulation will not negate the need for final testing, but it should shorten
the testing cycle that we are currently encountering due to undiscovered
bugs in the software. Running the actual software on the emulated system
with its performance monitoring capability will allow data to be taken and

analyzed, patches to be inserted, so that a major portion of the system
deficiencies will be uncovered and corrected prior to the investment
involved with actual field tests.

-275-



The Teleprocessing Design Center is currently engaged in an experiment
to assist in the early testing and validation of two Army systems. The
two systems of interest are the TACFIRE DivArty and the Tactical Operating
System Operable Segment (TOS2).

The TACFIRE DivArty system is very similar to the TACFIRE Battalion
described previously except for the magnetic drums and dual 8K memories
being eliminated and 4 MCMU's (131K/MCMU) being inserted in their place.
The TOS2 system uses the AN/GYK-12 computer and most of the same periph-
erals as the TACFIRE system. The major differences are in the use of
4 militarized tape units and 4 magnetic drums. Additional Army peripherals
to be simulated for the TOS were the Message Input/Output Device (MIOD) and
Variable Format Message Entry Device (VFMED). The MMP system was expanded
recently to include two low speed printers and five additional alphanumeric
displays since the additional equipments were needed to model the new tacti-
cal peripherals.

CONCLUSION

This paper describes the MMP hardware and software past emulation
accomplishments, current systems being emulated, and future plans.
The MMP system provides the Army with the try-before-buy, use-before-
delivery capability and allows rapid reconfiguration of existing equipment
to permit the emulation of many different tactical computer systems. This
quick assembly and performance monitoring capability allows interoperability
experiments to be performed and software and procedures to be verified in a
cost-effective manner. The capability of executing different computer
instruction sets unaltered will permit software development testing, post
deployment correction and enhancement, and research experimentation.

-276-



Interfacing CS3 Facilities to the ARPANET

Marvin Schwartz

CENTACS

The Army has a requirement to achieve interoperability of its
systems, both intra-Army and with other services and defense agency systems
(JINTACCS Program). The Communications Research & Development Command
(CORADCOM) Teleprocessing Design Center (TDC) at Fort Monmouth has proven
that emulation is a viable tool to validate the performance of computerized
systems.

The Army plans to use the TDC to support Army interoperability
validation. However, there may be cases where emulation of systems or
interoperable sets may not be practical, desirable, or even feasible. To
connect or utilize actual tactical equipment for interoperability testing,
a method of connection to the TDC is necessary. The Army plans to connect
remotely located tactical systems to the TDC via the ARPANET to permit the
interconnection of emulated and actual tactical systems.

Toward this end, the Army is developing a special general purpose
interface unit that will provide hardware, software, and protocol compati-
bility between tactical systems (real or emulated) and the ARPANET's com-
munication computer, the Interface Message Processor (IMP). In addition,
remote users will be able to develop, test, and check out their software on
the TDC's emulation system.

-277-



- - - ----- -

INTERFACING C3 FACILITIES TO THE ARPANET

Marvin Schwartz

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Systems Validation Division
Fort Monmouth, New Jersey

INTRODUCTION

The Army has a requirement to achieve interoperability of its systems, both
intra-Army and with other services and defense agency systems (JINTACCS
program). To accomplish this objective the Army plans to use the Tele-
processing Design Center (TDC) to support Army interoperability testing
and validation. The Communications Research and Development Command
(CORADCOM) TDC at Fort Monmouth has proven that emulation is a viable
tool to validate and test the performance of computerized systems. In
addition to saving time and cost by emulation prior to actual tactical
system testing, emulation provides system validators with the capability
to perform a wide range of testing, coupled with performance monitoring,
to demonstrate system operation and interoperability.

However, there may be cases where emulation of systems or interoperable
sets may not be advantageous, desirable, or even feasible. The JINTACCS
study report (Ref. 1) has determined that the best validation method is
a combination of emulation, simulation, and use of actual tactical equip-
ment for each system and interoperable set. To connect or utilize actual
tactical equipment for interoperability testing, a method of connection
to the TDC is necessary. This paper will describe how CENTACS plans to
interconnect Fort Monmouth's TDC and other tactical facilities via the
ARPANET.

In order to develop an optimum approach and utilize available hardware
and software, a study effort was performed in conjunction with Control
Data Corporation. The results of the study effort is documented in
Ref. 2.

The approach taken to this effort is shown in Figure 1 and will be followed
in this paper also. The desired capabilities generally fall into three
functional classes. These are:

-278-



CAPA~~

FIUEigAPNECTD APPROACH

QAkBA=Ll-Tm CA-279-S



a. utilizing the ARPANET for interoperability testing;
b. utilizing the ARPANET as a communication link to allow remote users
access to the emulation resources of the TDC;
c. utilizing the resources available on the ARPANET.

ARPANET SYSTEM

The ARPANET is a real time communication system. It is an operational,
resource sharing inter-computer network linking a wide variety of
computers. The network was designed to provide efficient communications
between different types of computers so that hardware, software, and data
resources could be conveniently and economically shared by a wide community
of users.

The ARPANET (Fig. 2) originated as a purely experimental network in late
1969 under a research and development program sponsored by DARPA. Today
the ARPANET connects computers in the United States, Hawaii, and Europe.
Hawaii and Europe are connected via satellite to the United States.
Entry into the ARPANET is via packet switching computers known as Inter-
face Message Processor (IMP) or Terminal Interface Processor (TIP). The
TIP is basically an IMP with a multi-line controller to permit terminals
to enter the ARPANET and communicate with host computers.

IMP's and TIP's (Fig. 3) are tied together via dedicated 50 KBPS lines
supplied by common carriers. Each node (IMP or TIP) is programmed to
store and forward messages to the neighboring nodes in the network.
Messages are sent from a terminal to its adjacent IMP or TIP. The
message is forwarded through the network from IMP/TIP t6 IMP/TIP until it
reaches the destination IMP/TIP where it is decoded and forwarded to the
destination Host computer.

A packet network may be thought of as merely a long distance extension of
a front-end processor. Data enters the network via a multiplexer (multi-
line controller). The multiplexer then transmits the bit stream to a
message processor which breaks the data up into short blocks, or packets of
data. The message processor adds a destination and origin address and
other network information to each packet and interleaves the packets with
blocks from other processors. This permits the most efficient packing of
data onto the expensive long-distance circuits that make up the packet
net's link. Types of links over which data is transmitted are satellite,
submarine, leased telephone, common carrier, etc.

At each minicomputer-based node (IMP or TIP), or network connection point,
all packets passing through the node are examined for their address.
Those packets destined for local host computers or terminals are removed
from the packet stream and stripped of addressing, diagnostic, and other

-280-

-L. J



992

oL m

~V-4

4L I, 9L -j

V. --

ULCLL.

C L

0044 __

I--1

VI 0 L

-21



2 OR
cc U- a

u uuI

__ _ _ _ 0 S

-

ci ad
C 1-4

LL

-282-c



information added by the network. Then, after code translation, encryp-
tion, and other processing specified by the address protocols, the local
packets are sent to their destination. All the other packets examined
by the node minicomputer are retransmitted to the next node down the
line via the most efficient path as calculated by an internal network
protocol. At the next node the entire process is repeated for each
packet.

What does this technique offer the computer user? As compared to conven-
tional switched telephone or specialized data lines, the packet network
sets up connections faster, can monitor errors and other transmission
problems through diagnostics incorporated in the transmission software.
Packet nets also facilitate conferences among interactive terminal users,
program or file transfers between host computers, and other multiple or
simultaneous data links. Packet nets avoid most of the problems of con-
ventional switching nodes that create data errors on the telephone network.
The path of each packet is not determined in advance, so different routes
can be used to minimize traffic congestion and outages due to line
failures, and packets are automatically checked at each node and retrans-
mitted if in error or if receipt has not been properly acknowledged.
All this takes but a fraction of a second and, if need be, is invisible to
the user. Also, the code conversion features, not normally found on
telephone or Telex-type networks, enable a wide range of dissimilar
equipment to be interfaced without investing in specialized hardware or
complex software routines. In short, a packet network can be "plug
compatible" with any computer device.

DESIRED SYSTEM CAPABILITIES DESIGN REQUIREMENTS

The objective of making Fort Monmouth a node on the ARPANET is to provide
the Army with the following capabilities:

a. transmit secure messages and data from tactical peripherals simulated
on remote ARPA computers to the Microprogrammable Multi-Processor (MMP)
system (a tactical emulation system) for interoperability testing (e.g.,
YACFIRE, TOS, etc.);

b. transmit as above from actual peripherals;

c. provide remote ARPANET users with tactical emulations developed on the
MMP such as emulations of TOS, TACFIRE, AN/TSQ-73, etc.;

d. input scenarios from remote locations to drive MMP emulations via the
ARPANET;

e. use ARPANET to link MMP (emulated tactical system) to other tactical
computer systems (Navy, Air Force, etc). For example, JINTACCS joint inter-

-283-



f-

operability testing could be performed by linking Navy tactical ADP systems
to the Army's MMP;

f. transmit software updates via the ARPANET to tactical computers at
remote areas. Software changes could be designed and checked out on the
MMP;

g. transmit field problems to the MMP for diagnosis and correction;

h. an MP emulation output could be used to drive a tactical peripheral
located at a remote site;

i. Fort Monmouth will have the computing power of all the computer systems
tied to the ARPANET;

J. the ARPANET will provide the capability to transmit written material
(mail box);

k. the ARPANET connection will enable the MMP to be used as a remote
training tool. For example, TACFIRE Artillery Control Console (ACC) opera-
tors at remote locations could interface with an emulated TACFIRE system.

The objectives of making Fort Monmouth a node on the ARPANET can be divided
into two design categories:

a. establish the capability to transmit and receive data and messages over
the ARPANET to and from tactical and commercial computer systems;

b. to provide ARPANET users with the computer resources of Fort Monmouth.

In the past two decades, numerous military systems have been conceived
and/or developed with the objective of capitalizing on the latest tech-
nological developments. Typically, each system has been designed with
specific functional and performance goals to solve a specific problem.
Design optimization to meet these individual system goals has typically
ignored the inevitable time when command and control requirements would
dictate the exchange of information between systems.

As a result, each system design has its own special hardware, software, and
data vocabulary. Figure 4 illustrates an example of a number of such
systems which have been shown by previous analysis in Ref. 1 to require
interoperability for exchange of information. A generalized analysis of
the interoperability requirements has shown that design compatibility must
exist at several levels of implementation. Figure 5 identifies six major
levels at which design compatibility must exist in order to permit inter-
operability between systems.

-284-



Corp TOS CAC MAGIIC

DIVISION TOS

PLRS ,RPV

TACFIRE SOTAS

FIGURE 4,
SYSTEMS REQUIRING INTEROPERABILITY

FOR INFORMATION EXCHANGE

-285-



System A System B

End-to-End (User)> (1) ( End-to-End (User)

Interface Interface

Message (2) Message

Formats -Formats

LLnk Control/ (3) Link Control/

Protocol Protocol

Security (6) b

Line Interface (4) Line Interface

and Control - and Control

Communication (5) -*Communication

Media KMedia

FIGURE 5, DESIGN COMPATIBILITY LEVELS BETWEEN SYSTEMS

-286-



The ARPANET will replace level 5 - the communication media. However, there
are cases, as will be pointed out later, where the communication media
affects level 3 (link control/protocol) and, in fact, dictates the design
or procedure requirements for level 3. Level 4 (interface and control)
will typically define the method of connection to the system and dictates
the ARPANET connection requirements.

All exchange of information between the DivArty TACFIRE and the Bn TACFIRE
occurs between the DivArty Fire Direction Center (FDC) and the Bn FDC, as
shown in Fig. 6, using the artillery communications network. The artillery
communications network provides for either wire, FM or AM/SSB radio, for
the communications link. Each FDC is provided with the peripheral equipment
necessary to ensure proper communications (Digital Data Terminal, Communi-
cations Control Unit, Remote Communications Monitor Unit).

The hardware required for the DivArty FDC to interoperate with the Bn FDC

is identical to the communication equipment required within each system,
since the systems were designed to interoperate. The hardware involved
(identical at both FDC's) consists of the following devices: (1) COMSEC

equipment KG-30/31; (2) Digital Data Terminal (DDT); (3) Communication

Control Unit (CCU); (4) Remote Communications Monitor Unit (RCMU).

The choices for interfacing either a DivArty or Bn FDC to the ARPANET are

as follows:

a. output of CCU;
b. output of DDT;
c. output of AN/GYK-12, IOX channel.

It will be shown that the IOX channel output is the only reasonable choice
for the TDC interface to the ARPANET.

Investigations into driving remote tactical peripherals indicate that an
interface to the Remote Data Terminal (RDT) is required. The RDT has
characteristics equivalent to looking toward the CCU end DDT as a serial
combination. Examples of peripherals designed to be remoted are:

a. Variable Format Message Entry Device (VFMED);
b. Battery Display Unit (BDU);
c. Digital Message Device (DMD);
d. Message Input/Output Device (MIOD);
e. Tactical Computer Terminal (TCT).

-287-



-oL
'I)

1:3 0) LLU

00

- -~ Uj

vk CD
p Iu,

F-
0-

lz
-

LO

- LUI

0-L
z

-288-



The Army plans to develop a Universal Interface Box (UIB) which can
interface both commercial and tactical computers and peripherals with
only the I/O card being different. It was determined to interface one UIB
to an IOX channel available on the TDC's MMP system and to interface the
other UIB to an RDT interface. Therefore, this initial demonstration will
verify the capability of both interfacing tactical computer (IOX channel)
and the TDC's MMP and tactical peripherals (MIOD).

TELEPROCESSING DESIGN CENTER (TDC)

The Teleprocessing Design Center (TDC) Microprogrammable Multi-Processor
(MMP), Fig. 7, provides a system which allows performance testing of
tactical command and control systems by the use of emulation. The
performance monitoring information becomes the basis for performance evalua-
tion of tactical systems. The MMP computer system in the TDC has the
necessary hardware, firmware, and software to emulate a total computer
system.

The current configuration of the TDC consists of seven processors, 328K
32-bit words of memory, and associated peripheral devices as well as a
Real Time Equipment interface; This system, together with its attendant
software and firmware, is capable of executing three simultaneous emula-
tions. An example of an emulation system currently in existence at the
TDC is the TACFIRE emulation system (TES). TES provides a means of
performance testing the Litton AN/GYK-12 computer, its application software,
and the TACFIRE operating system (OS). The unique capabilities of the
MP-60 computer system and the system nucleus allow a user to execute the
TACFIRE software in a controlled environment and at the same time collect
data at various points in the execution for later report processing. These
reports are then used for evaluating the performance (e.g., core utiliza-
tion, instruction usage, etc.) of the AN/GYK-12 computer and the TACFIRE OS.

The MMP system enables the laboratory to emulate other command and control
computers. Emulation includes both the capability to execute the test
system's software, producing the same results and the ability to translate
the results into real time. Emulation under simulated battlefield condi-
tions will provide insight into areas of possible data handling bottle-
necks. The TDC can also emulate more thdn one system simultaneously,
focusing on the ability of different tactical data systems to function with
each other. Interoperability studies through emulation techniques, under
laboratory conditions, will permit isolation of any one parameter for study.

The TDC, as currently configured, has a number of candidate interfaces
to provide ARPANET access. In all cases, the interface from the TDC would
connect with the Universal Interface Box (UIB). The interface candidate
locations are:

-289-

OEM=-



-4

m En

C) - ~

u i

00

(- CD

0 CU

LUI

zl I

C)
C'00

0 U2i

-290



a. the emulation system peripheral controller (URC);
b. a direct memory access (connected directly to the memory bus);
c. the Real Time Equipment Controller (RTE/IOX) IOX channel.

Connecting the UIB to the MMP in the TDC via the RTE's IOX channel
offers the following advantages:

a. minimum changes to the MMP or tactical software;
b. the IOX interface can be used for both interfacing the MMP and the
AN/GYK-12 computer (TACFIRE computer).

UNIVERSAL INTERFACE BOX - HARDWARE

In order to minimize development costs, existing hardware and software
developments were looked at. Through past efforts in emulating tactical
systems (TDC) and ARPANET implementations (PDP), a base of software and

hardware have been developed that could be used for ARPANET interfacing.
In addition, related studies and development efforts have resulted in
some hardware interface designs that can be used which will result in

significant development savings. Three alternatives exist that will, in
varying degrees, take advantage of existing hardware and/or software to

provide the various interfaces and the processing capability required for
interoperability testing. These are:

a. MP-60 development;
b. MMP Emulator;
c. PDP family hardware.

Fig. 8 contains the advantages and disadvantages of utilizing the three

different types of computers. Based upon a trade-off analysis, the PDP
family computers appear to be the most logical and cost effective choice.

The Transmission Control Program (TCP) was developed for the PDP-11
machines by DARPA. Furthermore, if and when the MMP system is expanded

into a resource for other users to access the ARPANET, the PDP-11/34
minicomputer (the computer selected) could be easily expanded to a PDP-11/70
system which has interactive multiprocessing and multiprogramming capability.
In addition, there exists interfaces between the DEC hardware and the ARPA
IMP.

Within the PDP-11 family there exists software compatible computers
ranging from a micro to a large time-sharing system. As a result of
memory requirements, the PDP-11/34 was selected as the optimum sized
computer for the UIB. With the PDP-11/34 the Army plans to procure a
complete set of peripherals to develop software and monitor system opera-

tion and load the computer programs.

-291-



1-44

H 00

:Z) 0zE4 -

orz
H ~ 0 0w.H

rn n 1- z In

U P >4w 0

'-.4 0 0 4 140 4CD P

P H I c E- pz. 4 I4~ Hn0

z -e z z0 ot P4

U)e- H ' -

Ci 4 Hp -4 Z r -- e4 F- 4 40 zZ wIH

E-4 EC4 0~ P~r4

(:) c~ci H p~4 0, 1

-4 w4 . 0 4 4

C..) 0 - 0 C) ww E 0 w

04 04

4 14 C L 1 14 C 1;-2924-C



UNIVERSAL INTERFACE BOX - SOFTWARE

In the past, in each Host computer a program referred to as the Network
Control Program (NCP) was implemented and added to the Operating System
(OS) of the Host. This implementation is typically major surgery for
most Hosts. The NCP allows Host computers to communicate with each
other according to a Host-to-Host protocol, which is a network-wide
standard. To minimize OS modifications and to develop a protocol compat-
ible with packet radio, DARPA developed the Transmission Control Program
(TCP). TCP is the latest version of the ARPANET protocol, which enhances
the reliability of transmission. Although still in the development
stage, TCP appears to be the wave-of-the-future and DARPA is recommending
replacement of NCP with TCP for all ARPANET Hosts.

The ARPANET philosophy of communications consists of a layered protocol
scheme as depicted in Fig. 9. This approach of defining a layered
protocol scheme (in some cases implemented with both hardware and soft-
ware) has the advantage of segmenting communications interfaces into
small hardware/software packages that can be individually implemented.
In addition, changes can be made at either end of the spectrum without
modifying the entire scheme. It also means that the level to which one
carries his investigation of the ARPANET depends on his ultimate goals
and requirements. Typically, one is not required to examine in detail
all of the layers. Of main interest to us is the IMP/HOST protocol/
interface, also known as the 1822 interface developed for DARPA by Bolt,
Beranek, and Newman.

At the top end of the scale is the user-user protocol. The user-user
protocol would allow a remote terminal user, for example, to utilize
the resource provided by UCLA for an application involving a mathematical
model calculation. One such protocol is called TELNET. TELNET provides
for the establishment and control of network connections (User-Host),
specifications of various operating options (User-User), and handles
interactive data flow between the network and the user (User-Host/User-
User).

The User-Hott protocol defines the interface between the TELNET and the
Transmission Control Program (TCP). The Host-Host protocol defines how the
TCP at the source converses with TCP at the destination. The Host-IMP
defines how control and data are transferred from the TCP in the Host or
UIB to the IMP. The IMP-IMP protocol defines how messages (packets) are
transmitted from the source to the destination.

-293-



LWi

C.,,

--
L.)

LLi

ba

FA-

04~

-294-



The TCP program provides for a reliable, error free logical communica-
tions channel and ensures end-to-end acknowledgment, error'correction,
duplicate packet detection, packet sequencing, and packet flow control.
Fig. 10 is a block diagram of the software modules which are planned to
reside in the UIB. The OS provides for the following facilities:

a. a multiprocess real-time environment;
b. an interprocess communication/synchronization mechanism;
c. sharing of peripheral devices;
d. asynchronous input/output facilities;
e. storage management primitive.

The dispatch program (DSP) performs the function of multiplexing packets
received from the 1822 interface. For packet transmission, DSP merges
the output from several processes into one stream to send out over the
1822 interface. For packet reception, DSP breaks up the stream received
from the 1822 interface into several streams for proper distribution to
the processes. Logical processes are defined to be TCP, Measurement, etc.
Reliable reception/transmission of packets is accomplished using end-to-
end acknowledges.

User processes and handler is the new software that would have to be
developed as an interface to an IOX or RDT channel. In addition, an
ARTCOM protocol for the simulation of traffic on the artillery communica-
tion network is planned to be developed. The ARTCOM protocol is based on
transmission priority after the time in which the net is sensed to be
clear. The simulation of this protocol is to have each UIB within the
system capable of determining when the net is busy and capable of relaying
this information to its users. The adopted network protocol keeps each
UIB on the network aware of net busy conditions. Each UIB in turn has
the capability of signaling a busy condition to its user, a computer or
peripheral.

The software required to upgrade the TDC's MMP system to resource for users
on the ARPANET was investigated. The major differences between interoper-
ability testing software and software required to use the emulation and
software development capabilities of the TDC occur when the TDC is required
to handle the remotely submitted jobs and return them to the respective
requestors. The ability to operate the TDC as an ARPANET resource does not
exist in the TDC and must be developed. The changes required to support the
TDC as a resource occur in the MP-60 software, emulation firmware, and the
UIB software and hardware.

The MP-60 software must be changed to allow a job to be received, scheduled,
executed, and returned to the UIB for transmission to the user. The firm-
ware must be changed to allow for programmable "hooks" to be added to the

-295-



00

O6 .

caM M 4 %4

E4. 2 z
64 E-4 04-

0. '
94 (. s:. .L C

1.4. 41) 0

1.E-44 
go4 1.4

0~. 0)- 0 4 J0 Cf

01. &4 L
X' 1.4

0. Q) 4 4I1. 0 040 $4

w~U0 E-4 0 04 1.4
0~ E-4 4-A 0 -0 4) U
EA EW 4 4 4 1

4 $4 00 N

E-4 ~~1 1%CalmV
* )J . . 0-C4 f

(a 0 a 404
ZH k 4 4

-296- 0 o



firmware to suit the users' testing requirements during emulation. The UIB
must be changed to allow for access of the TDC's emulation and software
development capabilities by remote users. As such, the UIB must queue all
remote and/or local requests for data processing.

CONCLUSIONS AND IMPLEMENTATION PLAN

The desired system capabilities generally fall into three classes which
lend themselves to a phased implementation approach. These are:

a. Phase 1 - using the resources of the ARPANET;
b. Phase 2 - using the ARPANET for interoperability testing;
c. Phase 3 - using the TDC as a resource via the ARPANET by remote users
for software development and validation.

Phase 1 is being implemented by acquiring a TIP which will be installed
at Fort Monmouth. The TIP will allow, via terminals, access to the existing
ARPANET resources.

Phase 2 will be implemented by the development of two UIB's between the
TIP and the tactical computer peripheral and MMP and the development of
the necessary software to accomplish interoperability testing.

Phase 3 is planned to be implemented by upgrading the UIB to a time-
shared processor and upgrading the MHP's MP-60 processor and firmware to
allow time-shared users access to the emulations.

Figure 11 is the system configuration recommended for implementation and
system verification/feasibility testing. Initially, it is planned to check
out the complete system at Fort Monmouth and then the second UIB will be
moved to a remote tactical facility and final end-to-end performance testing
will be conducted.

If this approach proves to be a viable and practical means to communicate
and perform interoperability testing among tactical facilities, additional
units will be installed at tactical computer facilities throughout the
country.

REFERENCES

1. ARMY JINTACCS INTEROPERABILITY REPORT prepared for Cdr, CORADCOM, Center
for Systems Engineering and Integration, Fort Monmouth, New Jersey, under
Contract No. DAAB07-77-C-3054, February 1978, by Control Data Corporation,
Aerospace Division.

2. ARPANET STUDY - A Study to Investigate Interfacing the Teleprocessing
Design Center (TDC) and various Military Computer Facilities Throughout
the Country to the Advanced Research Projects Agency Communications Network
(ARPANET) prepared for US Army Electronics Command, Fort Monmouth, New Jersey,
under Contract No. DAAB07-78-C-3301, April 1978, by Control Data Corporation,
Aerospace Division.

-297-



I TDC

I MP-60

I RTEI

II 
IM

I 1822

FIUR 182 RECMMEDE SYTMCNFGRTONFRPA E 

INT-298C-

L.I



Software Development Support System (SDSS)

Bernard Newman
Roy Mattson

The Software Development Support System (SDSS) is a planned
government-owned computing facility configured to satisfy the program
development needs of users/contractors engaged in the Military Computer
Family (MCF) demonstration model validation effort. SDSS is intended
to provide a centrally located facility of commercial off-the-shelf hard-
ware and software augmented by a variety of advanced, specialized software
tools required to support the various life cycle development activities of
militarized computer systems. SDSS will provide a host environment where
such activities as configuration management, test, verification and valid-
ation, training, and post-deployment support can be conducted. SDSS will
address the problems of uncontrolled tactical software development arising
from non-government ownership of development software and the proliferation
of development tools. SDSS will attempt to reconcile the conflicting re-
quirements of support software developers and support software users.

-299-



SOFTWARE DEVELOPMENT SUPPORT SYSTEM (SDSS)

Bernard Newman

Roy Mattson

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Systems Validation Division
Fort Monmouth, New Jersey

INTRODUCTION

The prime impetus for the establishment of a centralized Software Develop-
ment Support System (SDSS) under direct Government control and ownership
arises from the myriad of difficulties which have plagued past and on-
going tactical computer based software system developments. In particular,
the initial SDSS configuration to be physically located at the Center for
Tactical Computer Systems (CENTACS), Fort Monmouth, will be used to fully
control the life cycle development of the Military Computer Family (MCF)
demonstration system software. This will include the full complement of
operational software, tools, and specialized software used to generate,
develop, and test the target system software. SDSS will provide a single,
centrally located PDP-I1/70 host facility augmented by DEC Software, the
Bell System Programmer Work Bench (PWB)/UNIX Operating System, and the
DoD-I compiler and language dependent support software tools. The facility
will be linked to remote user/developers via dialed telephone lines and
through the ARPA-net. SDSS will utilize commercially available hardware/
software to the maximum extent possible and will be designed to provide a
convenient working environment for programmers and MCF system developers
consisting of a user community of about one-hundred people. (SDSS should
be capable of handling 50-60 simultaneous on-line users.) The projected
capabilities of SDSS are envisioned as growing and evolving at a rapid rate
as accumulated experience provides support for the efficiency and effective-
ness of its implementation. This paper presents the SDSS concept and
describes the planned system configuration. Advantages which will accrue to
the Government are also presented.

THE SDSS CONCEPT

The SDSS concept embodies a number of different ideas concerning life
cycle development of tactical software. In general, tactical system
program development and the execution of the resulting programs are two
radically different functions. The selection of a DEC PDP-11/70 and

-300-



PWB/UNIX for SDSS is intended to provide a single uniform interface to
both the developers of MCF applications software and the developers and
maintainers of SDSS support software and tools. SDSS is intended to
provide the mechanism whereby the standardization, control, and improve-
ment of available support and target software subsystems, such as
compilers,real-time operating systems, data base management systems, and
command languages can be effected. Tactical software life cycle cost and
acquisition time will be substantially reduced by the ready availability
of such a time shared facility, where programmers have access to one or
more computer systems equipped with a growing body of well-supported
standardized support tools, software subsystems, and newly developed
programs. Figure 1 provides a delineation of the major tactical software
problems beiuig addressed by SDSS.

- UNCONTROLLED TACTICAL SYSTEM OPERATIONAL SOFTWARE DEVELOPMENT

- GOVERNMENT NON-OWNERSHIP OF DEVELOPMENT SOFTWARE

- CONFLICTING REQUIREMENTS OF CONTRACTORS AND GOVERNMENT
DEVELOPERS

- PROLIFERATION OF HOST ENVIRONMENTS AND DEVELOPMENT TOOLS

- DIFFERENT HOST AND TARGET SYSTEM REQUIREMENTS

- NON-AVAILABILITY OF THE MILITARIZED HARDWARE DURING EARLY

SOFTWARE DEVELOPMENT PHASE

FIGURE 1. TACTICAL SOFTWARE DEVELOPMENT PROBLEMS

In particular, an analysis of tactical system software development case
histories has shown that lack of support software visibility has ultimately
resulted in significant problems when test, deployment, and maintenance
phases of the development life cycle are entered. The consequences of
ineffective control over support software results in the situation where
Government personnel often find it difficult to generate, modify, under-
stand, or enhance a particular operational/application software system
without the designer's assistance. The Government is thus usually locked
into particular contractors well beyond the development of initial proto-
types. Many benefits associated with competition are lost in the areas of
cost and quality when alterations, enhancements, and changes to the



prototype systems are planned and subsequently implemented in the
production system. In these matters, the objectives of contractors
and government most usually diverge resulting in serious confrontations
which adversely impact the particular tactical systemt s design evolu-
tion process. The non-ownership by Government of major development
software components ultimately results in a proliferation of development
tools and host environment facilities since the proprietary nature of
this software often precludes its use by more than one contractor on
more than one job. Since the requirements for a host environment are
substantially different from that of the basic target system, an addi-
tional load factor of 30-40% of the basic system cost is usually built
into each new development model. This is objectionable since most of

the support software which is redeveloped does not differ functionally
from what already exists.

The objective of SDSS is to address the control/proliferation/duplication
problem and attempt to minimize those problems associated with the non-
availability of militarized hardware during early software development
design activities. The PDP-I1/70 in SDSS addresses this problem in that
the choice of this machine is based upon its architectural compatibility
with the target system for the MCF validation effort. The approach to be
taken for the validation effort is critiqued in Figure 2.

- DEVELOP CENTRALIZED SUPPORT SYSTEM FOR LIFE CYCLE SOFTWARE
DEVELOPMENT AND MANAGEMENT OF TACTICAL COMPUTER SOFTWARE

- DEVELOP A SUPPORT SOFTWARE R&D FACILITY TO MINIMIZE DUPLICATION
OF SUPPORT AND SYSTEM SOFTWARE

- LANGUAGES

- COMPILERS
- OPERATING SYSTEMS
- LINKAGE EDITORS
- DEBUGGING TOOLS
- DATA BASE MANAGEMENT SYSTEMS

- PROVIDE SINGLE UNIFORM INTERFACE TO (SDSS) USER/(MCF) DEVELOPERS
FOR TARGET SYSTEM

- UTILIZE COMMERCIALLY AVAILABLE HARDWARE/SOFTWARE AS HOST
ENVIRONMENT FOR TACTICAL SYSTEM SOFTWARE DEVELOPMENT

- UTILIZE EXISTING NETWORKING FACILITIES TO LINK DEVELOPERS TO
HOST ENVIRONMENT

FIGURE 2. SDSS DESIGN APPROACH

-302-



As previously noted, SDSS will be established as a centrally located host
facility at Fort Monmouth to control the development and test of the MCP
System Software.

Figures 3, 4, and 5 depict the three distinct activity phases envisioned
in its implementation.

PHASE 1

- ACQUIRE/INSTALL DEC HARDWARE

- INSTALL COMMUNICATIONS EQUIPMENT

- INSTALL/TAILOR PWB/UNIX

- TRAINING

FIGURE 3. SDSS - PHASE 1

PHASE 2

ESTABLISH OPERATIONS METHODOLOGY

- CONFIGURATION MANAGEMENT

- USER CONTROL

- TRAINING

- MALFUNCTION REPORTING

- MAINTENANCE

- DOCUMENTATION

- SECURITY

- ENHANCEMENT CONTROL

FIGURE 4. SDSS - PHASE 2

-303-



PHASE 3

- ARPA

- NEW TOOL INTEGRATION

- MILITARIZED PERIPHERALS

FIGURE 5. SDSS - PHASE 3

In Phase 1, the SDSS hardware/software and PWB/tTNIX will be acquired,
installed, and tested. In this phase, an initial plan of operations
will be postulated to meet the specific requirements of the various
user communities. The next phase (Phase 2) of activity will be concerned
with the implementation of this plan with user control, configuration
management, and a full operations methodology formalized. In Phase 3,
enhancements to the basic system hardware and software will be made with
particular efforts concentrated in the areas of networking, new tool
development, and integration of specialized military hardware and periph-
erals into the system. These efforts will be driven by the main-line
development endeavors of the MCF program.

CURRENT STATUS - CONFIGURATION

The Software Development/Support System (SDSS) to be implemented is based
upon the projected programming requirements of three main user communities
with functional responsibilities depicted in Figure 6. The computing
facility established within the Center for Tactical Computer Systems
(CENTACS) at Fort Monmouth will be made accessible to remote contractor
programming stations located at the facilities of the developer of appli-
cations and training scenario software (User 1), at the facilities of the
contractor responsible for the development of the DoD-1 compiler and
language dependent tools (User 2), and at the facilities of the MCF hard-
ware developer (User 3). This configuration is depicted in the block
diagram of Figure 7 with communications between the CENTACS site and
remote contractor locations through dialed telephone lines (dotted lines)
and the ARPA-Network (solid lines). Figure 8 provides a detailed block
diagram of this configuration.

-304-



USER COMMUNITY 1

APPLICATIONS SOFTWARE

TRAINING SOFTWARl

USER COMMUNITY 2

DOD-i CONTRACTOR

* DOD-I COMPILER

* LANGUAGE DEPENDENT TOOLS

USER COMMUNITY 3

MAINTENANCE & DIAGNOSTIC SOFTWARE

TRAINING SOFTWARE

FIGURE 6. SDSS - FUNCTIONS

-305-



LU CD _L

LU

LU ci

L):

LU C)

P--4
CLU

.44

Ci LU -
- 3 o.

_j - I4C

.i LU C> LU

C/,,

LU

LUI

LUL
ci I

2M LU

~~LU

cc LUJ

U- C

U

-306-



ou ICt[f cU I L ?A1

.... .. ..

......

TUCUI

SITE _

FIGURE 8. SDSS BLOCK DIAGRAM

-307-



As previously stated, SDSS will use the PWB/UNIX support software system
to provide a convenient working environment and a uniform set of tools
for the initial MCF computer program development effort. PWB/UNIX is a
proven time sharing support system specifically engineered by the Bell
Telephone Laboratory to provide an efficient, flexible, general-purpose
multi-user program development environment. As depicted in Figure 9, it
will provide SDSS with an effective file system, command language, source
code control system, numerous languages and extensive text processing
and documentation production facilities.

- FILE SYSTEM
(MANAGEMENT OF USER/SYSTEM DATA, PROGRAMS, ETC.)

- PWB/UNIX COMMAND LANGUAGE

(USER COMMUNICATION TO SYSTEM)

- DOCUMENT PREPARATION & TEXT PROCESSING
(EDITING, FORMATTING, DOCUMENT PRODUCTION)

- SOURCE CODE CONTROL SYSTEM
(PROVIDES AN AUDIT TRAIL OF ALL SOURCE CODE
VERSIONS AND RELEASES)

- INGRES DATA BASE MANAGEMENT SYSTEM

- C COMPILERS & FORTRAN COMPILERS
(INGRES & UNIX WRITTEN IN C)

- LANGUAGE DEPENDENT TOOLS

- YACC

FIGURE 9. PWB/UNIX MAIN COMPONENTS

Extensive augmentation of PWB/UNIX for SDSS is envisioned with the
development of the DoD-I compiler and a wide variety of specialized
language dependent tools. The basic PWB/UNIX, available as an off-the-
shelf software package for the PDP-1I/70, is presently licensed to the
Government on an unsupported basis under the provisions of a 19 Sep. 75
Software Agreement (with subsequent modifications) with Western Electric
(Contract No. DAAB03-76-C-0182). Support, training, installation, and
system enhancements will be obtained from external contractcrs.

-308-



Figure 10 provides a detailed delineation of the precise DEC hardware to

be incorporated into SDSS.

QTY DEC # DESCRIPTION

1 11/70 - VA Basic CPU, including 64KB, Decwriter

1 FP11 - C Floating PT Processor

3 MJ I BG 250K Words - Memory

3 MJ 11 - BE 64K Words - Memory

1 RWP06 - AA 176M Byte Disk Pack Drive w/Controller

1 RP06 - AA 176M Byte Disk

1 RWP05 - AA 88M Byte Disk w/Controller

2 RP05 -AA 88M Byte Disk

1 RWS04 - KA IM Byte Fixed HD Disk/w Controller

1 RS04 - AA IM Byte Fixed HD Disk

1 TWE 16 - EA Mag Tape, 800-1600 BPI w/Controller, 9Track

7 TE16 - EE Mag Tape, 800-1600 BPI, 9 Track

2 LP11 - SA 800 LPM, 132 Col, 64 Char w/Controller

6 VT61 - AC Video Terminal - 24 Lines 80 Char/Line,

128 Controller

1 DZI1 - E Asynchronous Interface

1 H960 - DH Cabinets, Cables, Chassis, etc.

1 DD11 - DK Peripheral Mounting Panel

2 DI 11 - AD Asynchronous 16 Line Max, w/Modern Controller

1 DR 11 - B DMA Interface

1 PC 11 High Speed Paper Tape Reader

4 H312A Modern Adapters w/EAI Interface

1 CR 11 EA Card Reader

FIGURE 10. SDSS - HARDWARE CONFIGURATION

-309-



The facility will contain a PDP-11/70-VA with a memory capacity of IM words
of Core Storage, 618M bytes of Disk Storage, 6 Video Terminals, three with
hard copy facilities, 8 Magnetic Tape Units, and various other card readers,
line printers, and paper tape units. The two 176M byte disks are intended
for general system use and will initially support the PWB/UNIX software
development environment for the representative design. Contractors will
each have a dedicated 88M byte disk in order to minimize the potential
conflict in user requirements and to keep a clear separati.on between
contractor individual job responsibilities. The number of video terminals
provided at remote sites is based upon a 2:1 potential user to terminal
ratio and will operate on communication lines with a baud rate of 300.
The local configuration of 6 terminals has an expansion capability of up
to 16 terminals. A tradeoff in the quantity of terminals supported versus
response time will be carefully considered if additional terminals are
added.

Figure 11 provides a delineation of equipments categorized as MCF devices
that will be located at CENTACS to support on-line development of MCF
software during the early representative design program development phase.

- 1 MILITARIZED STORAGE MODEL 640 DUAL DISK CONFIGURATION

- 1 RAYMOND MAGNETIC TAPE MEMORY WITH 4 CARTRIDGES

- 1 DATA COMMUNICATIONS CHASSIS (12 CHANNELS)

- 1 OPERATOR'S CONSOLE

- 3 TACTICAL COMPUTER TERMINALS (TCT)
(ONE EACH AT AAI, CDC, & FT. MONMOUTH)

FIGURE 11. SDSS - TACTICAL DEVICES

The equipments include the Raymond Magnetic Tape Memory, the CDC 640 dual
disk, the MCF Data Communication Chassis, and a local Singer Tactical
Computer Terminal (TCT). Efforts will be required in the establishment
of SDSS to interface these equipments to the DEC-UNIBUS. The objective
is to provide a user interface for the remote site system developers that
best simulates the MCF bus looking into the specialized devices and provides
the capability of using the PDP-11/70 for actual program development. The
Raymond magnetic tape unit will be used to facilitate the transfer of the
operational software to the actual MCF equipments,while the CDC disk will
be used if portions of such off-the-shelf software as DBMS or INGRES are

-310-



adapted for use in the run-time environment. Similarly, the Data Communi-
cation Chassis and TCT devices will allow applications programmers to
access actual MCF devices early in the development phase for scenario
testing and debugging.

The communication plan is to have SDSS access the ARPANET through a
Terminal Interface Processor (TIP), physically located at Fort Monmouth,
for the majority of communications to remote user sites. The prime
advantage of utilizing the ARPANET as the main communications media is
that a distinct cost savings can be realized over use of dialed, WATS, or
leased lines. In addition, the ARPANET will provide SDSS users with access
to additional computer resources throughout the world.

ADVANTAGES

The SDSS approach will provide the Army and contractor/developers of MCF
software with numerous advantages not fully realized by prior developers
of tactical system software. In general, the primary facility require-
ments of tactical software developers (listed in Figure 12) so far as
programming environment is concerned will be met. Namely:

(1) The continued availability of a full complement of computing servicds
that are convenient, relatively inexpensive, and guaranteed during normal
working hours.

(2) The availability of target system hardware early in the development
phase.

(3) The availability of a facility that is human engineered with extensive,
reliable, surprise-free tools.

(4) The availability of a facility with extensive document preparation
capabilities.

(5) The availability of a facility that is adaptable to rapid organiza-
tional and personnel change.

(6) The availability of a facility which presents a stable user interface
that masks detailed hardware considerations, including major configuration
changes from them.

(7) The availability of a facility that utilizes a flexible, easy-to-use
commnand language which is simple to learn.

(8) The availability of a facility that utilizes an efficient file cystem
oriented to interactive use and guarantees controlled sharing of important
system resources, including data and programs.

-311-



(9) The availability of configuration management tools that include a
source code control system.

- AVAILABILITY

- HUMAN ENGINEERED, RELIABLE TOOLS

- EXTENSIVE DOCUMENT PREPARATION FACILITIES

- ROBUST TO ORGANIZATIONAL & PERSONNEL CHANGE

- STABLE USER INTERFACE

- FILE SYSTEM ORIENTED TO INTERACTIVE USE

FIGURE 12. SDSS - USER FACILITY REQUIREMENTS

SDSS will satisfy the above delineated general requirements, while at the
same time addressing the problems previously presented. The specific
advantages that will accrue to the Government as a result of the implemen-
tation of SDSS are outlined in Figure 13. In particular, advantages will
be realized by the gain of effective control over the development software
used for MCF while providing a stable, uniform, and efficient program
development facility immune to development environment turbulence. SDSS
will provide a repository for all development tools, operational software,
test, maintenance, and training software packages used in the MCF develop-
ment process. SDSS operations will be directly responsive to user!
contractors, especially in cases where identified problems with support
software obstruct the operational software development process. SDSS will
impose severe restrictions on the enhancements of existing tools and on the
introduction of new tools into the MCF software design environment. This
will be done in order to best serve the overall MCF user community and to
insure that all procedures and specialized software used by MCF contractor/
developers are reproducible, Government owned, and readily available to all
subsequent SDSS users and contractors. This is a major departure from past
ways of doing business. Previous support software systems have rarely been
portable across systems developments. Important support software components
have often been seen to become proprietary items of their developers
although developed initially for use on specific Government systems. This
will be rectified by SDSS, although a considerable effort will be required
to arrive at a uniform set of application independent software tools. In
the past, the creation of such tools was made difficult by the differences in

-312-



file structures, languages, communication protocols, and types and
calibre of programmers that each contractor employs. SDSS will
minimize all these variables by establishing the programming environ-
ment as a given long before the commencement of any MCF programming activity.

- GAIN BY EFFECTIVE CONTROL OF:

- SUPPORT SOFTWARE & DEVELOPMENT TOOLS
- OPERATIONAL SOFTWARE
- TEST, MAINTENANCE, AND DIAGNOSTIC SOFTWARE
- TRAINING SOFTWARE

- GAIN BY UNIFORMITY

- SOFTWARE PROLIFERATION MINIMIZED
- PROGRAMMER AVAILABILITY/MOBILITY ENHANCED

- GAIN BY INSENSITIVITY TO DEVELOPMENT ENVIRONMENT CHANGES

- INSULATION FROM TARGET SYSTEM HARDWARE/SOFTWARE RECONFIGURATIONS

- INSULATION FROM CONTRACTOR, GEOGRAPHIC CHANGES

- GAIN BY EFFECTIVE SPECIALIZATION

- ESTABLISHMENT OF A BASELINE FROM COMMERCIALLY AVAILABLE
COMPONENTS

- CONVENIENT, AVAILABLE, ECONOMICAL
- ABLE TO EASILY INCORPORATE STATE-OF-ART TOOLS, LANGUAGE
- EFFECTIVE VEHICLE FOR EXPERIMENTATION

FIGURE 13. SDSS - ADVANTAGES TO GOVERNMENT

Through SDSS, effective gains will be realized by the minimization of
duplicative support software. The transfer of Government and contractor
personnel between various projects or between different phases of a
particular project will most certainly be made easier by the uniformity
imposed by SDSS. The effects of changes to hardware and software which
often afflict both development and target environments simultaneously will
be minimized with the SDSS approach. The majority of users will be fully
insulated from perturbations in the host/target environment since the
general purpose host facilities planned are completely compatible with the

-313-



chosen architecture for MCF and are easily tailored to the specific target
system configurations envisioned. In general, SDSS tools will not be
tailored to any particular contractor's arbitrary preferences, although
the unique function of each user most certainly will precipitate some
very special tools. At the user interface the stability gained by
establishing a baseline host environment from commercially available
minicomputer software/hardware and by the methodical introduction of
new specialized tools, languages, compilers, and operating systems will
be particularly noticeable when new system functions, responsibilities,
and tasks are assigned to SDSS. The existing user community will be
minimally disturbed with these enhancements. Extensions to the basic
system hardware are projected as being relatively economical investments
in view of the relatively inexpensive cost of a PDP-11/70 processor
compared to large or specialized host support systems. A situation
where such a system extension might be required is in the area of system
test. If the target hardware is unavailable at the time that load
testing is to be performed and-the existing facility overburdened, a
relatively simple hardware extension to SDSS to generate the load and
simultaneously run the application programs in a simulated target
environment will be implemented. This extension will consist of the
purchase of additional 11/70 processors and a physical reconfiguration
of disk, core, etc.

CONCLUS ION

Although the SDSS approach does not purport to be a panacea for all tacti-
cal software development problems, it does represent a bold attempt at
bringing under Government control the root cause of much of what has
been observed to have been wrong in such past activities, especially from
the Government's point of view. The SDSS will provide the facilities
whereby developers/contractors/users can get on a programming system
quickly and build software quickly. It is intended that beyond the
initial phase of providing a program development capability, SDSS will
be enhanced to support such activities as configuration management,
training, and post-deployment support for MCF. Much of the success of
SDSS will depend on a user population willing to try new things and
willing to provide the feedback necessary to adapt the baseline system
into the facility which can be tailored to the Army's needs.

Each new feature to be added to SDSS will be consistent with existing
features in order to maintain an environment that is simple, coherent,
and conducive to productive use.

-314-



SOFTWARE ENGINEERING: TOOLS & METHODS II

Dr. Medhi Jazayeri

AIRMICS



SOFTWARE ENGINEERING

TOOLS AND METHODS II

SESSION CHAIRPERSON: Dr. M. Jazayeri

AIRMICS & THE UNIVERSITY OF NORTH CAROLINA

SESSION SUMMARY

This session reviewed some representative software engineering
methods and their systematic application. Dr. Gerhart surveyed the cur-
rent state of the art in program verification, the effect of program
verification on software research and development, and some practical
applications of program verification.

Dr. Rose talked about a microprocessor-based design tool which
allows functional and performance simulation of a target system. Human
factors issues are especially important in such a system and were empha-
sized in Dr. Rose's presentation.

-315-



Current Developments in Program Verification

Susan L. Gerhart

USC/Information Sciences Institute

After a decade of research, program verification is beginning to
be applied to real, moderate-sized software components. Strictly speaking,

program verification refers only to the activity of mathematically proving

the consistency of programs with their specifications. However, the

research has necessarily been broadened to encompass formal aspects of

specification, program structuring, language definition, organization of

programming knowledge, and programming methodology, all of which impact the

verifiability of programs. Part of the talk emphasized this pervasive in-
fluence of program verification on software research and development. The

talk also described current projects in evaluating and increasing the feasi-

bility of practical applications of program verification.

-316-



CURRENT DEVELOPMENTS IN PROGRAM4 VERIFICATION

Susan L. Gerhart
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90291

213-822-1511

This work was supported by the Defense Advanced Research Projects Agency
under Contract DAHC-15-72-C0308. The views expressed are those of the
author.

Backgro und

The activity many people call "program verification" got its modern
start in 1967 with the paper [Floyd67], but the essential technical
ideas and motivation had lain dormant for many years:

"It is of course important that some efforts be made to verify
the correctness of assertions that are made about a routine.
There are essentially two types of method available, the
theoretical and the experimental. In the extreme form of the
theoretical method a watertight mathematical proof is provided
for the. assertion. In the extreme form of the experimental
method the routine is tried out on the machine with a variety
of initial conditions and is pronounced fit if the assertions
hold in each case. Both methods have their weaknesses."
--- Alan Turing, circa 1950, Programmers' Hlandbook for the
Macese computer

Until 1967, program verification, to the extent that it was discussed
anywhere, was all experimental (testing). Since then, the theoretical
method (proving) has developed significantly in theory, and, perhaps
debatably, in practice. Unfortunately, the experimental method
(testing) nas remained comparatively stagnant and ad hoc, lacking either
a strong underlying theory or much experimental justification. The
social result is two opposing camps of researchers and practitioners,
both grinding away at the weaknesses of their extreme methods, ignoring
the benefits of the other method's strengths and failing to sufficiently
exploit the strengths of their own method. While this paper will
discuss primarily the theoretical method (proving), it is not meant to
exclude totally the use of testing as a verification method. Indeed,

the methods can and should be viewed as complementary.

The requirements for program verification by proving are rather
simply stated: (1) the specifications for the program must be stated
sufficiently precisely that correctness is determinable; (2) the

-3 17-



semantics of the programming language must be sufficiently precise that
a program's effects relative to specifications is determinable; and (3)
there must be some overall proof theory which expresses how
specifications and semantics together relate to some notions of
correctness.

Much work has gone into attaining the "sufficiently precise"
demands of (1) and (2). It was soon discovered that the semantics of
many programming languages could =~Z be made sufficiently precise - the
languages were irrat..onal, inconsistent, and horrendously complex. So
the last five years has seen the development of languages which are more
rational and less complex [LDRS77I. At least some newer languages (or
parts of them) are defined sufficiently precisely that verification is
not inhibited, but clean languages are no way near sufficient for
verification. Also it remains to be seen whether the restrictions of
these languages limit the scope of programming.

Likewise, much work has been done even more recently to develop
languages (which, of course, must be precise) for stating user
requirements and more detailed program specifications. The key here is
abstraction - the omission of details - to allow specification to range
through both external (user) and internal (system) views. Two
techniques of interest are algebraic axioms (which will be discussed
further later) and SPECIAL INeumann77] based on what are called Parnas
specifications. These emphasize change of state, values and constraints
of input and output parameters, and inter-module information hiding.

Requirement (3) for verification has been well understood in
principle for several years. The key idea is that of "inductive
assertions" attached to loops to characterize the states of the
variables, i.e. relations between them and properties of them, every
time through the loop. Inductive assertions also appear as
preconditions and as postconditions for procedures, characterizing the
states at entry and exit of the procedure (or function). In this way,
every program can be broken into straight-line parts between assertions.
The semantics of the programming language both defines what these
straight-line parts should be and how to formulate a theorem to the
effect that executing the paths from one true assertion gives the truth
of assertions at thc other ends of the paths. These theorems are called
"verification conditions". The major problem here, of course, is
finding these assertions. There have been several variations on ways of
stating assertions - intermittent assertions [Manna78] and subgoal
assertions IMorris77J, but a simple invariant assertion seems to work in
most cases. Good surveys of the methods, tools, and difficulties of
program verification are (London77,78] and iLuckham77].

Until very recently, program verification had been tried only on
small examples, for very good reasons. First, the techniques were
tentative and often didn't work very well. Small examples are adequate
for rejecting various approaches. Second, reworking the same, small
examples in various approaches provides a basis for comparison, again
for the purpose of rejecting failures and confirming usefulness of not

-318-



yet rejected methods. Third, the sheer volume of detail prevented
scaling up very far in size and complexity of programs, even on the most
promising methods. No one would read through this much detail and few
researchers could invest the time to perform the experimentation and
scaling up, especially when there were more possibilities to be explored
on small examples. Fourth, the tools for program verification were
inadequate for assisting on even small examples.

The point of justifying this earlier work is to make clear that
this phase of research in program verification is nearly over. The
current phase is actively exploring larger, more real, and indubitably
relevant software components. The present phase still has to be viewed
as experimental in character. We don't know when we try to verify a
larger and more complex program whether we have either the intellectual
or mechanical tools to complete the exercise. Indeed, the point of the
experiment is to reject what doesn't work and improve what works
partially. Furthermore, there are problems associated with large
programs that aren't problems for small ones, e.g. managing a data base
of theorems in various stages of proof and reducing the effects of
changing one part of a large proof.

The rest of this paper will be a survey of current work on program
verification at various research institutes. The survey is not meant to
be comprehensive but only to convey the feeling of experimentation and
scaling up just claimed. More detail will be given about one particular
such experiment, the ISI Delta Experiment, only because it represents
the author's efforts.

Microprocessor Reeac Al ID

[Carter78] argues that the enthusiastic rush to build more into
hardware via microprocessors has lost sight of the essential quality of
reliability. Hardware has traditionally been more reliable than
software; now with built-in programs it can be equally unreliable, if
the lessons of software unreliability are forgotten. One such lesson is
that testing is inadequate for guaranteeing the absence of errors. The
Microprogram Certification System (MCS) [Carter77] developed at IBM
requires a complete formal description of the computer on which
microcode is to run and provides a formal language with APL-like
operators to do so. A microprogram is symbolically simulated in the MCS
system to see whether the actual microcode (an array of bits) running
(via the simulator) on the formally described computer produces the same
results as a higher level description of the architectural
specifications which the microcode is supposed to implement.

This system has been applied to several real microprograms, finding
some very interesting errors. In one case, debugging code relating to
the Test Support Equipment was found with the effect that system reset
would not be performed correctly at certain moments. Other errors, or
rather inconsistencies between specifications and code, were found in
memory fetches in the last two bytes of memory and in a particular bit
in an instruction. These errors are not always in the program but

-319-



sometimes purely in the specifications, which of course can still cause
trouble elsewhere.

Note: The thesis [Crocker78S developed a formalism and initial
theory, called computational assertions, to represent microcode and
specifications. It is being studied for application to code such as the
IMP and the Fault-Tolerant Space Computer.

Hirrcia De sign and Veifctiong At sZU

The SRI Hierarchical Design Methodology (HDM) [Robinson77]
separates design and verification into two stages: first that a formally
specified design is consistent with a set of specifications and second
that the implementation is consistent with the specifications. HDM has
been applied to several operating systems: PSOS, the Provably Secure
Operating System [Neumann77] ; SIFT, the software-implemented
Fault-Tolerant System (Wensley76]; RTOS, the real time operating system;
and KSOS, the kernelized Secure Operating System. Experience thus far
demonstrates the feasibility of automatic verification of design
properties, e.g. multi-level security or synchronization in SIFT. HDM
is aimed at structuring both the system and the system development
process, using formal methods to increase confidence in and control over
design of large systems.

One SRI verification tool is RPE, the Rugged Programming
Environment [Elspas77), which contains general translation techniques
suitable for several languages, concentrating on JOVIAL. It is intended
to become a tool for systems programmers.

The main verification tool is the Boyer-Moore theorem prover
[Boyer77] which directly addresses a serious problem of theorem proving,
extension away from built-in knowledge. For example, how much data
structure knowledge should be build in if not all such knowledge can be?
The fundamental logical system is recursive function theory.

This theorem prover has been used to prove: the Fundamental Theorem
of Arithmetic; a tautology checker, i.e. another theorem prover; a
simple arithmetic expression compiler and optimizer; the verification
conditions for the Boyer-Moore fast string searching algorithm, on the
average the fastest such algorithm known; and another parser.

Re l andSecurefommunications gte .Texas

The Certifiable Minicomputer Project at the University of Texas
[Good77] shows a blend of elements not present in the other projects:
(1) a language, Gypsy [Ambler77], was designed especially for the
purpose of specifying and verifying reliable and secure communication
systems; (2) the supporting system includes tools for incremental
development and verification of such systems; and (3) both run-time
validation and proving are accepted for verification, omitting from
verification run-time assumptions and using run-time assumptions to ease
the complexity of proofs.

-320-



An example network specification and verification, incrementally

performed, appears in [Moriconil8).

SStanford rifi

Almost all of PASCAL except floating point arithmetic has been
implemented in the Stanford verifier [Luckham77], demonstrating that
many language features can be formalized for verification. A special
version of the verifier has been implemented for the detection of
run-time errors in programs [German78]. This language has been extended
to include modules and concurrent constructs.

The Stanford verifier's theorem prover contains a complete
simplifier for quantifier-free formulas over the data structures common
to programming languages. The Stanford research emphasizes the
discovery and implementation of fast, specialized algorithms CNelson77].
Other data structures and new specification concepts may be introduced
by means of lemmas.

Numerous small examples have been verified and proofs of
correctness of a parser and an operating system are in progress.

Security- Kernel Verfaitmiol at 2jCLA

The paper [Popek78] develops a model for data security in
multiuser, shared resource computer systems, an application area where
considerable expense is warranted to attain that goal. Current
verification efforts include (1) a yet unmechanized, but formal proof of
data security for several kernel calls, following an ALPHARD-like

[Wulf76] methodology relating the abstract model to the implemented code
and (2) proof that the PASCAL-like code implemented on the PDP/11 for
each kernel call satisfies specifications given for it. This
verification effort for about 1000 lines of PASCAL-like code is not yet

complete; It brings in many aspects of operating system behavior that
have not yet been formalized, e.g. the representation and mathematical
properties of paging. There is no concurrency or parallelism in any

kernel operation.

TM= IL Delta Exeimn

At the end of 1977, the ISI Program Verification project began an
experiment to specify and verify a real-world software component. The
first part of the experiment was to find a sufficiently large and real
component which we felt had some chance of being verified. "Real-world"
meant a running component that did something people really cared about.
Side goals were chances of finding errors, intrinsic interest of the
problem, overall benefits of formalization, and evolution of the ISI
program verification system. Such a component was found in the ISI

Military Message Experiment [ISI77] which is operational in Hawaii. The
component is well-written in BLISS according to traditional programming
style, but has no associated formalization, only prose comments
beginning routines and an overall data structure diagram.

-321-



Modularization is fairly good, but the component does interact heavily
with various other parts of the system, both more concretely in details
of data representation and more abstractly in ways the component is
used. Its size is around 1000 lines, with some use of macros, many
system calls, few loops, and recursion.

A report on the nearly completed exper'iment is forthcoming
LGerhart78b). Although not all the details of the component are handled
(for reasons we will discuss later), the task and implementation have in
no way been restricted to accommodate formal specification and
verification. It was surprising that, while the task is common and the
solution provided by the component is logical and feasible, we could
find no written description in any computer science textbook or any
articles in the technical literature.

I)= Delta Tak

Briefly, the task is to permit several users simultaneously to
modify files, called "Folders", which contain citations to messages and
look roughly like trees. The system permits editing operations on
folders expressed relative to these tree structures. In the message
processing environment, a coordinator of a message may distribute the
folder to other people for comment and editing. All people working on
the same folder have individual copies of the folder during their
editing sessions. At the end of each session, a list of net changes is
generated and then later merged into the central copy of the folder by a
"Coordination Daemon". This emphasis on small changes suggests the name
"Delta". The delayed changes to be merged in look very much like the
actual commands to change the file and are called "Delta Instructions".

The system restricts editing to two forms. At any time there can
be only one user (the "modifier") making replacements, deletions, or
internal additions to the folder, but there may be any number of users
(the "appenders") making comments which are to be appended to the folder
later. No further modifications can be made to a folder until the
changes made in one modifying session have been merged into the central
folder. The overall effect of this simultaneous modification must be
that the list of changes produced at the end of a session accurately
reflect the changes made during the session and that these changes are
ultimately accurately reflected in the system copy. However, there is
considerable latitude in the coodination. For example, someone might
comment on a message in a folder, but by the time that comment is merged
into the system copy a modifying user might have deleted the message.

Ih. 1U1 Program Veriiatiol Syte

The ISI program verifier, AFFIRM [Musser79], accepts programs with
PASCAL control and procedure structures (extended to include EUCLID-like
[EUC] imports lists) and algebraically defined data types (Guttag77,78]
as well as most of the regular concrete PASCAL data types. These
abstract data types consist of functions with specified domains and
ranges and axioms defining the effects of these functions, which either

-322-



construct or modify an object of the type of interest or "access" a
value outside the type of interest. The system's theorem prover is
based on the use of these axioms as rewriting rules [Musser7l). Given a
statement to be proved, the rules "reduce" or "simplify" the expression
as far as possible by replacing left hand sides by right hand sides.
This process requires that the axioms have an appropriate form to avoid
loops in rewriting, produce the same results independent of order of
application, and cover enough cases of reduction. We have various
methods, both informal and implemented, to check and improve the
rewriting behavior of a given set of axioms.

A mechanical proof looks very much like any mathematical proof.
The user must state the theorem, find and state lemmas and indicate how
and when they enter the proof, establish appropriate subgoals, reduce
the complexity of intermediate steps by throwing away irrelevant
information, etc. The user may also state induction schemas, e.g.
structural induction, by which the system sets up the steps of an
induction proof. Recording proof steps, suggesting next steps, undoing
disastrous steps, redoing previous proof steps, etc. are all carried on
by the system. Functions may be expressed recursively and then the
definitions invoked explicitly during a proof. A great amount of
planning must go into such a proof, since the system makes no effort to
find proofs for the user (with the exception of algorithms for finding
equality chains and instantiations of lemmas) beyond applying the rules
of the axioms.

The earlier view of a mechanical PV system was more heavily
oriented toward programs and verification condition generation, while
AFFIRM treats the verification condition generator as a more subordinate
component because there are numerous properties besides verification
conditions to prove. The system is planned to evolve further to support
a whole calculus of programs, e.g. with the ability to transform
programs preserving correctness, and organized bodies of knowledge about
programs, e.g. good axioms and lemmas about sets and sequences and
pre-proved program schemas for common tasks. See [Gerhart78a] for
discussion of these goals.

There is no technology for dealing with BLISS programs, because
there is no formal definition of the language, which is heavily machine
oriented. The Delta BLISS programs, however, were easily approximated
by PASCAL+ programs acceptable by the system. The control structure of
the BLISS programs (loops and procedure calls) is captured in the
PASCAL+ programs, while abstract data types capture some of the data
operations of the BLISS programs. For example, the writing of data onto
files is mimicked by treating a file as a sequence, the blocks of data
being read or written as indivisible parts of the Folder data structure.
So at the BLISS to PASCAL+- level, we have only an informal argument that
the two levels of program correspond, as given by a BLISS expert, and an
ALPHARD-like (Wulf 71] form structure treating the file as a data
structure, with sequences of BLISS statements as implementations of
operations of the abstract types.

-323-



At the next level up, the PASCAL+ programs look like any normal
program, with the exception that the data types are axiomatically
def'ined. Here the data types are sequences of DeltaInstructions split
into opeode, data, and node identifier parts and trees modelling the
folder and the operations performed on it during a user session.
Assertions, preconditions, and postconditions are all predicates over
the data types, usually condensed as notation recognized by the system
as a separate pseudo-type. There is tremendous advantage to notating
assertions, since assertions may be re-expressed for easier proving or
to correct errors. In this case we chose to prove only that the PASCAL+
programs compute the same result, with their more file-oriented form of
Delta Instructions, as some recursively defined functions, Merge and
Changes, do with Delta Instructions.

This leads to yet another level where It is proved that the
recursively defined functions interact in various ways. For example,
there is a theorem to the effect that Merging the Changes made during a
session into the file at the beginning of the session gives a file which
looks like the one at the end of the session. This may seem like a
simple theorem, but the algorithms for generating and merging Delta
Instructions are actually quite complicated (although still briefly
expressed recursively) because new identifiers must be created for nodes
as they are added to the tree. Other theorems at this level express
that this tree is well-defined, that empty trees lead to empty trees,
and that appending interacts properly with modifying types of
operations.

The highest level expresses (informally) the user's view of what
happens to folders: that the modifications made during a session
eventually appear in the central folder as they should given the other
actions of the system. There is an informal proof that Merge and
Changes do accomplish this user's view based on temporal assumptions
about "fairness" and "lockout" scheduling. The overall structure of the
proof is summarized in

-324-



level languageAu ypspoe

require- English Folder recursive functions
ments DeltaInstruction satisfy

(undefined) user view

recursive AFFIRM rules Folder, abstract programs
functions Delta instruction implement functions

(by assertion)

abstract PASCAL+ Folder, concrete programs
programs linearized implement abstract

Delta instruction programs (by forms)

concrete BLISS words,--

programs addresses

Resul the £~ b&Epriment

Some of the results of this experiment are:

1. Requirements analysis. About half the effort went into finding
out what the actual task was and how to express that formally. The top
level mentioned above was nowhere described in the documentation given
US. It was clear only that something was happening to a tree-like
structure. This raises the practical question of what would happen
during modification of the component by someone other than its author or
others deeply familiar with the system. If the modifier produced a
program sufficiently equivalent to the original there would be no
problem, but modifying where equivalence is sufficient would be unusual.
More likely, the modifier would need to preserve certain properties in
order to maintain the integrity of the system. That is where this
verification effort contributes the more formal specification which
could help in maintenance of the system.

As mentioned earlier, we did a little literature survey and
couldn't find any discussion of this problem, although it certainly must
be familiar to many. Again, verification can make the contribution of
forcing formalization in such a way that transferral of knowledge can
now take place. People can study this particular solution and
variations on it.

2. Specification formalization. We were able to get most of the
concepts involved in the specification and implementation abstractly and
formally expressed as algebraic axioms and recursive functions. There
are about five pages of axioms, many of which follow the same form:
definition for each constructor of the type. The user requirements and
timing aspects of the system don't fit this specification method, but
were easily handled in prose. The underlying storage model of pointers
(especially new cells gained from free storage) was almos. completely
suppressed. One inherent problem of algebraic axioms, exacerbated by
our system's orientation toward rewriting rules, is the expression of

-32 5-



legality of operations and errors. This simply requires a lot more
study.

One aspect of the actual implementation is not mentioned anywhere
in the specifications and is therefore ignored in the verification.
Considerable pains are taken to check at the beginning of each BLISS
routine that the arguinents are in proper form, that folders are in
buffers, that flags are set properly, etc. We have no way of specifying
that such error-checking should take place or what to do in case errors
are found. This is certainly one of the more open areas of
specification (and of verification).

We have simplified the specification of the file updating task
greatly in one respect over what the actual system does. In fact, the
folder is a highly complex data structure with multiple linking. In the
spirit of experimentation, we felt that the essence of the algorithm and
data structure was sufficient for this experiment. Had we tried to
specify every last detail of the code, we might have ended up trying to
specify the entire SIGMA system (which is a worthy goal, but not within
the scope of the experiment). We feel that what is not specified or
verified could be obtained by extension from what we have now as axioms,
abstract programs, and assertions.

This particular task of file updating has led us to discover a new
form of description of an abstract data type: the constructor history
representation. It is obvious that this is one way of defining many
data types, but it has not occurred until now that this canonical form
is of any use. Here we have used it to retain information for
recursively defined Generate and Merge operations. We might have
defined trees more as in [Guttag783 with additional assertions that
there were series of commands that give this tree. Variations and
trade-offs in definitional forms are another subject for future
investigations.

3. Verification experience. The actual proof effort has been very
tedious, but very beneficial, because the theorem prover at the start
was new, with bugs, fewer user functions, and various space and time
problems. This scaling up experiment has accelerated the development of
the theorem prover and given us much valuable experience in using it
which can be transferred next year to other u -' when the system is
released.

4.I Abstraction and structuring. The ub*e of programs with abstract
data types was the key to breaking down the complexity of the 1000 line
program. These abstract programs are only about 200 lines long and
immensely more readable tLhan those in BLISS, especially with assertions
and specifications. It is truly amazing that the essential algorithms
can be expressed even more briefly in less than a page of recursive
functions. What this demonstrates is exactly what has been claimed as
the benefit of abstraction - omit enough details and you have a highly
succinct expression of what is essentially happening. But succinct does
not mean immediately understandable. Recursive functions may be very

-326-



hard to decipher, especially for persons not familiar with the style.
However, these alternative presentations, especially as they are
associated with levels of abstraction of data, give gains of
understanding. Indeed, once we have these abstracted programs, we
wonder how the program could ever be designed or understood without
them.

What we hope to have accomplished is an existence proof:
moderate-sized (1000 lines), significantly complex (hard to understand,
weakly documented, and unpublished), real-world (written in older
languages, interacting with both lower and higher system levels, not
designed for verification) software can be formally specified and
verified, not down to every last detail but revealing the abstract
structure of the problem and implementation which either never emerged
during or disappeared after design. Here is where our earlier
observation about complementary verification methods comes to bear: this
component has been thoroughly tested and used but until this experiment
there was nothing beyond experience to convince us of its correctness.
However, the verification could not capture all aspects of the problem,
which are left to testing to convince us that the program is correct on
omitted details and that the specifications are reasonable.

Summary

This survey of research in the development of verification systems
and applications of verification to large-scale examples shows a
diversity of methods being tried and problems being tackled.
Microprograms, operating systems, communication systems, and data base
systems are the primary software being investigated, both because these
are the areas computer scientists like to study and because errors
simply cannot be tolerated. Other important areas not being
investigated on such a large scale are compilers and numerical programs,
perhaps because the techniques aren't yet developed or the applications
aren't as critical or testing and structuring suffice for the confidence
level required.

Few of the systems have stabilized and many are rather specialized.
The systems employ varying degrees of automatic proof finding and
different styles of interaction. No clear best way for any special
application has emerged, and it is likely that the next generation of
systems will combine techniques experimented with in this generation.

Few of the larger applications of verification have been pushed all
the way through. There is a tremendous amount of detailed work
involved, especially when the supporting systems are still evolving.
But most people working on these applications believe that their tasks
can be completed, given the time and resources to do so. The major
challenge is to reduce the complexity and difficulty of the tasks to
practical levels, and that will take still a few more years.

However, one finds benefits accrue from simply attempting a
verifiqation, whether carried through to completion or not.

-327-



Formalization is immensely rewarding in the insights it brings and the
complexity it reveals. The clean-up of languages has been prodded by
the need to encourage verification and to remove the obvious barriers to
it. The style of programming changes when one attempts verification.
Good modularization is essential; indeed verifiability may be a measure
of good modularization. One cannot escape the realization that there is
so much more to be said about programs than what the actual text can
convey. Good specifications and inductive assertions close the gap
between what the program text says and what is needed to understand the
program. The organization of knowledge about programs and the methods
of teaching programming have been strongly influenced by verification.
Indeed, we are finally seeing the emergence of a rational theory of
programming, which can be used to better design and verify programs and
systems.

Acknowledmements In response to a request for information, Peter
Neumann, Bob Boyer, Derek Oppen, and Steve Crocker supplied descriptions
of their work. Ralph London supplied useful criticism and claification.
I am grateful to them for their help but they are not responsible for my
interpretions and editting.

REFERENCES

[Ambler77] Ambler, A. L., Good, D. I., Browne, J. C., Burger, W. F.,
Cohen, R. M., Hoch, C. G., and Wells, R. E., "Gypsy: A language for
specification and implementation of verifiable programs", in [LDRS77]
, 1-10.

[Boyer77] Boyer, R.S. and J S. Moore, "A lemma driven automatic theorem
prover for recursive function theory," Proceedings 2f the =
International Joint Conf. n Artifiial Inte ligen, Boston
Massachusetts, August 1977, 511-519.

(Carter77] Carter, W.C., Ellozy, H.A., Joyner, W.H., Jr., and ueeman,
G.B. Jr. "Techniques for Microprogram Validation", IBM T.J.Watson
Research Center Report RC6361.

[Carter78] Carter, W.C., Joyner, W. H., Jr., and Brand, D.
"Microprogram verification considered necessary", National Comuter

Conf., 1978, 657-664.

(Crocker78] Crocker, S. "Computational Assertions",
Ph. D. Dissertation, UCLA.

[Elspas?7] Elspas, B., R. E. Shostak, and J. M. Spitzen, "A verification
system for Jocit/J3 programs (Rugged programming environment -

RPE/2)", Stanford Research Institute and Rome Air Development Center
Technical Report RADC-TR-77-229, June 1977.

-328-



[EUC] Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and

G. J. Popek, "Report on the programming language Euclid," SIGPLAN
Notices, 12, 2, February 1977.

(Floyd67] Floyd, R.. W. "Assigning Meanings to Programs", In Symp. in
Applied Mathematics, ed. J. T. Schwartz, 19-32, Volume 19, American

Mathematics Society.

[Friertag77] R. J. Feiertag, K. N. Levitt, and L. Robinson. "Proving

Multilevel Security of a System Design", Proc. Sixth, SymR. on
Oprtn Systems Prncl es-.~a ACM.SIGOPS Review

[Gerhart78a] "Program Verification in the 1980s: Problems, perspectives,
and opportunities", ISI/RR-78-71, August 1978. Also Oreonrepo n
Cm ui. ngo.Problem 2fla BQ1t , IEEE.

[Gerhart78b] Gerhart, S. L. and Wile, D. R., "Preliminary Report on the
ISI Delta Experiment: Formal specification and verification of a file
updating module", to appear.

[German78] German, S. "Automating proofs of the absence of common
run-time errors", Proc. 5th LACU SM . n _ ninc.les .Qf rfor _mming
L, Tuscon Arizona, January 1978.

[Good77] Good, D. I. . "Constructing Verifiably Reliable and Secure
Comunications Systems", Institute for Computing Science and Computer
Applications Technical Report, Austin Texas.

[Guttag77] Guttag, J. V., "Abstract data types and the development of
data structures", C , no. 6, (June 1977), 396-401.

[Guttag78] Guttag, J. V., Horowitz, E., and Musser, D. R., "The Design
of Data Type Specifications", Current Trends ia Programming

Mehoolgy-, Volume IV, editor R. Yeh, 1978, 60-79.

(ISI77) 1977 Annual Technical Report, ISI/SR-77-8, 7-24.

[LDRS77] Procedings ff an AM Conf. n LangUag Design for Reliable

Software, SIGPLA Notices, 12, 3, March 1977.

[London77] London, R. L., "Perspectives on program verification," in
Curnt Trends in Programming M, Vol. II, Program
Validatin, R. T. Yeh (ed.), Prentice-Hall, 1977, 151-172. (Revised
from "A view of program verification," International Conf. on
Reliable Software, Los Angeles, California, April, 1975)

[London78] London, R. L. "Program Verification", In Research Direcos
SSoftware T no y, ed. Peter Wegner, (to appear) MIT Press.

[Luckham77] Luckham, D. C., "Program verification and verification

oriented programming", in P e of IP Congressa 77..,
B. Gilchrist (ed.), 1977, 783-793.

-329-



[Manna78] Manna, Z. and R. J. Waldinger, "Is 'sometime' sometimes better
than "always'? Intermittent assertions in proving program
correctness," P fn tb& S International Conf. 2n

Software Eniijrng, October 1976, 32-39. Also Comm.ACM, 21, 2,
February 1978.

[Moriconi77] Moriconi, M. S. "A system for incrementally designing and
verifying programs", Information Sciences Institute Technical Report
ISI/RR-77-65 and 66, November 1977. (Ph. D. Dissertation, Univerity
of Texas at Austin).

[Morris77] Morris, J. H., Jr. and B. Wegbreit, "Subgoal induction,"
Comm. ACM, 20, 4, April 1977, 209-222.

[Musser77] Musser, D.R., "A data type verification system based on
rewrite rules," Sixth Texas Conf. n Computing Systems, Austin
Texas, November 1977.

[Musser79] Musser, D. R., I) AFFIRM Program Verifici.n Users Manual,
to appear.

[Nelson78] Nelson, G. and D. C. Oppen, "A simplifier based on efficient
decision algorithms," Rro ding Q Um 5th A= SM . = Principles

U rogJramming Langag , Tuscon Arizona, January 1978.

(Neumann771 P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt,
and L. Robinson. "A Provably Secure Operating System: The System,
Its Applications, and Proofs", SRI Final Report, Project 4332 (11
February 1977). 486 pages.

[Popek78] Popek, G.J. and Farber, D.A. . "A Model for Verification of
Data Security in Operating Systems", LACM al, no. 9, September 1978.

[Robinson77] L. Robinson, K. N. Levitt, P. G. Neumann, and A. K. Saxena,
"A Formal Methodology for the Design of Operating System Software,"
in R. T. Yeh (ed.), Current Trends in Programming Methodology,
vol. 1. 61-110, Prentice-Hall

[Wensley76] J. H. Wensley, M. W. Green, K. N. Levitt, R. E. Shostak. "

The Design, Analysis, and Verification of the SIFT Fault-Tolerant
System", Seond Int. Conf. on S Engineerin, San Francisco CA
(13-15 October 1976).

[Wulf76] Wulf, W. A., R. L. London, and M. Shaw, "An introduction to the
construction and verification of Alphard programs," IE Transaction

n Software Engineering, SE-2, 4, December 1976, 253-265. See also
Carnegie-Mellon University and University of Southern California
Information Sciences Institute Technical Reports, 1976.

-330-



The Human Engineering of a System Design
Environment for Microprocessor-Based System

Charles W. Rose
Donald C. Hewitt, Jr.

Case Western Reserve University

A design tool for the hardware and software of multiple micro-
processor-based systems consists of a generalized meta assembler, a
generalized linking loader, a register transfer language-based compiler.
for describing the system elements, an ecologist which links assembler
and compiler outputs together with a topological description of the system
into assimulation model, and a run time kernel which allows interactive
functional and performance level simulation of the target system. The
system is designed to run on a minicomputer with memory management under
the UNIX operating system. User interactions which are controlled by the
run time kernel fall into three categories: those which control the
execution, those which define inputs and change the state of the simulated
system, and those which request measurement of values or statistics and
their subsequent display. The human engineering aspects of the kernel and
the components of the system were discussed in detail.

-331-



THE HUMAN ENGINEERING OF A SYSTEM DESIGN

ENVIRONMENT FOR MICROPROCESSOR-BASED SYSTEMS

Charles W. Rose & Donald C. Hewitt, Jr.
Case Western Western University

Cleveland, Ohio

ABSTRACT

A design tool for the hardware and software of multiple micro-
processor-based systems has been developed which consists of a
generalized meta assembler, a generalized linking loader, a register
transfer language-based compiler for describing the system elemeints,
an ecologist which links assembler and compiler outputs together wit-h
a topological description of the system into a simulation model, and
a run time kernel which allows interactive functional and performance
level simulation of the target system. The system is designed to run
on a minicomputer with memory management under the UNIX operating system.
Human engineering was a major design consideration.

INTRODUCTION

It is an axiom of software engineering that interactive software
systems should be well-human engineered: that command languages and
interfaces be clear, consistent, and forgiving; that on-line HELP and
tutorial features be available that are accessible at the command level;
that error messages and diagnostics be explicit, explaining the error
and precisely identifying its location; and that the system work on
behalf of the user, reducing where possible the volume of interaction,
using context to simplify commands and saved prior state to prevent
redundant typing and reprocessing.

When the interactive software system being considered is itself a
tool for designing and developing computer hardware and software,
human engineering issues become even more crucial. In addition to
possessing the attributes listed above, a design tool 1) must preserve
its users' freedom of expression and not significantly limit their
creativity and 2) must create the impression that it is easier to
design with the system than to design manually. A tool is useless if
its potential users believe that the effort required to use it is not
matched by the leverage it provides.

Such a design tool, N.mPc, is nearing completion at Case Western
Reserve University. N.mPc is an adaptable software system to support
the development of microprocessor-based systems [11. The remainder of
this paper discusses the motivation for the development of the tool,

-332-



its structure and components, and describes in detail those human
engineering aspects of the system as a whole and of its individual
components which impact its effectiveness as a design tool.

BACKGROUND

During the last three years, interest in distributed intelligence
computer systems has increased dramatically [2] [3] [4] [5] [6]. This
interest has been generated by the availability of microprocessors
with ever increasing performance/price ratios, and predictions of
systems with still higher capability in the near future.

At the same time, however, the somewhat primitive state of
development of a theory of distributed intelligence or multiple compu-
ter systems poses a problem. The control of these types of systems
is not well understood, particularly for systems consisting of a
large number of processors (more than 64). While there is considerable
work in the area [3] [4] [6], it does not appear likely that the develop-
ing theory will significantly impact pratical system design in less than
five years. Furthermore, ad hoc techniques for designing large multiple
processors are not very adfvanced. To make matters worse, the design of
microprocessor-based systems requires knowledge of both hardware and
software technologies, few designers have both.

It is obvious, therefore, that design tools were needed which
could be employed in the creation of these systems and which would
support the skill level of the designer, provide insights into the
structure and attributes of alternative structures, allow evaluation,
and support developing theory. To meet these needs, a design and
evaluation environment for microprocessor-based distributed systems
should:

1. allow specification of multiple processor systems;
2. allow modeling at multiple levels;
3. allow changes to topology and microprocessor families

with minimum work and expense;
4. possess monitoring and control facilities which can be

employed anywhere in the target systems;
5. be useable by non-hardware or non-software specialists;
6. allow multiple processor families;
7. perform well when evaluating significant (in terms of

the number of elements) target architectures.

None of the existing tools or methodologies including prototype
implementation, conventional simulation, commercially available proto-
typing systems, or custom hardware prototyping environments possess all
of the above attributes.

The need for a design facility embodying these seven characteristics
was recognized at CWRU in 1975 and work on N.m~c was begun.

-333-



THE DESIGN ENVIRONMENT

N.mPc contains five separate tools which work together to produce
a functional register transfer level simulation of multiple processor,
heterogenous target systems. A system block diagram is shown in Figure 1.

A meta assembler, metaMicro [1] allows the user to specify the
format, nmemonics, and associated bit patterns of the target instruction
set. It maps nmemonics into bit strings, and outputs the instructions
in a control/memory allocation graph which is machine independent.

A programmable, Generalized Linking Loader [7) resolves the machine
dependent aspects of metaMicro graphs, links, and allocates the result-
ing image to physical memory according to user specified strategies.

The concept of machine independence is extended to simulation
through a computer hardware description language (CHDL) compiler [8]
which is used to translate processor and interconnection element

descriptions into executable code.

This code, the output of metaMicro and the description of the

topology of the target system are linked by an "Ecologist" [9] and
"Simulated Memory Processor" [10] programmed into a simulation model
which runs under the control of a Runtime Package [9]. The Runtime
Package consists of a Command Interpreter, "Kernel" and "Simulated
Memory Manager" (SMM). The kernel and command interpreter permit
interactive control and monitoring of simulations, while the SMM
manages the simulated memory contents, the available physical memory,
and mass storage to optimize the performance of the simulation.

metaMicro

metaMicro is a general assembler for both vertically and horizon-
tally organized target architectures. This generality is provided by
the following facilities:

1) A Declaration Section - the structure and semantics of
the target machine are described here.

2) An Instruction Section - the source program instructions

to be assembled are described here.
3) An Include Facility - predefined source text may be

included into an assembly to reduce the coding and input
complexity. Declaration sections are often "included".

4) A Conditional Assembly Facility - this allows conditional
assembly of instruction in a manner similar to that
available in conventional assemblers.

5) An Extended Macro Facility - this allows an external/
internal interface for ease of coding.

6) A Register Transfer Notation Option - this allows a
source instruction format to use register transfer
notation as well as the more common "Opcode-operand-
operand" notation.

7) Illegal Opcode Checking - this allows the user to specify

-334-



illegal object instruction bit patterns which are then
detected during the assembly process.

8) A Variable Length Capability - this allows the description
of machines with variable length instructions.

9) A Global Label Facility - this provides the capability
for linking object files.

10) Allocation Control - this provides information to the
Linking Loader about requirements for absolute addresses
and contiguous code sections.

metaMicro can assemble for machines having no more than a 256 bit-
wide instruction and referring to no more than sixteen bits at any time.
Its output is a "nodal graph", the structure of which conveys alloca-
tion information to the Linking Loader. While it is beyond the scope
of this paper to introduce the detailed syntax and semantics of metaMicro,
a well-documented example of the Declaration Section for the INTEL 8080
may be found in Appendix A.

Linking Loader

The Linking Loader/metaMicro subsystem is shown in Figure 2. The
loader accepts as input nodal graph output files from metaMicro and a
command program which defines the physical memory constraints and the
semantics of the target machine. These semantics include an instruc-
tion and format declaration section identical to that required by
metaMicro, the addressing modes of the target processor, and a set of
rules which define how arbitrarily sized code segments in a vertical
machine are to be relocated and how "next" addressing resolution is to
be accomplished in a horizontal machine.

The command program is pre-processed by an Interpreter which adds
information to allow tracing of the allocation process and creates
internal commands which specify when logical to physical address
translation is required. This allows relocation by the second compo-
nent, the Allocator.

The Allocator is the process that combines metajMicro output files
into an actual executable form according to the command program trans-
lated by the interpreter. The nodal file contains information speci-
fying which instructions contain label references. The Transfer
Declaration is used to specify the format of the unconditional trans-
fers which may have to be inserted into the program in order to allocate
a fragmented memory. The user may instruct the Loader to use a modified
first fit, a fragmented memory, or low packing or high packing alloca-
tion strategy. After the allocation resolves all label addresses and
allocates the available physical memory according to one of the four
user-specified algorithms, it then binds the instruction label refer-
ences according to the MODE declaration in the Interpreter program.
The Interpreter programs for most microprocessors, vertical and hori-
zontal, consist of less than two pages of code. The Interpreter pro-
gram for the Intel 8080 is shown in Appendix B.

-335-



ISP' Compiler

In order to create the simulation model of a processor or other
hardware module its structure and function must be specified in a form
which can be compiled to executable code. For this purpose, a regis-
ter transfer language, ISP', a modification and extension of ISP ill),
and a compiler which converts ISP' module descriptions to executable
PDP-ll code was developed.

,SP' was designed to allow the description of multiple processor!
module architectures, a capability not found in other Computer Hard-
ware Description Languages, (CHDL's). It contains the construct,
PORT, which is an inlet (outlet) to (from) the environment external to
the processor being described. Ports may be read and written by the
processor in the same manner as any other storage elements. To allow
easy synchronization between modules, a WAIT construct was added.
WAIT suspends the execution of a simulation process until a specified
condition occurs on a PORT. Also, a WHEN construct was included which
allows the execution of an auxillary process WHEN a port condition
holds. This is especially useful in the efficient simulation of
interrupts.

Finally, events within a processor may be separated in time by
the use of a NEXT TIME DELAY construct which specifies the execution
or delay time associated with the previous register transfer statement.

An abbreviated ISP' description of the INTEL 8080 is shown in
Appendix C.

Ecologist

The Ecologist, driven by a description of the target architecture
(network) called the topology, generates an executable program for the
simulation of the network. The topology of the network consists of a
series of declarations that define the components of the network:

Signal declarations:
Define data buses used to connect the ports of hardware
described in ISP'.

Processor declarations:
Create an instance of a processor or other hardware described
by ISP', which can be referred to by name at runtime.

Time delay declarations:
Define the time unit to be used with the DELAY statement
in a particular ISP' processor.

Connections declarations:
Connect the PORTs of an ISP' processor to signals defined
in the signal declarations. By using field specifications,
a port may be connected to a portion of a signal.

Init.al declarations:
Bind a MEMORY of an lSP' processor to either a linking
loader output file or to a UNIX file or device. The use of
a linking loader output file is called a processed memory,

-336-



whereas a UNIX file or device is a raw memory. Raw memories
allow the connection of an actual terminal or other peripheral
to a simulation, to allow a natural user interaction with the
simulated system.

After reading the topology of the network, the Ecologist finds and loads
the ISP' output modules for each of the hardware components in the net-
work, and forms simulated data buses to connect the ports of the hard-
ware components. Finally, the simulation Kernel is loaded into the
simulation.

In addition to the simulation program, the Ecologist creates two
other output files. The runtime symbol table file contains all the
information necessary to reference, at runtime, any structure defined
in an ISP' source program or in the network's topology. The memory
list file contains the names of all memory files required by the
simulation, for later use by the simulated memory processor.

Simulated Memory Processor

Driven by the memory list output of the Ecologist, the Simulated
Memory Processor (SMP) prepares memory files for use by a simulation.
All linking loader output files needed by the simulation are converted
from the packed format produced by the linking loader to the segmented
or paged format required by the simulation program. Raw memories
(Unix files or devices) found on the memory list file are not processed
by SMP. In addition to the processed memory files, SMP creates a
memory symbol table file containing the names of the memory files
available to the simulation and the global labels defined in the
memory files.

Figure 3 illustrates Ecologist and SMF subsystem in a block
diagram form.

Runtime Package

The runtime package consists of the simulation kernel, the simu-
lated memory manager, and the runtime command interpreter. Because
of the limited (32K words) address space available to a program on the
PDP-ll, the runtime package has been split into three separate programs,
each communicating through the UNIX interprocess communication mechanism,
pipes. 1 The simulation kernel and ISP' output modules that make up a

1Under UNIX, cooperating processes may communicate using the pipe

writing and by another program for reading. Data written to the pipe
by the writing program is buffered and later read by the reading pro-
gram. A read from a pipe with no buffered data causes the reading
program to be blocked until data is written to the pipe. By using a pair
of pipes, a bi-directional communication channel may be created between
two programs. [123

-337-



simulation reside in the same address space, communicating through
pipes with the command interpreter and simulated manager, both in their
own address spaces.

The simulation kernel performs the ISP' process scheduling and
data manipulation functions required for the execution of the simulation.
These functions are envoked by running ISP' processes through calls to
several kernel routines. Because the kernel manages all scheduling and
data manipulation, the user of the simulation gains access to the
scheduling information and the contents of ISP' STATES, PORTS, and
MEMORIES. In addition to the above mentioned tasks, the kernel also
manages the breakpoints and monitor functions that allow the automatic
collection of data from a simulation.

Simulated memories are handled effectively by the simulated memory
manager. Through the use of one or two simulated memory managers
communicating through pipes with the kernel, up to 128K bytes of simula-
ted memory may be buffered in the main memory of the PDP-11 reducing, or
in many cases, completely eliminating the need to access simulated memory
on mass storage during a simulation. The simulated memory manager also
handles raw memories, providing an optional prompting service that prints
messages requesting or lakeling data read or written by the simulation.

The interface between the user of a simulation and the simulation
itself is handled by the runtime command interpreter. This program
accepts commands from the user to examine or modify the simulation
state, control the execution of the simulation, set execution break-
points, and establish mechanisms that allow the automatic collection
of data from a running simulation.

A block diagram of the runtime package, showing pipes as well as
input and output files is given in Figure 4.

SYSTEM LEVEL HUMAN ENGINEERING

Of the components of N.mPc, only the runtime portion (Kernel,
Ecologist, and Simulated Memory Processor) is interactive; metaMicro,
the Linking Loader, and the ISP' compiler process files prepared in
advance by the users, and their only direct interaction with the user
is during invocation. In this section human engineering features
common to these non-interactive components are examined. Properties
specific to each will be discussed in later sections together with the
human engineering features of the runtime environment.

Include Facility

Once a machine or module is selected as a component in a target
architecture, it is reasonable for a user to expect to code the
declaration section of metaMicro, the Interpreter Program of the Loader,
and the machine description in ISP' only once, and to invoke them
subsequently, whenever required, to assemble a source program, allocate
and link a memory image, and perform a simulation. To accomplish this

-338-



purpose, an Include Facility is included in the assembler, loader,
and compiler which allows the temporary redirection of source input
to the processor.

The format of the include statement is as follows:

include filename$

include is the keyword that invokes the include mechanism. The
file-name is a string that points to the proper file where the desired
source text resides, and the statement is terminated by a '$'. This
is the format of an include statement irrespective of its context.
The processor will replace the include statement with the include file
contents until end of file is reached, and then revert the source file
back to the previous file. It is important to realize that all pro-
cessors perform the include function exactly as stated above. The
last character of the include file precedes the next character after
the '$' in the include statement - no additional characters are
imbedded. This can prove to be valuable, as in the case of including
a general statement to which one desires to concatenate additional
information. The concatenation will be performed correctly.

This facility is strictly checked for errors. A file name must
contain forty or less characters, exclusive of tabs, carriage returns,
newline, and spaces. If the file cannot be found, a fatal error occurs
and parsing is terminated. The facility also disallows the nesting of
more than one level of includes, and this error is fatal to the assem-
bly, loading or compiling process.

Based upon the implementation of the include facility, it is
possible to place an include statement anywhere, with few exceptions,
and have it recognized properly. The exceptions are: in a comment
and in a string. All other occurrences of an include statement are
allowed.

Using the Include Facility, libraries of element descriptions
can be created and accessed on demand. Thus, the usefulness of the
tool increases tremendously with use. When designing with elements
already in the library, a user must only prepare metaMicro source code
and invoke the assembler and loader; specify the topology and the ele-
ment description files names to the Ecologist; and run the simulation.

UNIX - Compatibility

The invocation command formats are compatible with the general
UNIX command structure so that any user familiar with UNIX will have
no problem adapting to N.mPc. In addition, N.mPc follows UNIX file
naming conventions: all metaMicro source files have a .M extension;
all nodal output files have .N extensions; Interpreter source pro-
grams use .I; their interpreted forms use .A: etc. Using these
extensions, the UNIX "wild card" file naming convention can be used
so that, for instnace, the Allocater can be commanded to link and
load *.N, or all files in the current directory with a .N extension.

-339-



Even with this capability, the invocation of the assembler and loader
for several source files still requires considerable typing on the
part of the user. The next feature further simplifies this process.

MAS-micro assembler

To further simplify the invocation process, a preprocessor, MAS
was developed which allows the user to specify, in one single UNIX
format command, the assembly and linking process for any one machine.
MAS expects all .1 and .A file libraries to exist in one directory so
that, by specifying only the machine name, say 18080, MAS will select
the 18080.A file if available or the 18080.1 file if it is necessary
for the Interpreter to process it. In addition, up to ten file names
with .M and .N extensions may be specified together with execution

options to the assembler and loader. MAS will cause metaMicro to
assemble those files with .M extensions and then cause the link/loading
of all .N files under control of the specified .A Interpreter program.

Using MAS, the amount of interaction with N.mPc is reduced to a
base minimum. A similar facility, EC, has been developed to simplify
the invocation of the Ecologist and Simulated Memory Processor. It
will be described in some detail later.

COMPONENT LEVEL HUMAN ENGINEERING

metaMicro

As stated earlier and shown in Appendix A, metaMicro allows the
developer of software for virtually any mini or microcomputer to
define the structure and semantics of the target machine so that source
programs can be prepared and assembled for the machine in either a
conventional assembler format or in a register transfer format. The
objective of this declaration section is to define the bit patterns
which are logically "ORed" into an assembled instruction word when
the associated mnemonics and operations are encountered in a source
language statement.

In addition to the command language features, file extension
conventions, and the include facility common to all N.mPc components,
metaMicro possesses several other capabilities which significantly
impact its usefulness as a software design tool. Several of these
capabilities simplify the manner in which machine specification and
source programs are described to the assembler, while other provide a
rich feedback to the user. Among those in the first category are If's,
Lists, Macros, BEGIN/END,SET/TES, and Illegal and Bind declarations.
The Illegal and Bind declarations work together with a powerful Diag-
nostic facility to provide precise feedback on the nature and loca-
tion of potential and/or actual user errors.

-340-



If Facility

The If Facility provides conditional control of the assembly
process. It functions much like the Include Facility. The basic
idea behind an IF is a conditional diversion of text, whereas an
include is an unconditional diversion. The format of an IF statement
is as follows:

if expression then {text} else {text}

expression is any valid metaMicro expression, text may be anyting,
including another if statement. As each text operand must be delimited

by '{}', there is no ambiguity introduced by nesting if's in then's
and else's. The 'else {text}' portion is optional.

When the IF token is parsed, the expression is evaluated. If the
expression is non-zero, the next source of characters will come from
the text associated with the then '{W' pair whereas, if the expression
is zero, the text between the '0' pair associated with the else clause,
if present, is the next source of characters.

Lists

A list structure is employed in metaMicro to define items with
similar characteristics (i.e., global labels, macros, etc.). The
structure consists of the definition descriptor (I.E., global, macro)
followed by the items of the list separated by commas, with the entire
list being terminated by a '$' (In general, the '$' character terminates
all metaMicro statements.). Null lists are not permitted and a list
may contain any number of items.

Lists are used in the 8080 description of Appendix A to specify
formats, macros, illegal opcodes, etc.

Macros

To force bit patterns into fields within an instruction, there
are two types of statements: field assignments and register transfers.
To explicitly define those patterns each time their mnenomic or trans-
fer operation is encountered would be extremely cumbersome for reason-
able applications. It was, therefore, necessary to create an interface
between the form of mnemonics and operands that the user would like to
u~e and the internal statements metaMicro requires. This interface is
the macro processor, a very general, highly flexible facility.

The declaration keyword is macro and the declaration is in the

metaMicro list format.

The format of a macro declaration element is as follows:

macro-name = macrobody &

-341-



macro-name is an identifier by which the macro will be referenced.
Appended to the macro name may be a parenthisized parameter list
with any number of parameters, each separated by ',' . Macrobody
may consist of entire statements, other macro calls, partial state-
ments, etc. In the 8080 example in Appendix A, macros are used to
define the bit patterns to be logically Or'd into the instruction
word when the various source op-codes and register specifications
are encountered. In short, any information may be contained within
macro body including another macro. Macros may be nested to depths
of 32. This statement can be made because a macro reacts much like
the include facility. A macro merely indicates a temporary redirec-
tion of source input. That redirection is parameterizable for greater
flexibility, but still amounts to a simple textual replacement. The
macro facility metaMicro is an extremely powerful feature.

Begin/End

Since metaMicro and the Linking Loader are general tools, it must
be possible to explictly specify those segments of code which must be
logically and physically contiguous. The BEGIN/END construct allows
the first specification.

For the purposes of metaMicro, there are two types of machines
that may be defined: vertical and horizontal. A vertical machine is
one that does not have a next address field associated with each and
every instruction whereas a horizontal machine does have this field.

Assume that the field na is the next address field of each
instruction.

instruction; na = . + 1$
instruction; na + . + 1$

instruction; na = start$

In this sequence, the user must supply the next address value for the
collection of code. As a convenience, the Linking Loader will perform
this function for the user as long as the instructions in question are
located within a logical block (begin-end pair). In short, the user
need only code the following to force the same flow of control as in
the last example:

instruction$
instruction$

instruction; na = start$
end

-342-



In the last instruction within this logical block of code, the user
must provide his own next address field since the Linking Loader will
not make an attempt to determine where to transfer control. It is
entirely possible that a segment of code delineated by the begin-end
pair may be the main instruction decoding loop, involving PC incremen-
tation, instruction fetch, and the beginning of the decode phase.
These instructions should be logically contiguous, but the Linking

Loader cannot determine what to do at the end of the block.

Set/Tes

In microprogramming (horizontal machines), it is a common
practice to dispatch to appropriate locations based on bit field
patterns. This is a method by which hardware is designed, and design
tools intended to facilitate programming for these machines must
support this function. In essence, a user would like to guarantee that
certain sections of code occupy successive memory locations, and this
facility is present in metaMicro by using set-tes statements.

This dispatching causes a multiway branch to occur. After this
demultiplexing operation, one normally wants to transfer, or multiplex,
control to a common point. The ability to return control to that
common point is another facility of set-tes statements.

Consider the following example:

set
decode: instruction$

instruction$

instruction$
tes

instruction$

A user has decoded a field of an instruction and has decided to dispatch
to 'decode' plus that field. The instructions contained within the set-
tes pair will be allocated by the Linking Loader contiguously. In addi-
tion, the loader forces the next address fields in the instructions
determined by the set and tes to point to the instruction immediately
after the tes. If more than one instruction must be executed in the
dispatch, BEGIN/END can be used to conveniently form compound instruc-
tions.

Illegal

Another function of assemblers is to disallow certain combina-
tions of opcodes and operands. metaMicro also has this facility and
the user has the ability to define which combinations are illegal via
the Illegal Opcode Declaration. The user defines an instruction proto-
type of an illegal instruction and metaMicro checks each instruction
formed in the instruction section with the illegal instructions defined.

-343-



It should be noted that the maximum instruction size of words is used
each time that a check is made. If a match, occurs, *a warning message
is generated. In all cases however, the instruction generated is
always placed in the output file. As is the case with much of the de-
claration section, the illegal declaration is also in the form of a
list, with the definition keyword being illegal.

The format of an illegal declaration list element is as follows:

(bit-pattern-formation) message

bit__pattern_- formation must consist of field assignments and register
transfers. Message is an optional string that is appended to a warning
message which is generated when the instruction is encountered.

Bind

For some machines, many opcodes or instruction formats may be
illegal for the same reason, and therefore, the same warning or error
message should be generated for each. Were a string defined for each
illegal opcode, extensive internal storage would be used, and the user
would have been forced to do a lot of typing. To remedy this situation,
the Bind Declaration was developed. Simply, a bind name is related to
a string, allowing the string to be defined o~nce and a name to be
associated with it. Each time a specific string is required, the bind
name may be used, at a substantial savings of storage. Again, a list
structure is employed and the declaration keyword is bind. Bind is
used extensively in Appendix A.

The format of a bind declaration list element is as follows:

string _name message

The bind name is an identifier which may only be used in an illegal
declaration. Message is a string and must not be null. However, the
contents of the string may be null or of any length.

Error Messages

As metal~icro parses source text, errors may occur, prompting the
display of error messages. There are three levels of error messages:
warning, error and missing, and fatal. A fatal error terminates the
parsing process whereas the others do not. In general, a warning
message means that the results of the assembly process will probably
execute correctly. An error or missing message indicates that execu-
tion is improbable, and a fatal error means execution is impossible.
Error and fatal error messages should not be ignored as the linking
process will not be attempted with these types of errors. However, a
warning message does not affect the linking process.

The general content of an error message is as follows:

*degree* module: message

-344-



ADO-AIo 252 INTERNATIONAL BUSINESS SERVICES INC WASHINTON DC F/I 9/2
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMSBURG, VIROINIA-ETC(U)
1978 S M TAYLOR DAAK7O-78-O-0030

UNCLASSIFIED

llllImmllllllEE//l/I/l/l/EE
lElllEEEEllEEE
ImIEEEIIEEEEEEEI



The degree portion is one of warning, error, missing, and fatal.
Module denotes the area where the problem occurred, and is specific
to the syntactic element level. The message portion describes the
error, and is self-explanatory. If the listing option was disabled,
messages also contain the source text line number causing the error.

metaMicro breaks the current source line at the point of trouble
and then generates the appropriate message on the next line. The
remaining text is placed on the next line after the error message, in
such a manner as to line up correctly with its former location within
the original source line. In cases where parsing may continue,
subsequent errors within the same line are again broken in the same
manner.

There is no limit on the number of errors detectable by an
execution of metaMicro, but since metaMicro does know end of file, it
will eventually terminate.

Linking Loader

The Linking Loader is unique. It allows its user to define in a
concise manner not only the machine structure for which it is to allo-
cate metaMicro nodal files, but also the allocation strategy to be
employed. The fact that it obviates the necessity for machine depen-
dent loaders to be designed for each new target machine is, in itself,
a major human engineering accomplishment. In addition, the Linking
Loader has other features which assist the user in specifying the
operations to be performed, debugging the Interpreter command program
and evaluating the output of the Allocator.

Space Override

The memory space declaration is part of the Interpreter program
which is typically static and "included" when linking files for a
particular machine. However, the allocation algorithm and available
memory space may differ with target architectures. Therefore, the
invocation command allows explicit specifications of the allocation
algorithm, and also, an option to override the memory space declara-
tion in the Interpreter program. If the override option is set, the
loader will prompt the user at the terminal to enter a new space
declaration for the purposes of the current linking operation.

Print Statement

The Interpreter command program language includes the capability
of defining a Print statement at any point in the Interpreter program.
A string is associated with the statement and is printed whenever it
is encountered during execution of the program.

As instructions are allocated, the user may want notification of
certain situations. The print statement may be used to display any

-34 5-



information necessary to isolate the cause of a problem. Specifically,
the print statement can indicate precisely which instruction is being
resolved and any other information concerning the status of that
instruction. Examples of its use are display of metaMicro program
errors resulting in inconsistent Linking Loader input, allocation of
instructions such that certain addressing modes cannot access those
instructions, and trapping accesses into restricted areas of the target
machine address space. Also, the print statement may be used to aid
in debugging Linking Loader command programs.

Statement Trace

The ability to trace the flow of control during the execution of
the command program has been designed and implemented into the Linking
Loader. The Interpreter adds statement numbers directly into the
interpreted command program file so that the allocator need only extract
them when executing the command program.

Error Messages

An error message facility similar to that existing in metaMicro
is incorporated into the Interpreter. It provides feedback to the user
on syntax errors in the Interpreter command program.

Reporting Facilities

Since the logical address space created by any one metaMicro

assembly is likely to be allocated non-contiguously by the loader
because of memory constraints, and because this non-contiguous alloca-
tion may result in the addition of new instructions (transfers) or
the modification of existing ones (changes next address field in hori-
zontal machine instructions), the user requires certain information
which will allow him to evaluate the effectiveness of the allocation
and to debug the object program during execution. The Linking Loader
provides several reports for this purpose.

The LOGICAL SPACE MAP shows how the logical spaces are allocated
in the target machine address space. The entries in this and other
reports are generated by showing each and every subspace division
determined by both mapping and allocation. The LOGICAL SPACE MAP
report lists divisions in the order in which the logical spaces are
presented to the allocator whereas the PHYSICAL SPACE MAP report lists
divisions in increasing order by absolute address. With these two
reports, a user can easily determine where code is located by file
name as well as what code is located at a certain address.

The EXTERNAL SYMBOL TABLE report shows where global labels are
located in the machine address space and the logical spaces that have
referred to them. Unreferenced global labels indicate their unreferenced
status. The FREE SPACE AFTER ALLOCATION report shows where areas in the

-346-



target machine address space have not been used to allocate the current
mix of logical spaces. The free space indicated plus the space allo-
cated to logical spaces plus the space used by unconditional transfers
in the vertical case will always equal the space defined in the spac
declaration of the Linking Loader command program. The TRANSFER LOCA-
TIONS report lists the new transfer instructions which were added by
the Allocator. It indicates the physical location of the instruction
and its logical target.

These reports together with the Trace and Print facilities, pro-
vide the user complete feedback on the Linking Loader process and its
results.

ISP' Compiler

The ISP' Compiler is patterned after metaMicro from a human
engineering standpoint. It, too, possesses a precise Error/Warning
Message facility and supports the Include function.

In addition, it also provides several constructs which make
posLible the straightforward description of the synchronizaiton of
concurrent independent processors or elements during a simulation.
These constructs were mentioned briefly in an earlier section. A
short example oftheir use will be presented here to demonstrate their
power.

WRITER

port resume,bus,ready; ! Three ports declared
state R; ! A register,R
main := ( ! Begin main process

bus = R; next(deskew) ! Put data, delay for settling
ready = 1; ! Send ready signal
wait(resume:lead) ! Wait for resume to rise from

READER
ready = 0; next I Respond to resume from READER
wait(resume:trail) I Complete handshake. Resume falls.
main I End main process
)

READER

port resume,bus,ready; ! Same three ports. Assume they are
state P; ! Connected.
main := ! I A register,P

wait(ready:lead) ! Wait for data present. Ready rises.
P = bus; next ! Read data when ready
rcsume = 1; next ! Signal data consumed
wait(ready:trail) ! Wait for WRITER response. Ready falls.
resume = 0; next ! Complete handshake
main
)

-347-



This writer/reader example typifies the transfer of data on an
asynchronous bus. The writer places a data word onto the bus, then
waits for a data deskewing period before signaling "data ready". The
writer process suspends operation until the resume flag is asserted.
The reader, which has been waiting on the "data ready" flag, begins
operation and reads the data from the shared bus. The reader asserts
the resume flag acknowledging the reception of the data, and waits
for response from the writer process. Upon sensing the leading edge
of the resume signal, the writer drops the ready signal and awaits the
lowering of the resume flag. The interlock is completed as the
reader awakens and clears the resume flag, thus reawakening the writer,
which repeats the writing operation.

System timing specifications have been added to ISP'I by extending
the "next" separator. The reserved word " delay" may be followed by a
time constant which represents the execution or delay time associated
with the preceding register transfer. The ISP' statement,

R = P; delay(400)

has the interpretation: "Transfer the contents of register P to
register R. Then suspend process execution until 400 time units have
elapsed.''

Ecologist

The strong point of the Ecologist is its simplicity. To construct
a simulation program for a network, the user of the system simply
creates a file containing the topology of the network, generates the
necessary ISP' and Linking Loader outputs, and runs the Ecologist.
Appendix D illustrates the topology of a simple 8080 system, based on
the 8080 described in Appendix A, connected to simple memory, clock,
and 1/0 modules.

To allow the use of libraries of standard ISP' descriptions, the
Ecologist is capable of generating full path names (names of UNlIX files,
including specification of directories and subdirectories) from simple
filenames. A library directory may be specified when the Ecologist is
invoked, so that when the Ecologist cannot find an ISP' output file in
the current directory, it searches the library directory for the file.

Simulated Memory Processor

Driven by the memory list output of the Ecologist, the simulated
memory processor requires very little input from the user. To run the
simulated memory processor, the user simply specifies the name of the
simulation for which memories are to be processed and an option letter
specifying the page size to be used for the processed memories. A
listing option is available that cause SMPl to print out a verbose
listing of its actions.

-348-



EC,A Utility For The Execution Of The.Ecologist And SMP

Because both the Ecologist and SMP must be run t9 create a
simulation, a utility, EC, has been developed that executes both of
these programs. EC is invoked by specifying a simulation name to be
passed to both the Ecologist and SMP, options to both the Ecologist
and SMP, and an optional directory name that is passed to the Ecolo-
gist for use as the ISP' library directory.

To allow the use of EC to run the Ecologist or SMF individually
as well as together, EC asks its user whether the hardware of the
simulation, the software of the simulation, or both are to be changed.
If hardwar, is specified, the Ecologist is run, and if software is
specified, only SN1P is run.

The Runtime Package

The runtime command interpreter implements the interface between
a running simulation and the user of the simulation, User commands
are interpreted and transmitted to the kernel in an encoded form, thus
removing the space consuming interpretation process from the address
space of the simulation, as well as allowing room for the development
of a more powerful command set. Figure 4 illustrated that the command
interpreter has access to the runtime symbol table file and the memory
symbol table file, permitting user commands to specify structures in
the simulation by name, rather than by machine generated number,

The interface to the simulation is easy to use, consistent, and
provides the user with access to all aspects of the simulation. The
command set provided to the user is complete and concise.

It has a number of features developed for user convenience. A
"help" command is available that can either list the available commands
or give detailed instructions for the use of a specific command.
Commands, in general, consist of a keyword used to specify the command
followed by a list of parameters to the command. Use of the command
set if simplified by allowing the abbreviation of commands to the
shortest character string that uniquely defines the command. Other
conveniences include: the ability to input values in ascii, binary,
octal, decimal, or hexidecimal; the ability to specify output in any
of the bases; and addressing of memory by either numerical subscripts,
labels, or both.

Files of command interpreter commands may be executed through the
"include" command, which allows many levels of nesting. Included files
may be used either for the initialization of structures in a simulation
prior to execution, for the initializaiton of frequently used breakpoints
or monitors, or for the examination of multiple structures at runtime.

There are five basic types of interaction between the user and the
simulation.

-349-



_____________ m 7=

Simulation Control

The simulation, when started, locates its various symbol and
memory files without user intervention. At any time, the user may
save the complete state of the simulation, and either continue execu-
tion of the simulation or terminate the simulation. The simulation
is restartable from any saved state.

The user starts the simulation by running the program produced

by the Ecologist.

The simulation is stopped with the "quit" command.

The "save" command causes the current state of the simulation
to be written to a file and made executable, so that the simulation
may be restarted from that state at a later time,

Through the "msave" command, memory files may be saved indivi-

dually or collectively.

State Manipulation

Any structure defined in ISP' or in the simulation topology is

availabie for examination or modification by the user. Structures
are referenced by name, and memories allow indexing on labels defined
in the metaMicro programs they contain.

Any ISP' structure (state, memory location, or port) may be
examinted through either the "ascii" or the "examine" command. The
structure is specified by giving the processor name, defined in the
topology of the network and the ISP' structure name. For example,
to examine the state, "pc", in the processor, "cpu", the following is
typed:

examine cpu : pc

In addition, a default processor may be defined through the"setproc"
command, as illustrated in the following set of commands that
examines the structures, "pc", "ir", "address", all in the processor,
"cpu":

setproc cpu

examine : pc
examine : ir

examine : address

Any ISP' structure may be modified through the "deposit" command.
To deposit a value of 32 in the pc of cpu:

deposit 32 cpu : pc

-350-



Ascii strings may be used as values in the deposit command, as

illustrated here;

deposit "a" cpu : a

Signals may be examined by name through the "signal" command.

Memory locations may be examined with the help of labels defined
in the metaMicro programs stored in the memory. Three address formats
are allowed, labels, numbers, or both.

examine cpu : mainmem[ start
examine cpu : mainmeml 4 1
examine cpu : mainmem[ start - 3 ]

Execution Control

The "status" command prints, for each ISP' process, the name of

the processor to which the process belongs, the source listing line
number where the process is currently executing, and the state of the
process. & process may be either running, ready to run at a future
time, or waiting for a port condition. The port name and condition
are printed for processes waiting on a port, and the activation time
is printed for processes waiting on time. The "status" command may
also be used to examine the statue of either running, ready to run,
or waiting processes only.

Execution breakpoints, which stop the simulation when the
specified condition holds, may be set either on time values or on
structure conditions through the "bkpt" command. To set a breakpoint
on time, the user specifies the amount of simulation time, in nano-
seconds, before the activation of the breakpoint, as in the following
example,

bkpt 1000

which sets an execution breakpoint 1000 nanoseconds from the current
simulation time. To set a breakpoint on a structure, it is necessary
to specify the structure, as in the "examine" or "deposit" commands,
and a breakpoint condition. The available breakpoint conditions are:
any read from the structure, any write to the structure, a change in
the structure value, an increase or decrease in the structure value,
as well as a write to the structure that causes the structure to be
equal to, not equal to, greater than, less than, greater than or
equal to, or less than or equal to a specified value. Any combination
of these conditions may be used, as long as only one of equal, not

equal, greater than, etc. is used. For example, to generate an
execution breakpoint when the program counter of processor ioproc
either decreases or becomes greater than 400:

bkpt loproc : pc decrease gtr 400

-351-



In addition to the breakpoint constructs listed above, break-
points may be repeated automatically by using the "'repeat" prefix to
the bkpt command. Breakpoints on time, when repeated, generate a

series of breakpoints separated by a fixed amount of time. Break-
points on structure values, which normally are removed after one

activation, are not removed when repeat is specified. An example
of the repeat command, designed to stop the simulation each time the
8080 input instruction is executed (op code 11011011) is:

repeat bkpt : ir eql OblIOllOll

Note the use of a default processor assignment through the omission

of the processor name in the specification of ":ir", To allow more
complex breakpoint mechanisms, breakpoints may be serially linked
using the "after" specification. The keyword, "after", establishes
a list of breakpoints, which affect execution as though the last
breakpoint on the list were established, the simulation run until
the breakpoint causes execution to stop, the next breakpoint then
established, etc. For example, the command,

bkpt 1500 after cpu : pc eql 40 after : intr change

used to stop execution 1.5 milliseconds after the pc of the processor
cpu reaches 40, after the intr flag changes, is equivalent to the
series of commands,

bkpt : intr change
run
<wait for execution to stop>
bk cpu : pc eql 40
run
<wait for execution to stop>
bk 1500

The "after" specification may be used with repeat to cause a complex

repeating breakpoint.

All bkpt commands return a number that is the number of the
breakpoint. When the breakpoint causes the simulation to stop, the
message,

Simulation halted by breakpoint <number>

is printed.

In order to find what structure or time value caused the activa-
t'ion of a breakpoint, the whatis command is used. This command echos

the command typed by the user while setting up the breakpoint under
question. For example, to determine what caused the stop of execution

above, the user may type:

whatis 39

-352-



The whatis command may be used at any time, not only immediately
after the breakpoint stops execution.

The "remove"1 command is used to remove breakpoints that have not yet
been activated or to remove repeating breakpoints, The remove command
requires as a parameter the number of the breakpoint to be removed, as
in the following command to remove breakpoint 39:

remove 39

The "~run"I command simply begins or continues the execution of
the simulation. The execution continues until an execution breakpoint
is activated, or until the keyboard interrupt key is pressed by the
user of the system.

Automatic Collection Of Statistics

Monitor facilities are available to automatically collect and
display or store data from a running simulation, The basic commands
available are" "display", "trace", "ttimer 1 , "sum", and "maxmin".

The display command is used to display the contents of a struc-
ture on a terminal during a simulation. A display is initiated by
typing "display" and a structure name, as shown here;

display cpu : ir

The command interpreter returns a display number which is used to
identify the display. Each time a running simulation writes to the
structure being displayed, a line is written to the terminal containing
the display number, current simulation time, and new structure value.
Multiple displays may be active at any time,

The trace command is similar to the display command, but writes
a record to a trace output file instead of the terminal. This file
may be post processed to yield trace listings, timing diagrams, histo-
grams, etc.

Both traces and displays may be enabled and disabled by breakpoints,
and the "repeat" prefix may be used to "repeat" the enabling and dis-
abling process. The following example illustrates these functions:

repeat display cpu : a enable cpu: pc gtr 5 disable 400

This display causes the structure "a" of cpu to be displayed for 400
nanoseconds after each time the pc of cpu receives a value greater than
5. if "repeat" were not specified, the display would be enabled once,
and then removed 400 nanoseconds later.

By using the "sample" option, a trace or display may occur on a
condition other than a write to the structure under observation, for
example,

display cpu : pc sample cpu : ir write

-3 53-



causes the pc of cpu to be displayed each time the ir of the same
processor is written. Repeat, enable, and disable also function with
sample.

Timers are used to obtain the time difference between two events.
A timer is specified by a start and stop breakpoint, as well as an
optional trace or display directive. Timers normally display the
simulation time difference between the start and stop breakpoints, but
they may be directed to write this data to the trace file. The follow-
ing conmmand is used to find the time required to execute the instruc-
tions between location 40 and location 50 of a program:

timer start cpu :pc eql 40 stop cpu :pc gtr 50

The summation and maxmin commands examine a structure each time it
is written, and either collect the sum of all values or find the maxi-
mum and minimum values of the structure. The sum or maximum and mini-
mum may be displayed by executing the summation or maxinin commands and
specifying the sum or maxmin number that is desired. For example, the
following series of commands is used to find the maximum and minimum
values of a stack length register during a 2 millisecond period:

maxmin : stklen
<number 34>
bkpt 2000
run
<wait for execution to stop>
maxmin 34

Any of the above data collection mechanisms may be removed, along
with their associated breakpoints, by executing a remove command and
specifying the number of the mechanism to be removed. In addition,
the whatis command may be used to find the command used to initiate any
data collection mechanism.

Error Reporting And Recovery

The system recognizes and gracefully recovers from any runtime
error.

Any runtime error, say, an illegal subscript or deadlock condition,
results in an error message printed to the user. All related ISP'
structures are explicitly named, and the current line number in the ISP'
description of the simulated processor is printed. No recovery action
is taken other than returning control to the user to allow either
further exploration of the fault or a restart of the system.

Errors in commands typed by a user result in descriptive error
messages from the command interpreter. Illegal or erroneous commands
do not modify the simulation state in any manner, so that the careless
user cannot easily destroy a simulation.

-354-



Through the use of raw memories, the simulated memory manager may
also communicate with the user. If a simulation contains raw memories
(ISP' memories connected to UNIX files or devices), tile user is prompted
at the beginning of the simulation to determine whether the assignment
of raw memories to UNIX files and devices is to be modified. This
prompting allows the user to connect a simulation to a different
terminal than originally planned without rebuilding the simulation
through the Ecologist and SNP. In addition, raw memories may be
instructed to prompt the user before reads or writes thus allowing the
routing of multiple ISP' memories to a single terminal without confusion.

The command set described above provides a valuable user interface
to a simulation. Complex activities, such as the production of timing
diagrams, or the production of "Logic Analyzer" type output, are not
performed at runtime, to save on the time and space requirements of
a simulation. Post processing of trace file data provides an open
ended mechanism for the extraction of data from a simulation, without
requiring additions to the runtime package itself.

SUMMARY ANDf CONCLUS IONS

N.mPc has been created as a design tool for multiple processor
hardware/software systems. Its intent is to allow system designers to
evaluate alternative architectures in a reasonable time and without
committing to expensive special-purpose development hardware.

The human engineering of this tool was a primary design considera-
tion. Care has been taken to minimize the amount of unessential user
interaction while at the same time, not sacrificing user freedom of
expression and creativity. Furthermore, while concise Error and
Warning facilities are incorporated, the user is allowed to specify
additional feedback if he desires.

In March, 1978, Case Western Reserve University was awarded a
contract to complete the implementation of N.mPc on a PDP-11/70 under
UNIX.

metaMicro and the ISP' compiler, together with the Linking Loader
have been completed. metaMicro and the Loader have been delivered.

The Ecologist is working and most of the kernel is also.
Simulations have been running since August, 1978. Implementation
should be complete in November, 1978. Preliminary results indicate
that N.mPc can simulate about 200 8080-class machine instructions
(about 4pi sec) per elapsed time second on a PDP-11/34 implementation
of N.mPc. This will translate to about 1000 instructions/second on
the target PDP-ll/70, or a simulation to real time ratio of about 250:1.

This number represents the total simulation rate for N.mPc.
Therefore, as the number of processors increases, say to 4, the simula-
tion time required to execute 1000 instructions/processor rises to 4
seconds. Similarly, if the real execution speed of a target processor

-3 55-



increases, say to ip sec average instruction execution time, the
simulation to real time ratio rises to 1000:1.

Even so, the performance is acceptable when one considers that
other instruction level simulator packages [13] [14] and [15] have

ratios on the order of 1000-5000:1.

This quite good performance can be achieved for all but extremely

large target architectures. By using UNIX "pipes" to communicate
between simulated memory and processor instances, the 32K word process

address space restriction imposed by the PDP-11 architecture can be

subverted without resorting to storing simulated memory pages on disk
in most cases.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions of

P.J. Drongowski, who developed many of the concepts of N.mPc in his
masters thesis; L.R. Rogers, who conceived and implemented the
Linking Loader; R.V. Straubs, who implemented the ISP' Compiler;
G.M. Ordy, who developed SMP and SMM; and F.I. Parke, who has been
the Principal Investigator on the implementation phase of N.mPc;

special thanks to Ms. C. LesCook, who typed the manuscript.

-356-



REFERENCES

1. P.J. Drongowski, "N.mPc: An Adaptable Software System to Support
the Development of Microprocessor-Based Systems", Andrew R. Jennings
Computer Center Report #1177, Case Western Reserve University, 1977.

2. C.W. Rose, and J.D. Schoeffler, Distributed Intelligence and Input/
Output in Data Acquisition Systems, Proc. International Telemetering

Conference, Vol. XII, 705-720, September 1976.

3. R. Cooper, "The Distributed Pipeline", IEEE Transactions Comput.,
November 1977.

4. Proceedings of the 1976 International Conference on Parallel
Processing, IEEE, 1970.

5. A. Avizienis, "Architecture of Fault Tolerant Computing Systems",
Proc. Intl. Symposium on Fault Tolerant Computing, 1975.

6. S.S. Reddie and E.A. Feustal, "A Conceptual Framework for Computer
Architecture", Comp. Survey, Juen 1976.

7. L.R. Rogers, "A Generalized Linking/Loader for the Allocation of
Code in Vertical and Horizontal Machines:, Case Western Reserve
University, 1978.

8. R.V. Straubs, "A Compiler for a Register Transfer Based Simulation
Language", Case Western Reserve University, 1978.

9. D.C. Hewitt, Forthcoming Masters Thesis, Case Western Reserve Univer-

sity, 1978.

10. G.M. Ordy, Forthcoming Masters Thesis, Case Western Reserve University,
1978.

11. G. Bell and A. Newell, "The PMS and ISP Descriptive System for
Computer Systems". Proc. AFIPS, STCC, 1970.

12. D.M. Ritchie and K. Thompson, "The UNIX Time Sharing System",
Communications ACM, Vol. 17, No. 7, 365-375, July 1974.

13. B.O. Aygen, "Dynamic Analysis of Execution: Possibilities, Techniques,
and Problems", Ph.D. Dissertation, Carnegie-Mellon University,

September 1973.

14. C.W. Flink, "A Microprogrammed Environment for a Software Develop-
ment System", IEEE Compcon 75, Fall Digest 1975.

15. C. Vickery, "Software Aids for Microprograms Development",
Micro Proceedings, September 1974.

-357-



t3i

r- -A

uLi

00

In C-

-358-



LL . - LL

-359-



Wn (n>

Cl-,

LL-

-360-



V)d

< - ju LJ

wn u- Cd) 0 C/

cr C/) CL u

Ud)

-D

LLU

Li 
-

Cl Or 0 WL
z C-Co -J

LU~ ccH

z
0 j

-j~: c-___ _ _

zU 0

-361



APPENDIX A

metaMicro Description of Intel 8080

-362-



INTEL 8080 METAMICRO INPUT. version 3
GREG ORDY Oct. 24, 1977; i80B0
LAST MOD: July 27, 1978;

instr inst[3,1]<8> $ ! three words of eight bits each
! default length of instruction is I

format op = inst[O]<7:6>, !main op code
dst = inst[O]C5:3>, !destination or op code
src = inst[O]<2:0>, !source or op code
rx = inst(0<5:4>, !register pair
wdl = inst[O]<7:0>, !whole first word
wd2 = inst[l<7:0>, !whole second word
wd3 = inst[2]<7:0>$ !whole third word

macro ret = wdl=0311 $ &I !return unconditional
rnz = wdl=0300 $ &I !return no zero (Z=O)
rz = wdl=0310 $ &I !return zero (Z=I)
rnc = wdi=0320 $ &, !return no carry (CY=O)
rc = wd1=0330 $ &I !return carry (CY=I)
rpo = wdl=0340 $ &I !return parity odd (P=O)
7.pe = wd1=0350 $ &I !return parity even (P=I)
rp = wdl=0360 $ &I !return plus (S=O)
rm = wd1=0370 $ &I !return minus (S=1)

xchg = wdl=0353 $ &I !exchange DE and HL
daa = wdl=0047 $ &I !decimal adjust accumulator
rnc = wdl=0007 $ &I !rotate left
rrc = wdl=0017 $ & !rotate right
ra] = wdl=0027 $ &I !rotate left through carry
rar = wdl=0037 $ &I !rotate right through carry
cma = wdl=0057 $ &I !complement accumulator
cmc = wdl=0077 $ &I !complement carry
stc = wdl=0067 $ &I !set carry
pchl = wdl=0351 $ &I !jump HL indirect
xthl = wdl=0343 $ &I !exchange stack top with HL
sphl = wdl=0371 $ &, !move HL to SP
ei = wdl=0373 $ &I !enable interrupts
di = wdl=0363 $ &I !disable interrupts
hit = wdl=0166;

noch.ck $ &, !HALT!

fop = wdl=0000 $ &I !no operation

in(dev) = wd1=0333;
byte2(dev) &I !input

out(dev)= wd1=0323;
byte2(dev) &I !output

adi(d) = wdl =0306i
byte2(d) &I !add immediate

ec2(d) = wd1=0316;
byte2(d) &I !add with C immediate

sui(d) = wdIzO326;
byte2(d) &I !sub immediate

-363-



sbi(d) = wdl=0336;
byte2(d) &I sub immediate with borrow

ani(d) = wdl=0346;
byte2(d) &I'AND immediate

xri(d) = wdl=0356;
byte2(d) &I'XOR immediate

ori(d) = wdl=0366;
btjte2(d) &I!OR immediate

cpi(d) = wdl=0376;
byte2(d) 'I compare immediate

Idax(RP)= wdl=0012;
rpO(RP) 'I load A indirect

stax(RP)= wdl=0002;
rpO(RP) &I store A indirect

add(x) =wd1=0200;
sreg(x) &I'add reg. or mem.

adc(x) = wdl=0210;
sreg(x) &I'add with C reg. or mem.

sub(x) = wdl=0220;
sreg(x) &I'sub reg. or mem.

sbb(x) = wdl=0230;
sreg(x) &I'sub with borrow reg. or mem

inr(x) = wdl=0004;
dreg(x) &I'increment reg or mem.

dcr(x) = wdl=0005;
dreg(x) &I!decrement reg. or mem.

ana(x) =wdl=0240;
sreg~x) 'I AND reg. or mem.

xra(x) = wdl=0250;
sreg(x) &I'XOR reg. or mem.

ora(x) = wd1l:O26O;
sreg(x) 'I OR reg. or mem.

cmp(x) = wdl=0270;
sreg(x) &I'compare reg. or mem.

rst(x) = wd1=0307;
dreg(x) &I restart

inx(RP) = wdl=0003;
rpl(RP) $ &I'increment register pair

dcx(RP) = wdl=0013;
rpl(RP) $ &I decrement register pair

dad(RP) = wdl=QO11;
rpl(RP) $ &I'add rp to HI

push(RP)= wd1z-O3O5;
rp2(RP) $ &I!push register pair

pop(RP) = wd1rzO3O1;
rp2(RP) $ 'I pop register pair

lxi(x,yi)= wdlOO00l;
rp 1(x);
byte23(j) &I load rp immediate

lda(x) wdl=0072;

-364-



byte23(x) &I !load A direct
sta(x) = wdl=0062;

byte23(x) &I !store A direct
lhld(x) = wdl=0052;

byte23(x) &I !load HL direct
shld(x) = udl=0042;

byte23(x) &I !store HL direct

call(x) = wdl=0315;

byte23(x) &I !call unconditional
cnz(x) = wdl::0304;

byte23(x) &I !call not zero
cz(x) = wdI=0314;

byte23(x) &I !call on zero
cnc(x) = wdl=0324;

byte23(x) &I !call not carry
cc(x) = wdl=0334;

byte23(x) &I !call on carry
cpo(x) = wdl=0344;

byte23(x) &I !call parity odd
cpe.(x) = wd1=0354;

byte23(x) & !call parity even
cp(x) = wdl=0364;

byte23(x) &I !call on plus
cm(x) = wdl=0374;

byte23(x) & !call on minus

jmp(x) = wdl=0303;
byte23(x) &I !jump unconditional

jnz(x) = wdl=0302;
byte23(x) & !jump not zero

jz(x) = wd1=0312;
byte23(x) &' !jump on zero

jnc(x) = wdl=0322;
byte23(x) &I !jump not carry

jc(x) = wdl=0332;
byte23(x) &I !jump on carry

jpo(x) = wdI=0342;
byte23(x) &I !jump on parity odd

jpe(x) = wdl=0352;
byte23(x) &I !jump parity even

jp(x) = wdl=O362;
byte23(x) &I 'jump on plus

jm(x) = ud1=0372;
byte23(x) & !jump on minus

byte2(d)= wd2 = d;
length = 2; $ &, !second byte manipulation

byte23(d)=wd2 = d;
wd3 = d'-8
length = 3; $ &,

second and third byte manipulation

elegal(val)= (wdl=vali)iopc&,
macro for illegal declarations

-365-



mov(ds)= op = 1;

src = s;
dst = d; $ &I !move

mvi(r,d)= op = 0;
src = 6;
dst = r;
byte2(d) &I !move immediate

m 6 &1
a =7 &
b =0 &
c =1 &
d = 2 &
e =3 &
h =4 &
21 = 5 &

rim wdl=0040 ;$ &1 '8085 read interrupt mask
sim = wd1=0060 iS &1 !8065 set interrupt mask

dw(x) wdl = x;
wd2 = x-8;
length = 2;

nocheck; $ &I !define word pseudo instr.
db(x) = wdl = x;

nocheck; $ &I !define byte pseudo instr.

rpO(RP) = if "RP eql "b"
or 'RP eql "bc"
then
{rx = 0;$ break}
if 'RP eql "d"
or 'RP eql "de"
then
{rx = 1;$ break}
wdl 0375; $ &,

RP must be: b,bc,d, or de

,pl(RP) = if 'RP eql "b"
or 'RP eql "bc"
then
{-rx = 0 break}
if 'RP eql "d"
or 'RP eql "de"
then
(rx = 1 break}
if 'RP eql "h"
or 'RP eq] "hl"
then
{rx = 2 break}
if 'RP eql "sp"
then
{rx = 3 break}

-366-

PWOWPO



wd 1 ' 0335 &1
RP must be: b, bc, d, de, h, hl, or sp

rp2(RP) = if 'RP eql "b"
or 'RP eql "bc"
then
{rx = 0 break}
if 'RP eql "d"
or 'RP eql "de"
then
{rx = 1 break}
if 'RP eql "h"
or 'RP eql "hl"
then
{rx = 2 break}
if 'RP eql "psw"
then
{rx = 3 break}
wdl ' 0331 &1

RP must be: b,bc,d,deh,hl or psw

ST-eg(x) = if r8(x)
then { src=x;$ break}
wdl 1 0355;$ &! 'check that src is a registel

dreg(x) = if r8(x)
then { dst=x;$ break}
wdl 1 0355;$ &! 'check that dst is a registei

r(x) = (('x geq "a"

and 'x leq "e")
or
('x eql "h"
or 'x eql "l"
or 'x eql "m")) &$

evaluate parameter as a register

This section contains the 8080 and 8085 illegal op codes

bind jopc "ILLEGAL OP CODE FORMED",
bcde "REGISTER PAIR MAY ONLY BE bc OR de",
rplc "REGISTER PAIR MAY ONLY BE: bd,hsp",
rp2c "REGISTER PAIR MAY ONLY BE: bod,hpsw",
mbrg "OPERAND MUST BE A REGISTER" $

illegal elegal(0010),elegal(0020),elegal(0030),
elegal(0050),elegal(0070),
elegal(0313),elegal(O166),
(wdl = 0375) bcde,
(wdl = 0335) rplc,
(wdl = 0331) rp2c,
(wdl = 0355) mbrg $

-367-



APPENDIX B

8080 Interpreter Program

-368-



%. Machine: Intel 6080 %.

format op -instEO)C7: 6->

S71C instEOJK2: 0>,
rx inst[0)(5: 4>,
wodl = nst10J<7:0>,
wd2 instllJ7:0>,
wd3 instE2J(7:0>$

niode
cas~e length eqi 3:

wd2 (wc13"O) + wd2 + address$
wd3 '((uld3--8) + wd2 + address)^-8$
break$

e ~. a Lit

wdl '(wd2'8) + wdl + address$
wd2 '((wvd2 8) + wdl + address)"-8$
bTeak$

space <0 x 0000:Ox00 1O>,
<:ox0o2o:oxoo5o> $

tr'ansfer { new
wdl =0303$
wd2 =address$
wd3 =address -8$
length =3$ }

-369-



APPENDIX C

ISP' Description of 8080

-370-



iBOBO. isp - isp' 8060 program, with external memory,
no interrupts, and full timing information

macro BYTE
WORD 16&,
HIBYTE =1:&
LOBYTE =7:&
CYCLE =delay(1)&.

X9(val) =val ext 9&,
X5(val) =(val ext 4) ext 5&,
X17(val) =val ext. 17&;

state aCBYTE>, accumulator
pswCBYTE>, processor status word
bc(WORD>, 'b and c register pair
de(WORD>, 'd and e register pair
hl(WORD>, h I and I register pair
spCWORD>, stack pointer
pc(WORD>, program counter
ir<BYTE); instruction register

port abus(WORD>, address bus
dbusKBYTE>, data bus
memrC1), 'inverted memory read

memw(l). inverted memory write
ior(1), !inverted port read

format b -bc<HIBYTE>,

c bc(LOBYTE>,
d de<HIBYTE>,
e deCLOBYTE>,
h =hiCHIBYTE),

1 =hiCLOBYTE>,

cy psw(0>,
p psw<2>,
ac =pswZ4>,

z =pswC"6>,

S pswC7>,
src =ir<2: 0>,
dst =irC:5: 3>,
op ir<7:6>,
c cc = ir<5:3>,
rp =ir<5: 4>;

1* getwrd -3 cycle memory read, with *
1* address specified *

-37 1-



getwrd(addr<WORD>)CBYTE> =
(abus = addr
CYCLE;
memr = 0;
CYCLE;
getwrd = dbus;
CYCLE;
abus = 0;
memr = 1;
)

/*********fl ******** ****************************/

/* dataB - 3 cycle memory read, uses pc for */
/* address, and increments pc immediately */
/***** *********************** **M *** ************ /

dataS<JBYTE> :
(dataB = getwrd(pc);
pc = pc+1
)

/ ** ** **** * **** ** * *** *** ** * ** ** ** * * ** ** * ******* /

/* dataib - 6 cycle memory read, uses pc for */
1* address, and adds 2 to pc immediately
/ ** ** ** ** ** * ** * * ** ** * ** *. * * * * . ** * *** * ** ** * /

datal1<WORD>
(data16 = getwrd(pc+l) concat getwrd(pc);
pc = pc+2
)

1* storewrd - 3 cycle memory write, with *I
/* address specified */
/*************************************** **********

storewrd (addrKWORD'.>, val<BYTE>)
(abus = sddr;
dbus = val;
CYCLE;
memw = 0;
CYCLE;
memw = 1;
CYCLE;
abus = 0;
dbus = 0;

0

-372-



/* main program - perform instruction */
/* decoding, and execute instructions */

main
state temp8<BYTE>,

temp 16<WORD>,
alul6save(17>;

ir = dataBS fetch
next;

case op

0: case ir<3:0>
1: storerp(datal6) LXI
2: case ir<5:4>

0,1: storewrd(getrp,a) STAX
2: (temp16 = datal6i next SHLD

storewrd(templ6, 1)
storewrd(temp6+1, h)
)

3: starewrd(datal6,a) STA
esac

3: (storerp(getrp+1); INX
CYCLE
)

4,014: (temp8 = getdst next INR
storedst(alu(X9(temp8) + 1));
cac(X5(tempS) +1);
CYCLE
)

5,015: (temp8 = getdst; next DCR

storedst(alu(X9(temp8) -1));
cac(X5(temp6) -1);

CYCLE

6,016: storedst(data8) MVI
7: case ir<5:4>

0: (a = a *:rotate 1; cy = a<7>) ' RIC
1: (a = a concat cy ; cy = a<7>) ' RAL
2: (if (a<3:0> ext 5) gtr 9 or ac ' DAA

(a = a+6 ; ac 1)
else

ac = 0; next
if (a<7:4> ext 5) gtr 9 or cy

(a = a+6 c = 1)
else

cy = 0; next

tempS = alu(a)

3: cy = 1 STC
esac

-373- j



00

0

0: pc = datal6 JMP
1: ; ' no-op

2: (abus = dataB ext 16; ' OUT
dbus = a;

CYCLE;
iow = 0;
CYCLE;
jow = 1;
CYCLE;
abus = 0;
dbus = 0;
)

3: (abus = data8 ext 16; ! IN
CYCLE;
iar =0;
CYCLE;
a = dbus;

ior 1;
abus = 0;
CYCLE;
)

4: (hi = pop ; push(hi) ; CYCLE ) XTHL
5: (de =hi ; hl = de) ' XCHG
6:; 'DI
7: ; ' El
esac

4: (templ6 = datal6; next Conditional Call
if (cctest)

(push(pc);
pc = temp16

CYCLE
)

5: case irC5:3>
0,2,4: (push(getrp); PUSH

CYCLE
)

1: (pc = datal6 ; push(pc) ; CYCLE) CALL
6: (push(a concat psw); PUSH psw

CYCLE
)

3,5,7: ; ' no-op

esac
6: case ir<5:3>

0: (temps = dataB; next ADI
a = aluc(X9(a) + X9(tempS));
cac(X5(a) + X5(tempS))
)

1: (temp8 = data" --ext ! ACI
-374-

- + N....



cac(X5(a) + X5(temp8) + X5(c.Y));
a =aluc(X9(a) + X9(temp8) + X9(CY))

2: (tempS = dataB; next SUJ

a =aluc(X9(a) - X9(temp8));

cac(X5(a) - X5(temp6)))

3: (temp8 = dataBl; next 'S131

cac(X5(a) - X5(temPS) - X(y)

a =aluc(X9(a) - X9(tempf6) - X9(cyj))

4:)~lcX()adX9dtB);a=) N

4: (a=aluc(X9(a) and X9(dataB)) ; ac=O)! ANI

6: (aaluc(X9(a) or X9(dataS)) ; ac=O)~ RI

7: (tempS dataB; next 'CPI

tempS aluc(X9(a) - X9(tenipS));
cac(X5(a) - X5(tempB))

esac
7: (push(pc); !RST

pc =ir<5:3> ext 16 *:arith 3;

CYCLE

e )
esac

-375-



APPENDIX D

Topology Example

-376-



Topology for small 8080 system

signal data(8)s data bus
address(16), ! address bus
mread, ' memory read control line
mwrite, ! memory write control line
ioread, ! i/o read control line
iowrite; ! i/o write control line

declare main processor (8090)

processor Cpu iBSO sim;

time delay 500 ns; !run with 2 Mhz clock

connections dbus = data,
abus = address,

memr = mread.
memw = mwrite,
ior = ioread,
iow = iowrite;

declare memory module

processor mem = memmodule. sim;

connections data = data,
addr = address,
read = mread,
write = mwrite;

use linking loader output file, "program" as
memory contents

initial Memory = program;

declare i/o processor, connected to the

UNIX device, "/dev/ttya"

processor ioproc = ioproc.simi

connections data data,

addr address,
read ioread,
write iowrite;

tie isp' memory, tty, to the raw memory, /dev/ttya

initial tty = (/dev/ttya);

-377-



BLOCK DIAGRAM OF 8080 SYSTEM

DBUS

ABUS

CPU MEMR

MEMW

IOR
low

DATA
MEM

ADDR

READ ___ _

PROGRAM I T

10PROC ADDR

READ

WRITE

I D A t-1 I0

R DW
T RR

AI AE D T I
/DEV/TTYA S E

-378-



1TNTEROPERAILITY SESSION

Dwaine B. Hue-we

CENTACS



INTEROPERABILITY SESSION

SESSION CHAIRPERSON: Dwaine B. Huewe

Director,
Center for Systems Engineering and Integration

CENTACS

SESSION SUMMARY

Interoperability was defined in the opening paragraphs. Army
organization to develop and implement interoperability was presented.
This included an explanation of the complex relationships of operational
requirements and technology.

The background discussion included explanations of Joint Inter-
operability Tactical Command and Control Systems (JINTACCS), the intra-
Army program, and support of NATO interoperations. Specific problems
were identified.

Problems, once identified, require solution. An approach to
solving interoperational problems was developed. Both technical and
management factors were considered.

Interoperability problems and their solutions impact on other
activities; i.e., doctrine, operational requirements, standards, communi-
cation technology, the specifications of individual systems, and the
architecture of the3overall tactical Command, Control, Communications
and Intelligence (C I) systems. This was analyzed.

Workable software is the key to successful interoperations. The
major portion of the paper covered this subject. Included were fundamental
concepts of such basics as man-machine relationships and the technology
of computer programs. Such subjects as firmware, common modules, common
algorithms, and message formats, were discussed. The importance to inter-
operations of programming in high order languages was brought out.

On a system-wide basis -- the overall C31 tactical system -3 there
are problems of system test, overall configuration management, and C I sys-
tem management. These problems were analyzed. Technical and management
solutions were presented.

-379-



INTEROPERABILITY
TACTICAL AUTOMATED SYSTEMS

A CHALLENGE

Dwaine B. Huewe

Director, Center for Systems
Engineering and Integration
Fort Monmouth, New Jersey

SUMMARY

The central theme of the paper is the challenge to the R&D software community
to provide the necessary Management Control and visibility to assure inter-
operability throughout the life cycle of the system. The developer is challenged
to use initiative in the development of new innovations and incorporate these
new innovations in the software design.

Major topics include:

" Army Interoperability Program

" Approach to Interoperability

" Software Challenges

" Management Issues

" Challenge to the Developer

-380-

- -.. .. 1 " . . .. . -



ARMY INTEROPERABILITY PROGRAM

In the past, Army systems have been independently developed principally to
meet a user defined mission. In systems where a specific interoperability
requirement was defined, interoperability for that requirement was provided.
Most requirements were nebulous or undefined. Therefore, no coordination was
effected between developers. These independent developments have contributed
to the complexity of the battlefield, wasteful use of the spectrum, equipment
proliferation, and unnecessary costs. Further, we have not fully capitalized
upon the inherent capabilities of the system. Today, we are trying to bring
both automated tactical systems and communication systems to one system archi-
tecture or frame work with some degree of orderliness to achieve the system
interoperability objectives.

To provide effective, centralized management, the Center for Systems Engineering
and Integration (CENSEI), Figure 1, was established with CORADCOM as the Army
focal point for C 3 System Engineering and managing, coordinating, and implement-
ing interoperability requirements of Army Command, Control, Communications and
Intelligence (C3-1). Currently the Army is involved in two major interoper-
ability efforts - JINTACCS (Joint Interoperability of Tactical Command and Con-
trol Systems) and Intra-Army, with Army interoperability within NATO as a new
initiative.

CENSEI views the life cycles of any interoperability programs as paralleling
the life cycle of a system. That is, the user concepts and requirements are
established; developer trade-offs, constraints, and capabilities are proposed,
coordinated and designed for meeting those user requirements; developer imple-
mentation and preliminary technical testing of the requirements; test agency
evaluation and analysis; and finally, deployment and maintenance. Figure 2
outlines the chronology of these events. However, it does not show the most
important aspect of interoperability program evolution - - the constructure
coordination necessary among all the diverse organizations involved.

User Concepts/Requirements

Developer Design

Developer Implementer & Pre-Test

Test & Evaluation

o Deployment & Maintenance

-381-



In an interoperability program such as JINTACCS, each organization - user,
developer and tester - is made up of representatives of each service. Therefore,
the JINTACCS user "organization" will have Army, Navy, Marine, Air Force, and
DIA/NSA users convene periodically to work out joint interoperability require-
ments. Similarly, the develooer "organization" made up of the service represen-
tatives will then meet to work out the implementation. The test "organization" is
somewhat more complex in tnat all services test representatives/agencies per-
form testing under a single joint test organization - the Joint Interface Test
Force (JITF) - that plans and coordinates the joint testing.

Needless to say, such interoperability programs are replete with the traditional

problems associated with a single system's evolution. Such problems as in-
adequate user requirements, technology improvements that, if determine desirable,
restructure the design and implementation, overly optimistic scheduling and
funding based on "all success" planning, and so on, plagues interoperability
programs just as they do single system programs. However, the adverse effects
are multiplied exponentially because there are many systems involved and be-
cause there are additional problems not related to the fundamental mission.
The additional problems are primarily political (which organization or service
is "in charge"), economic, (who modifies his system to be compatible with some-
one else's system determines who pays for and takes the risks of modification)
and technical (which of many currently used standards for messages, data ele-
ments, or communications will be the best compromises to use for interfaces or
are new standards needed).

INTRA-ARMY'S APPROACH TO INTEROPERABILITY

Interoperability development is based upon the following documents;

* The Battlefield Automation Management Plan

" Automatic Battlefield Interface Concepts

" Battlefield Interoperability Management Plan

* Technical Interface Design Plan

-382-



The relationship and description of each document is summarized in the chart

below:

BAMP ABIC BIMP TIDP

Evaluates all States the The Management Describes the
current and requirements structure and design and engi-
future auto- for automated plans for the neering require-
mated systems system interop development & ments to accomplish

implementation the ABIC interfaces

Methodology: Describes: of ABIC inter-
Design Analysis Who faces Contains:
Performance Eval. What MSG Formats
Cost Evaluation Where Contains: Data Lines
Pay-Off Evalua- Responsibilities Data Elements
tion Based On: Authorities Security

BAMP Shortfalls Re lationships Como
Recommends: JINTACCS Rqts. Resources CONOPS
Accelerate STANAGS Schedules Protocols
Continue NATO Requirements
Terminate

Modify Provides:
Rejustify Interop Rqts.

Resources

Unlike past interoperability programs, resources and funding authority is pro-
vided to implement interoperability requirements.

The major events for Intra-Army Interoperability which is similar to the joint
service methodology is as depicted below:

Need Operational

Use Enhancement
Criteria

4
BAMPABICBIMPC &OED

Demonstration of
Requirement Im-
plementations

The first event has been completed.

-383-



CHALLENGE

The Center for Systems Engineering Directorate has identified significant chal-
lenges in the Interoperability arena. The interoperability problem is complex
impacting upon every system in the battlefield. We currently do not have sol-
utions to all the interoperability problems. The final and optimum solution
will be provided by best efforts of industry and government personnel. The
interoperability challenge provides lots of opportunity for "innovative think-
ers and doers".

The impact of interoperability involves every segment of a system such as
system design, interface characteristics, computer programs, data base, and
communicatiens. Externally it impacts upon the operator, the communication
media, management and, because of its evolutionary nature, doctrine. The im-
pact upon the management structure is great because it forces a higher degree
of centralization and control due to involvement of two or more systems.

Some of the key software interoperability considerations are:

* Man/Machine Interface

* Software versus Firmware

9 Message Generation

e Standards

* Security

* Training

* Test

* CONOPS

• Survivability

The above considerations are not all inclusive, but offer significant challenges
to the software developer.

MAN/MACHINE INTERFACE AND SOFTWARE/FIRMWARE CHALLENGE

The first two considerations - Man/Machine Interface and Software/Firmware, are
related in that the software/firmware offers a solution to the man/machine inter-
face. The man/machine interface goals as they relate to interoperability are:

-384-



* Standard Operator Procedure

9 Interactive man/Machine Interface

0 Common Software/Firmware Control

9 Imbedded Operator Training Routines

* Common Input/Output Devices

0 Multi-Applications

In considering the software/firmware trade-offs, the developer must consider
commonality of software, programs, transportability to other systems, commonal-
ity of modules/algorithms, etc., yet retain the flexibility to meet all require-
ments. The trend has been toward flexible, adaptable software/hardware, easy
to change to meet the requirements.

The challenge below reverses that trend toward more standardization using ROM's
to provide an even greater degree of control over change. Hence, the challenge
is to provide:

* Common firmware to provide standard picture for alphanumerics and graph-
ics,

*Common keyboard interaction

The efforts to meet the challenge to-date have been limited to standard sym-
bology for U.S. and NATO. The use of a standard keyboard, display controls,
have been demonstrated by the programmable display driven keyboard of the
Digital Message Device and the Tactical Computer System. The need exists to
standardize keyboard and controls across the systems.

Message Generation Challenges

The battle continues with respect to fixed versus variable formats, bit oriented
and character oriented message, and definition of the protocols, etc. The for-
mats will probably be a combination of fixed, variable, bit oriented, and char-
acter oriented messages. However, it is a goal to standardize all protocols
and formats to the maximum extent possible, resulting in standard message for-
mat generation routines. It may not be practical to provide a standard genera-
tion routine due to the large number of required formats for independent systems.
The challenge is to provide flexible message generation capabilities to the
lowest design level without impacting upon own 'and other systems communication
processors, files and application programs.

Standard Challenge

The use of standards are not new to the Army, but the proliferation of stan-
dards has reached a point of saturation. The developer or user has many options
from which to choose. The options selected may be completely incompatible with
other systems if selected independently by the system developer. This trend
will slowly be reversed to more rigid standards, impacting upon development
standards, performance standards training, design, documentation and scenarios.

We need to review our practices to provide assurance that interoperability will

-385-



be achieved. It is our goal to provide a common base for interoperability
across all systems including design of standard software/firmware modules,
scenario's for interoperability testing, on-line and off-line software training
routines, standard documentation, and procedures.

What is being done today for development of standardization? Not enough.
Standards is a long evolutionary process. Message standards, and communica-
tions standards for U.S. and NATO are in the process of being developed. Pro-
gress of software interoperability standard development is now known, there-
fore, it is assumed that software interoperability standards are non-existent.
The challenge is to develop, distribute, and maintain current standards and
distribute changes responsively to all affected activities simultaneously.
Remember a standard is a known measurable point of departure.

Training Challenge

The training objectives for interoperability include the following:

" Continuous on-the-job training and operations on the same system.

" On-line/off-line training routines/exercises.

" Standard documentation.

" Common training base.

" Standard training procedures.

" Scenario's.

The training objectives probably provide the most complex challenges of all.
Simply, we desire to provide the operator interoperability training on the
same system that he used for operations using on-line and off-line training
exercises, in garrision and in the field. Secondly, using a common training
base, standard documentation, procedures and scenario's produces a trained
operator that can be moved from one similar function to another similar func-
tion of another system with no training. No known progress has been made to
achieve this objective.

Security Challenge

Security is not new to the Army systems. We are all familiar with such terms
as system security, TEMPEST, accidental desclosure of information, deliberate
penetration, passive infiltration, multi-level security, security destruct
procedures, physical security. When security is considered in the view of
interoperability, a new dimension of security is added. The complexity is
increased expanentially, due to the number of systems and levels of security
withing each system. In addition, the levels of security for Joint, Army, and
NATO are varied and may cause severe impact upon systems in terms of design,
schedule, and dollars. Interoperability provides new avenues to infiltrate a
computer system and compromise the system. The interoperability impacts upon
security doctrine and regulation in that new security operations procedures
may result in new controls for multi-system and new guidelines for multi-level
security may be required. The challenge is to provide a common security module
or package that will provide adequate multi-level security for Joint - Army -
NATO interoperability in a hostile environment. No progress has been made in

-386-



this area except toward total encryption.

Test Challenge

The interoperability test philosophy follows the philosophy that exists today
for a system coordinated test program. The techniques and methodology for
collection of data may vary due to involvement of multi-systems. Some key con-
siderations for interoperability tests are:

* Develop test Performance Criteria Concurrent with System Requirements

0 Test at all Levels

0 Sub-Module

* Module

* Integrated Software

* Integrated System

* Operational Test Demonstration

* Exercise all Interfaces

0 Imbedded Test Routines

* Maximum use of Simulation Techniques

* On-Line Data Collection Routines

* On-Line/Off-Line Data Reduction Routines

* Standard Scenario

The software challenge is to what level interoperability is affected and level
of testing to be performed. Does a change in one module of the software pro-
gram affect other modules within all systems? How is the impact determined?
How is interoperability validated?

The progress made in this area has been limited to compatibility and interoper-
ability testing. Compatibility exists when two systems can exchange informa-
tion. Interoperability is achieved when two or more systems can exchange infor-
mation and use the informaion exchanged. The compatibility and integration
testing is a single thread test which does not measure the impact upon system
performance. The Teleprocessing Design Center, located at Fort Monmouth, New
Jersey, provides a multi-system capability which allows performance testing of
tactical control systems by the use of emulation. The performance monitoring
information (reduced to usable data) becomes the basis for performance evalua-
tion of tactical systems.

The micro-programmable multi-processor computer system in the TDC has the nec-
essary hardware, firmware, and software to emulate total computer systems. The
need exists for the system developer to have the necessary tools to test system
interoperability at the necessary level required to validate interoperability

-387-



through the use of software routines, simulation techniques, data collection/

reduction, without other interoperable systems that are not available for test.

Continuity of Operations Survivability (CONOPS) Challenge

Continuity of Operations and Survivability are not new terms to the software
developer. He is aware of the considerations for CONOPS and survivability:

* Back-up Capability

* Common Software

f Common Data Base

* Update Procedures

* Gradual Degradation

* Maintenance of Program

Recovery from Catastrophic Failure due to:

* Jamming

• EMP

* Human Error

9 Sabotage

Although a total awareness of the above exists for CONOPS and survivability,
these programs have never reached the ultimate objective. This ultimate ob-
jective is complicated further by the number of Joint, NATO, and the individual
service interoperability requirements that have created a dependancy upon
other systems for real time data exchange.

The challenge is to provide distributed, essential information to more than
one node of a distributed system so any node can collect essential data from
other nodes to perform the function of the destroyed node.

INTEROPERABILITY MANAGEMENT AND CHALLENGE

Traditionally the Army Project Manager has served as the system developer in
a more independent role. The Manager as well as the user and the tester must
assume an expanded role to include interoperability. Nevertheless, the trend
in interoperability Management will be toward more centralized authority due
to multi-system/Joint Service/NATO involvement with execution of the interoper-
ability decentralized at lower levels of command.

Perhaps the largest impact is upon Configuration Management. Configuration, to
be responsive must be decentralized to the lowest possible level. The trend,
because of the large number of systems involved, is to centralize configura-
tion management at upper management levels. We need to review our management
structure, our Configuration Management Plans, the change cycles to determine

-388-



their adequacy to satisfy interoperability objectives. How much control should
be exercised upon the system? What level is changes approved? How is a deter-
mination made that a change affects or does not affect interoperability of
our own and other systems?

It may lead to more standard software development procedures, detail documena-
tion standards, and new performance standards. The challenge is to provide a
real time destributed management system throughout the interoperability com-
munity.

The full impact of intercperability upon management has not been realized.
Because the full impact b~as not been realized, progress to meet this challenge
has been slow. The ARPANET and other computer networks has potential for
providing this real time destributed management system.

CHALLENGE TO THE DEVELOPER

We do not have solutions to all software interoperability problems. Inter-
operability needs help that must cowe from the best in government and industry.
As stated initially in the challenge, interoperability provides lots of op-
portunity for innovative thinkers and doers.

The reader may not agree with the challenges. If you are a R&D software
developer and disagree with the preceeding challenges, you are encouraged to
review your development programs to determine how interoperability will be
achieved. Please do not be silent if you have solutions. HELP!!

-389-



LLL)

LUC/ I--'- LUI

LUJ
C,,

LU &

tn, > C C:)
LU-J -L Cn

LUJ LU) <X) LL) 2 = C

M: C) LU. Lo )

~~~~: 1 - ) - C

Ci) U - -L

~C)

=CD

-390

CC
r-

I,
z

cc

r3r4

2: 1

INC

C.2

co coo

am ac
Ch. f4c

a
Zm C=

CO* Cc
Co
9=

CL.

CV2

dw rl:l

= cw

CL. Co

b" m

co

0000

cm
b-

0

C3

-391-

co~

~A16

oo 0-a

0 9 W

o~~ 0 05

amm V um

vU z
amg0u

AD x 1- 0

aga
ILQ

08

-392-

La-I

C/) SL

(-)

-L D C..) :tL

CL. < LLI = F-- C/
LL l w -LU J C')I (-. c- A~ W =

<r) UJ) C.) ZL LC/) _ LU J Cl) C/Z)-1 V L-) F -M n -LJ = - F
C) 1 i =. = LUJ (-) -J LUJ C/) WL

tql% La-I I x La-I F- oc - 0...2
U.. L -i c/ LL. C C/ C.. U

LUJ 0... - - >- = F- CD I->- Co)
F- C) ><<X C.) LUI LUI F- - LU u) C-) L
C/) F- LUJ F- f=) C/) L C.

I- I II I LI

C/) I

L-IL

cc LUI LL LU
LL. O~ L L

LLU

C/ I--_ _ _ _ _ _

C_ /) C) 0 N

a-393-

dwi

cm

I.-

mop

LLaM
- o

GOOD

COOi
LL.3

I."-

C-CA L.1--

-394-

LLJix0
uj w W -A uj LUZ to

04C L-,jtL Lu >
CL (A w uj ca
(01 11

2 0 U.
= zui a 00 0 CL

cr <
tj La

U) =I U)
Cc, W
a

W
V

w ca Ix UJ CK
z $.- a: M co

OZ Q & uj 'Lu, 0, 4, OZ 0 ,= z z
ct: u

Q:L" <> z U. 0ix lK U
w Q) LL.

uj LLI w wLAJ 7 U>, z

E z 0 I--= W z w I" uj mu 00 u Ix u0 w LU 0u
A ' z-

:LEU w w w
LLI 0 LAJ U

- u

of- W. 2 W
a: LL

S 0&9 d 0
W t0 z W 'LL, Z, -i 1-1iC3 Z CL - -J 0 < < -i

cz z < CL M w -w rE
0 x CC W

z cl: U) z 0 W Z
= - w a. uj
0 ucc j
U) _j

1 R .2 < w
3 cc

Ix wz
0 0 0

L) u _j -i z
1.- 0 IL
Q I , x

cc w I w
Z u
0
u

u

-395-

MANAGEMENT CONTROL TECHNOLOGY

Allan Curry

AIRMICS

MANAGEMENT CONTROL TECHNOLOGY

SESSION CHAIRPERSON: Allan Curry

AIRMICS

SESSION SUMMARY

Throughout the software life cycle there is a growing realization
that the causes of development failures cannot be narrowed to any one factor.
The successful system development requires complete, consistent, and judi-
cious application of managerial oversight.

Ms. Eldridge (CENTACS) discussed the type of planning necessary
even after a system has been completed. One recent study indicates that
over 50% of System Resource Requirements are expended after system implemen-
tation. Post-deployment effort should not necessarily be classified as
maintenance. Dr. Donovan Young (AIRMICS) discussed a proposed decision
aiding system for Software Development Management. This system will aid
in the planning phase, supporting each step (from actual or what-if-
requirements, through PERT analysis, to a proposed schedule, to life-cycle
curves) with interactive provision for backtracking, testing tentative
changes, and manipulating graphical representations of PERT networks, bar
charts, and life-cycle curves. The final speaker, Mr. Herman (Manager of
Systems Analysis and Development, Shell Oil Company), discussed implementa-
tion of management controls during the Software Development Life Cycle in
a non-governmental management environment.

-396-

Post-Deployment Software Support for Army Defense Systems

Ingrid A. Eldridge

Systems Validation Division

CENTACS

This paper described the effort that is going on to develop an
overall plan for post-deployment software support for Army Defense Systems.
These systems are in various stages in the acquisition cycle. Presently,
the Army has no overall, coordinated, well-defined plan of this type.
There is little coordination taking place in this area and plans range from
none-at-all to well-developed plans for a particular system. The Army can
no longer afford a fragmented approach to software support over the life
cycle of its systems. There is a projected demand for resources that pro-
bably cannot be supported.

This plan is being developed to rectify that situation. The goals
of the plan were discussed. In addition, coordination is required with
users, schools, developers, and personnel from other programs that impact
this effort. Both technical and administrative management is involved and
this was described. Finally, a description of the accomplishments to date
has been given.

-397-

POST DEPLOYMENT SOFTWARE SUPPORT FOR ARMY DEFENSE SYSTEMS

Ingrid A. Eldridge

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Systems Validation Division
Fort Monmouth, New Jersey

SUMMARY

This paper describes a management problem that the Army has in devising
an overall plan for the post deployment software support of its defense
systems. A description of how this problem is being approached, as well
as the status to date, will be given.

INTRODUCTION

The Army has over 170 defense systems in various stages of acquisition.
Those systems which have post deployment software support plans call for
yearly expenditures of 1 - 20 million dollars per system. When you multi-
ply this by the number of systems involved, it is unlikely that the Army
can continue to provide the projected demand for resources called for by
separate software support centers. This is not only a funding problem,
but also a problem in acquiring enough skilled personnel to provide the
required software support.

To give an idea of the dimensions of the problem, software now accounts
for almost ninety percent of the costs of a software system. In 1977,
the Federal Government spent 4 billion dollars for software. Seventy-
five percent of this went for software maintenance. Much of this went
into correcting programing errors that should not have been there in the
first place.

Many of the computer programs for the Army systems contain thousands of
lines of code. It is usually not possible nor practical to precheck all
the logic paths and program input values. Presently, the Army does not
have many systems containing embedded computers in the field, but this is
rapidly changing. In addition, as the user sees the "nice things"
computers can do, he wants to take more advantage of them. This results
in larger and more complicated programs. Large programs also result from
making the system easier for the soldiers to operate.

-398-

Presently, the Army has a fragmented approach with no central coordination
or control for the post deployment software support for these systems.
To correct this situation, the US Army Materiel Development and Readiness
Command (DARCOM) has tasked the Communications Research and Development
Command (CORADCOM) to develop an overall plan for post deployment software
support for Army defense systems. We began work on this effort in July.
This paper will describe the problem, our plan of action, the requirements
for PDSS, and what has been accomplished to date.

BACKGROUND

The Army systems that we are considering in our post deployment software
support plan have been developed independently. Little effort was made
to standardize hardware or software.

There are many different computers. Some systems have more than one type
of computer in that system alone. Peripherals are of different types,
and even if they are performing similar functions, if they are made by
different manufacturers, they are usually different enough so that the
soldier will require some retraining in going from one system to another.
Computer languages are also different and vary from higher order languages
to assembly and machine languages and microcode. Operating procedures
vary; so do procedures for reporting software problems. Different forms
are used. They are submitted through different routes and require different
procedures. Application programs also vary. This is true, not only
because there are different types of applications, but, if the same program
was developed by a different contractor, it would probably be different.
Although there are too many differences, there are similarities. Part of
our jcb is to identify these. With proper planning, the number of simi-
larities should increase in the future.

We would not have many of the software support problems we are facing
today if software had been developed with a total systems approach.

Another problem is that, when software is delivered, it is often not
properly documented. It is, therefore, impossible to maintain the soft-
ware without contractor support. Even contractors have their problems.
There are systems today that were not properly documented, and, since the
employee left the contractor, present procedures are to patch around that
section of code, since no others at the contractor's plant can understand
it. Software test sets often are not adequately provided when programs
are delivered.

-399-

A contributing factor to the large amount of post deployment software
support required results from the system requirements not being adequately
defined initially. It is often not until a system is operational that the
user realizes how he really would like the system to operate.

Post deployment software support is not given the emphasis it should have
when the system is being developed. If more resources were applied to
this area early in a systems development, the software support would be
better and less costly in the long run.

The Army, at present, does not provide for an organization to develop and
administer PDSS policy on an Army-wide basis. Guidance is not adequate
in this area. The funding situation is confused. This is due to a lack
of central control.

There are regulations and standards addressing post deployment software
support. They exist at all levels. For example, the Department of Defense
has them; the Army, in turn, issues its own, and then the individual
commands have their interpretations. The myriad of regulations and
standards are confusing to a system developer who only occasionally has to
consider developing a PDSS plan.

Although the guidance exists, it is often not followed. There are many
reasons. One is that there are too many documents to refer to. They are
not complete in themselves, so a developer has to refer to many to get a
complete understanding. This is time consuming and difficult. There is
redundancy from one document or another. Sometimes opposite instructions
can be interpreted by going from one document to another. There is no
step-by-step procedure to be followed. For the non-computer type, it is
difficult to follow this guidance. There is no stress, enforcement, or
incentive given to insure each system has a PDSS plan and that it is
implemented and adhered to. Usually the developer is so busy developing
his system and getting it to work that he has no time for PDSS. This is
wrong. Time and resources should be allocated for PDSS from the very
beginning. There have to be workable methods of enforcement and incentives
to insure post deployment software support is provided for early enough.

See Figure 1 for the many other documents and factors that affect post
deployment software support.

There are many problems with the procedures that are in existence for
PDSS. One of the underlying causes is that procedures are developed
independently, and there is little standardization from one system to
another. We are not learning from past mistakes. It takes too long to
get software changes to the field. Procedures for paying for PDSS are
not standard.

-400-

z-

z tN(A
Zu6

zz
oM I=U

ZwZ
U0 0 Z F

-OWN

00

-401-

The resources used to provide PDSS have many problems that have to be
resolved. There are personnel problems. One of the complaints is that

military computer personnel are trained in COBOL and business applica-
tions rather than languages (such as TACPOL) that are required for Army
defense systems. In addition, there is too frequent a turnover in
personnel. Planning for these resources is too late. There is a lack of
standard PDSS tools. There is too much duplication of resources since
each system has its own software support center. No overall categorization
of criticality of support has been made.

Reasons for changes to software, besides correcting problems that should
not have been there in the first place, occur when a system's performance
is increased. This could be implemented by changes in software or hard-
ware. The latter could impact the software and require changes there also.
Interoperability is a complex issue that often results in software changes.
The Army has requirements that many of its systems interoperate. For
example, the Tactical Fire Direction System (TACFIRE), a computerized
artillery system, must interoperate with the Tactical Operations System
(TOS) which keeps track of the enemy and friendly situations.

The Army also has requirements to interoperate many of its systems with
those of the other services and agencies, such as for the Joint Interoper-
ability for Command and Control Systems program (JINTACCS). International
requirements present a further complication.

Changes in military doctrine must also be implemented in software. New
hardware may also impact software for the same system or an interoperating
one.

PLAN OF ACTION

In order to develop this plan, we have formed a task force (see Fig. 2)
consisting of members of the various Army commands, including user repre-
sentatives, developers, software support centers and schools. Some of
the participants to date are shown. We require the benefit of a wide
range of experiences in order to put together a meaningful plan. Task
forces have been set up to address various issues and provide draft infor-
mation for the group to review.

We are operating in the following manner (Fig. 3) to develop our plan.
The schools, users, and developers provide the benefit of their experiences
to the working groups who draft portions of the plan for the task force to
review. It will then be reviewed by the schocls, users, and developers
before submiagion to DARCOM and subsequently DA.

-402-

U, C-U

0 -:

'IM

'a' ~E.

Z umu O

I- II--

a o~m 3-. '

X W0

o o j0I
~ 0

-403-

o co

AJ

Li

al ho

006
00

C L-

--

In developing the plan, we always keep in mind who our user is. Our goal
is to provide the very best software support to the soldier in the field
while working within time and dollar restrictions. Ours is not the first
effort in planning Post Deployment Software Support, so we are reviewing
the work that has gone on before for the Army. We are also looking at
the experiences of industry and other military services.

We have developed a plan of action which we call our analysis plan. Our
approach in performing this analysis is to use the successful experiences
of others and avoid remaking the same mistakes. We believe this will allow
us to develop a PDSS plan for short, mid- and long-term implementation.
This analysis task force must look at the overall picture to provide a
workable management plan with a means for enforcement.

As a result of this analysis we intend to recommend a structure for PDSS
which includes procedures, guidelines, and standards. These will be
provided as part of an overall report whose outline is shown in Fig. 4.
We are preparing this report by forming working groups to contribute to
the various sections. The problem and the facts bearing on it have been
defined by the working groups. We are using the procedure of coming up
with several alternative plans for post deployment software support,
determining a strategy for analyzing the alternatives and then developing
the plan that is selected.

Next I will discuss our schedule for developing the PDSS plan as shown
in Fig. 5. We have attended meetings that were held at the Signal Center,
Fort Gordon, Georgia, where TRADOC or the Training and Doctrine Command
requirements were determined and given to us. We have had two working
sessions at Fort Monmouth and plan a series of these as well as reviews
by the Army management. Our draft should be completed by February and
sent out for review with the plan submitted to DARCOM by the end of
April 1979.

ASSUMPTIONS

Some of the assumptions we are making in developing this plan are as
follows. The first is that it is mandatory that every Army defense system
containing computational resources have a post deployment software support
plan that is prepared early in a system's development.

Another assumption that has led to quite a bit of discussion is that we
are considering firmware as a subset of software. It does not matter
whether software is stored on a chip or another media such as tape or disk;

it is still software.

The user will be an independent tester. The systems we are considering are
not only the application systems themselves, but any software support

-405-

Pin

- U

a SL 5 z

Lu MM
.10 C0

0

Mat Lu A.

0 z IL

t; 0

Eo. 0 zu
- cc 0I=

oA~ z

00 z z z z

PIM PA P

-406-

Ius
0 U

III z .

-o0 z I Z,
oz > 0.0 w

IAa m 0 z

3- z U

p z -'0 Lu

WI -T

em I- IL U-
0I= 0U U-

Ea3E
0U~ I0

-L up

00o
ILZ z z

uu ri

-407-

004 04 0040000 0 4 ()4 M

~~adI% Ix U

0c -I w

-w 0 x X

=l I" m n~

C4oC

Eo.>

00 nZ U0 W

UjZwUw ~ Z Z 0

Im - 9 a 0 0
0 0 ULu u d z-408z-

040

*4 0

Ia

P2 t

0 Lar
a0 aZ '

E 0>% 2 000

1&. 0

a UU

-409-

equipment. Some of this equipment could be commercial automatic data
processing equipment. The support equipment could be found in test beds
or training facilities as well as software support centers. The software
involved is for the system peripherals as well as the computers.

Other assumptions are that PDSS is required for changes due to correcting
problems, adding enhancements, and to meet new requirements.

In addition, it is assumed that it will be the responsibility of the user
to report and document software problems. Support will be for systems
sold to foreign countries and for systems the Army is using but did not
develop.

PDSS REQUIREMENTS

The following are a list of the requirements the task force has specified
for PDSS (see Fig. 6). We took the list submitted by TRADOC (which will
be given subsequently) and added others to it. We have to consider how
software changes affect interoperability. Testing is required after any
software change. This is a difficult issue. Presently, it sometimes
takes as long as 18 months to get a software change into the field because
of requirements to go back through TECOM and OTEA testing even though the
change is minor. We are working to come up with a solution to provide a
better response to the field in this area. Standards have to be adhered
to. Configuration management must be performed. This is a significant
undertaking where many systems are involved, and they are located world-
wide.

Systems that our Government has sold to foreign countries must also be
supported. A separate working group is addressing this issue. This is
also true of the Eystems that the Army uses but did not develop. These
include systems developed by other services and now, even systems developed
in other countries. Resources include personnel and funding.

Requirements given to us by TRADOC are shown in Fig. 7. The first is
that all systems must have an organization or organizations responsible
for their PDSS. The software support must meet the requirements of the
user. The plan for software support should be jointly developed. Also,
new equipment is not to be issued if it affects software until it can be
accompanied by a software update. Furthermore, TRADOC sees no requirement
for type classifying the software. (See Fig. 8) - The software support
organization must keep the documentation current as software changes are
made. Any changes made to software should be done while maintaining the
operational capability specified in the requirements documents. PDSS is
required on the battlefield - worldwide. Software includes that required
to accommodate changes in training. Another TRADOC requirement is that
configuration management must be performed according to a management plan.

-410-

Iin

MA

U, U

z a
0

an U
w a Ml

us Z
LLAu~ On t

-M IL

LU

3EV U. z z

in t u-4

U--

oL IM6l

a0 a. U, 0
IA.&

M (Z 0 Z &16: 41
Ww w - V m

Z - fZZ V C, A
O0& C L

IW W I

cA 0 IMVOZ W6 IA6

-412-

12 0 0- 9-r

0 z

00

ZII 00

LU 0 am

OuLu
z z

0 W 94-V
-43

TRADOC has also given us the following requirements for the user represen-
tative. One is that it is up to each user representative to specify the
time it requires for a software change to be implemented. Another is that
TRADOC must approve changes affecting the "what" of the system, but it is
up to the PDSS organization to determine how these changes are implemented.
Finally, the user representative must be a voting member on the configura-
tion control board. If a software configuration control board is set up,
the user representative must also be a voting member on that board.

The issue of wartime and crisis support is a difficult one. However, we

all must remember that there is a tradeoff in cost and responsiveness

PDSS FUNCTIONS

Figure 9 lists software support functions. One is that as soon as a
hardware change is recommended, the impact on software be evaluated.
This includes how long it would take to implement the software change
and what it would cost. The actual implementation of the software change
is an obvious function. Distributing and approving these changes is a
large undertaking. Test programs have to be developed.

Software models are also a PDSS function. Where test bed facilities are
used, PDSS includes the development of simulations and emulations. This
could be especially true of systems requiring interoperability testing.
Testing and retesting is another function. Software standards must be
maintained. Various types of field support must be provided to the user.
This is another area where there is much disagreement. Some types of
systems, such as intelligence, desire software changes on the battlefield
to accommodate unknown changes in the threat. Testing includes interface
testing where this is a requirement.

Considerations in developing the PDSS plan are many. They include:
location, personnel, security, equipment, documentation, training, and
distribution of updates. Personnel with both technical and management
as well as various specialized abilities are required. The personnel
required to perform PDSS are mostly highly skilled. These include:
analysts and/or engineers, programmers, computer operators, key punchers,
administrative, library, test, user repre'sentatives, documentation,
logistics, and instructors. Shortages of these personnel have been
predicted for the future.

POTENTIAL SHORT TERM ACTONS

Since we are bringing together the experiences of many involved in PDSS,
we decided that there could be some recommendation of early improvements
that could be made without waiting for the development of the overall plan.

-414-

For example, an effort could be made to standardize as much as possible
the procedures the user must follow to report a software problem. This
would include standardizing the forms to report software problems. We
have found terms for the same thing vary from system to system. For
example, an application program is known by some as a parametric program.
Differences in nomenclature lead to unnecessary problems for all concerned
with PDSS. Enforcing the development of a PDSS plan is another action
that could be taken early. So is the centralization of control. Impact
on software should be studied for the time it takes as well as the cost
involved. This should be done as soon as a hardware change is proposed.
The funding should be set up so that there is no problem for all users to
obtain updated versions of the software and accompanying documentation.
We understand this is a problem in the Field Artillery Digital Automatic
Computer (FADAC) system.

Some of the long-term actions that the plan will provide are an in'-reased
sharing of resources. In addition, when new systems are developed, every
effort should be made to use existing programs and hardware, if at all
possible. Effort should be made to see that all software support centers
and training facilities are using the latest techniques. Finally, central
coordination of the PDSS program is required for all Army defense systems.

SUMMARY

We believe an overall plan for PDSS will reduce the number of daily
crises that occur. A plan that shares resources will provide many advantages.
(See Fig. 10.) Some are obvious; others are indirect. In summary, we
believe that a plan that is developed with the assistance of everyone
involved in PDSS can provide the Army with the best use of its resources
for post deployment software support.

-415-

0 U

U

2k

ZE1 0 , 4 JC7
09 04

mhml Lu

"a- c- ad
u~m4c An ~C

LIM 2c -2c o
44 SE

2cJ b

3: 2c 0 m~
L&f== k 2

diMLMm 0a On C6 M M 3E _
U- ~ - ~ U- i

gm C)ihi

0@0

-416-

C-

LU ME

amLad

I" U-I

o& %0 0 ,

CD EM PM oLz
M)O

z LII

LU 4C0L 4W MALii E~ ~ILn

I= J -- n.==

S..... u_@@

0

-417-

-w-

O~w 00

OWAu4
VSA3:4

-418-

cr
2c C

20LW- z

zu

0

-419-

A Decision-Aiding System f or

Software Development Management

Donovan Young

AIRMICS

AIR1IICS is developing a prototype decision-aiding system for
software development management, intended for implementation on a small
computer system with some graphics capability. Software-breadboard de-
velopment is being done using a large-scale computer. The system is
being designed according to Decision Support System (DSS) specifications
to support semi-structured interactive use by non-programmers. The
initial modules include an updateable data base, a "what-if" or scratch
data module, an interactive PERT module, and an interactive life-cycle
cost profile module. Provision is made for incorporating additional
automated tools for software life-cycle management as they become
available.

-420-

A DECISION-AIDING SYSTEM FOR
SOFTWARE DEVELOPMENT MANAGEMENT

Donovan Young
AIRMICS

Atlanta GA

AIRMICS is in the early stages of developing a prototype decision-
aiding system for helping software project managers accomplish certain
planning tasks: PERT analysis, time-cost tradeoff analysis, resource
allocation, and generation of activity schedules and life-cycle curves.
The initial simulated prototype design carries the name Software Project
Management Planning System (SPMPS), and is conceived to be part of a
Software Project Management System that will eventually include real-
time planning tools, visibility tools, and perhaps control tools and
management communication tools. The system is being designed according
to decision support system (DSS) specifications to support semi-struc-
tured experimental-mode use by non-programmers. Software-breadboard
development is being done using a large-scale computer system.

Background

Findings and recommendations of the Second Software Life Cycle
Management Workshop (Atlanta GA, 21-22 August 1978) emphasized the need
for real-time automated management tools for software managers. Also
indicated was a need to investigate the use of PERT analysis as an al-
ternative to curve-fitting in generating life cycle cost and resource-
utilization curves. SPMPS addresses these needs directly.

Current research in real-time automated management decision aids
centers around the idealized concept of the Decision Support System
(DSS), which is a system to aid a non-programming individual to solve
semi-structured ad-hoc decision problems experimentally by interactive
access and manipulation of stored data, "what-if" data, and software
transformational modules. DSS researchers agree that the crucial prob-
lem for this kind of use is the problem of interaction with the user.
Ad-hoc decision problems, being one-time problems, do not call for
production-code efficiency from the data processing standpoint; in fact,
the emphasis is entirely at the other end of the spectrum. Every feature
of a DSS is designed for user convenience. High computer overhead is
expected and condoned.

DSS implementations are normally characterized by advanced graphics,
calculator-mode operation, basic statistical manipulation, ad-hoc report
generation, and provision of special-purpose modules designed for the
set of jobs at hand. Experimental use is emphasized; the user is ex-
pected to come to the DSS terminal for help in modeling a problem, not
simply to solve it after off-line modeling. DSS researchers distinguish
between 'interactive' and 'conversational' modes of interaction; in con-
versational modes the computer is in control and issues prompts, whereas
in interactive modes the user is in control. DSS designers concentrate
on truly interactive modes where possible.

-421-

It is generally considered good practice in DSS design to let the
user/machine interaction emulate the communications that the user would
undertake while solving the same problem unaided. Although little real
research has been reported along these lines, it has been repeatedly
suggested that DSS designers should objectively observe the user in his
decision-making environment, recording his questions and commands as he
interacts with staff, resource persons, and subordinates--then let the
user's most-used imperative verbs be incorporated as commands in the
DSS and let the user 's most-used nouns be incorporated as data elements.

Communication goals of DSS, then, are to emulate the decision
maker's established modes of communication as closely as possible. Since
ordinary (aidless) decision making is usually a seeking, probing, exper-
imental affair (as contrasted to monolithic acts such as modeling and
solving the problem as an operations research optimization problem), the
preferred mode of DSS interaction is experimental. Designers try to en-
courage experimental use by providing interactive documentation and
diagnostics, and'even by providing a full enough spectrum of alternative
commands (and a transparent enough logical structure) that the user can
profitably enter a command he does not know in the hope it will have the

desired effect.

The Software Project Management System

The Software Project Management System ultimately to be fielded is
envisioned as a DSS implemented on a stand-alone microprocessor or mini-
computer system to provide planning aids, visibility aids, control aids,
and general aids to the software project manager. The visibility mod-
ules of the DSS would receive progress input (data on actual expendi-
tures, actual milestone completions, etc.) from the MIS, and would in-
corporate forecasting software and 'variance analysis' (in the cost-
accounting sense) software; it would output 'visibility' reports such as
bar charts showing actual and planned progress side by side, with f ore-
casted progress shown in contrasting graphics. The control aids would
include algorithms for automated flagging of exceptions, and perhaps
automatic preparation of progress reports up or down the chain of com-
mand. The general aid modules would include ad-hoc report generation
(histograms, cartesian plots, pie charts, etc.), basic statistical com-
putations, and calculator-mode capabilities along with usual desktop
computer capabilities.

SPNPS will include only planning aids.

The Initial Simulated Prototype SP11PS

SPMPS is planned to contain a limited number of interactive plan-
ning tools, namely

... interactivt PERT analysis

-.. interactive time-cost tradeoff and resource allocation analysis

...generation of schedules and life-cycle curves.

These tools, by themselves, constitute a useful management-aid
package for a software project manager. The basic planning methodologies

-422-

are well known, and they are well adapted to interactive use. The time-
cost tradeoff and resource allocation procedures, particularly, are
heuristics that are easier to perform with a user/computer team than
with a computer alone.

A preliminary list of the initial capabilities is as follows:

1. Interactive development of task breakdown of a project into
activities, with specification of activity durations using the PERT-beta
method or the newerSchick & Lin interactive probability estimation rou-
tine, and specification of resource utilizations.

2. Respecification (temporary or permanent, cumulative or non-
cumulative) of activity parameters at any point in the session.

3. Representation of the current list of activities as a standard

activity-on-arc PERT graph.

4. Solution of the PERT graph, with reporting of early start
times, slack times, etc.

5. Representation of an early-start-time schedule as a Gantt
chart.

6. Interactive 'crashing' and 'sliding' of activities.

7. Interactive reporting of resource utilizations.

8. Interactive generation of life-cycle curves.

Work Plan

The initial phase, to design, implement and demonstrate a simulated
prototype of SPMPS, includes the following tasks:

1. Identify a proponent within the Army who has large-scale soft-
ware project management responsibility and who is willing to provide
initial consultation and data, and who also will indicate willingness
to corsider allowing testing of the simulation prototype SPMPS under
appropriate conditions in an actual software project development en-
vironment.

2. Design the Software Project Management Planning System simula-
ted prototype. This includes implementing the management-aid modules
(PERT planning, time-cost tradeoffs, resource leveling, scheduling and
life cycle curve generation), providing a design of the user/machine
interface, and testing the simulated system under laboratory conditions.

3. Perform a limited experiment in the proponent's environment,
including performing PERT analysis of a designated software project,
along with resource leveling and scheduling, and compare the results
with those of current planning techniques.

4. Analyze the limited experiment to obtain a preliminary evalua-
tion indicating (a) whether the SPMPS concept is viable as a management
tool, (b) whether use of a full-scale SPMPS would have been useful in
the actual software project on which the prototype was tested, (c) what
changes in the modules are indicated by the results of the experiment,
and (d) what modules should be added and/or modified in follow-on work.

-423-

5. Propose the follow-on development work. This will probably in-
volve design, implementation and testing of two or more configurations
and the testing of additional modules, ending in a prototype ready for
full testing.

Parallel Projects

Two other projects are planned in order to obtain parallel data and
experience on special-purpose modules representing DSS components that
typify those of the eventual Software Project Management System but
whose design-relevant characteristics are not included in SPMPS. In both
of these additional projects the needed core software already exists,
and work can concentrate primarily on the user/machine interaction.

The first of these is a generalized decision tree module. (A gen-
eralized decision tree is simply a decision tree in which the activity
durations are allowed to be independent random variables.) This typifies
operations research modules that are extremely general in application,
applying to many different kinds of problems. This module is similar to
the modules around which some existing DSS's have been built.

The second of the two additional projects is advanced-graphics
implementation of a graphical solution of the arbitrarily-constrained
minimax location problem, which has recently been published and demon-
strated by Rick Rosenthall of the University of Tennessee at Knoxville.
This algorithm is new, it requires user participation for its solution,
and it solves a narrow range of problems that are immediately under-
standable in a variety of military contexts. The module will typify
those hht will normally be used by a given decision maker in only one
way. In a computer context, for example, the minimax algorithm allows
location of a computer van to minimize the distance to the farthest user
served, with arbitrary constraints such as a requirement to locate on a
particular road or perimeter, or outside a designated area.

SPMPS and these two parallel projects will provide a fairly com-
prehensive initial test of the DSS concept applied to the provision of
real-time automated management tools in software project management.

-424-

A BUSINESS APPROACH TO MANAGEMENT AND CONTROL
OF THE SYSTEMS DEVELOPMENT PROCESS

L. T. Herrmann
MANAGER, SYSTEMS ANALYSIS AND DEVELOPMENT

SHELL OIL COMPANY
HOUSTON, TEXAS

Abstract

The successful development of large, one-of-a-kind, complex software
systems in a multifunctional environment demands a total systems approach
and an appropriate management process suited to the particular organizational
structure and environment which it seves.

This paper identifies a number of problems common to today's systems
development environment and presents one approach to their solution through
establishment of a full spectrum of management processes, management aids and
controls, management skills, and standards and training. These elements are
considered essential for the achievement of successful project management
results.

Acknowledgement

The processes and elements described herein represent the product of
several years of effort by many dedicated professionals within Shell's Information
Systems Department. I would like to give credit and recognitition to those
collectively as well as those currently devoted to improving the entire systems
development process. Additionally, I would like to thank those on our staff
who assisted in assembling this paper for presentation.

A BUSINESS APPROACH TO MANAGEMENT AND CONTROL
OF THE SYSTEMS DEVELOPMENT PROCESS

L. T. Herrmann
MANAGER, SYSTEMS ANALYSIS AND DEVELOPMENT

SHELL OIL COMPANY
HOUSTON, TEXAS

I.INTRODUCTION

A. Systems Development in the Service Organization

Systems development organizations may exist within a corporation,
serving only the specific needs of that corporation, or as an inde-
pendent profit center selling their services in the general
marketplace. In either case, with the exception of profit motiva-
tion, they seem to share a common charter:

To develop efficient, cost-effective, and
secure data processing systems on schedule,
within budget, and consistent with user
objectives and requirements.

The independent business has always recognized the risks of
operating in the open marketplace. The laws of supply, demand, and
open competition govern its success or failure. Even in a market
where demand for data processing services significantly exceeds the
available supply, a business which cannot meet all of the components
of the charter mentioned above is destined to fail.

The corporate users of service organizations and the development
organization heretofore reluctant or unwilling to accept the structure
and discipline of proven project management concepts and practices are
now demanding project management of the ongoing application equivalent
to that applied to capital projects. The service organization is
responding. There is increasing concern for improved cost-
effectiveness, control, productivity measurement and accountability.
Managers are searching for improved methods and tools to help us
understand and administer the development process. We question our
organizational alignments and processes, and we constantly search for
improvements that will insure project successes.

This paper outlines current philosophies, strategies, methods
and tools being employed by Shell Oil Company in managing the
application development process.

COPYRIGHT - Shell Oil Company
-426-

I. INTRODUCTION (Cont'd)

B. Current Problems for Management

The increasing interest in the management and control of the
systems development process is not accidental. Many conditions
in the current business, economic, and social environments indicate
the need for improvement:

-Data processing expense as a percent of revenue trended favorably
downward for the period 1970-74, but for the last three years has
leveled at .7%. (See chart on page A-1.) The demands and pressures
to continue the downward trend or hold it level with inflation
require improved management to increase productivity.

-Personnel costs, as opposed to hardware/software costs, are taking
an increasingly larger share of the data processing resource.
There is an increased awareness and concern relative to the lack
of systems development performance measurement criteria and
historical data along with changing attitudes of professionals.

-Producing reliable software designed for change is far less
expensive than fixing the system later on, and reducing maintenance
costs allows reallocation of resources to new and profitable
development. Current trends indicate the ratio of maintenance
to development work is about 60 percent to 40 percent and rising.

-Systems are becoming more centralized, integrated, complex, and
large in both size and function. They represent significantly
higher investments to user organizations.

- Users are more mature and knowledgeable and are demanding that we
function in the same business-like manner they expect in their own
organizations.

- Data processing is more visible today because our installed systems
have become an integral part of company operations and day-to-
day business activity, rather than just being simple batch record
keeping and reporting systems.

- Systems professionals including managers have been reluctant
to accept discipline; they view systems development as more an
art than a science. There is a tendency to rely heavily on experience
subjectiveness, and intuitiveness. Such attitudes, if allowed
to prevail, diminish the effectiveness of efforts to improve
the planning and management processes and to achieve productivity
benefits afforded by improved tools and methods available.

-427-

I. INTRODUCTION (Cont'd)

-Our performance record is being increasingly challenged by
management; there is also increasing dissatisfaction on the part of
the user with time and budget overruns, and with an unsatisfactory
communication process.

-Technological, organizational and business changes occur rapidly
and have a significant impact on the development process as well
as our ability to respond.

-The user's view of min-house" expenditure of discretionary funds has
been changing over time. Discretionary spending is now being viewed
on a more equal basis with outside capital expenditures. This view
demands a more objective cost versus benefit analysis of any project
undertaken, and increases demand for improved performance and
productivity on the systems development organization.

C. Goals and Solutions

Understanding all of these factors may explain why we need an
improved, systematic phased business approach to managing and
controlling systems development, but it does not help us with the how
to get there.

The development process most certainly can be improved to
become more cost effective and productive. However, what is required
is a total concept approach in a structured, well managed environment
in which effective use of carefully selected productivity tools
and a positive attitude of managers and professional staff prevails.
(See chart on page A-2.)

The goals which we set for ourselves lie in the center of our
target area, successful management and control of systems development.
The outer rings of the target can be viewed as successive layers the
Management Process, Management Aids and Controls, Management Skills,
and Standards and Training needed to consistently reach the target
area. Without such a total concept approach and supporting tools,
hitting the bull's-eye (i.e., a successful project) is left to luck.
The consistent bull's-eye is a result of a great deal of planning,
management, skills development and much experience.

II.* THE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT

An examination of the complete process for developing systems reveals
there are certain key concepts which must be recognized and practiced to
achieve successful management of a project. Clearly identified authority
and accountability are absolute essentials. Early agreement on the
statements of project scope, objectives, and requirements must be produced

-428-

II.* THE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont'd)

by initial project efforts as the foundation for all work to follow in the
total project process. We must know the strategy and execution plans of
the business to be served and obtain solid commitment for the support of
our projects for these business goals. The following concepts have
significant impact:

A. Key Concepts for Project Management

- Emphasize management of the process by establishing well-focused
authority, responsibility and accountability. Clearly define and
communicate roles, functional definitions, and sign-off authorities
at the beginning of the development life cycle.

- Implement and adapt a systems management methodology to fit
the management process and the organizational structure.

- Install a project management information system including elements
such as staff skills requirements and availability, project control
and tracking, change control, costing and billing, and project
completion history. Use it to manage.

- Identify a sponsor in the user organization with sufficient authority
and obtain a commitment. Insure proper communication processes
are established and maintained throughout the project life.

- Establish a Systems Management Team within the data processing
organization with authority to determine the degree of management
required and to make timely decisions involving the balance of
resources and commitments.

- Establish a project steering committee to guide matters of concern
at the project level and make decisions within the project jurisdiction.

- Identify the appropriate Projects Manager and leader as the first
line of management with responsibility through all project phases.
Accountability for performance to plan is a requirement.

- Create a project team, including appropriate data processing and
user representation in all phases, in a manner to obtain their
commitment and assure their continuity for the project.

B. Goals of the Project Development Cycle

All projects are directed at commnon goals which are of prime
interest to both user and data processing organizations. A completely
successful project will achieve all of these goals, namely:

-429-

II. THfE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont' d)

- Deliver efficient/effective systems

- Utilize appropriate technology

- Meet implementation schedules

- Achieve expected development and operating costs

- Satisfy user scope, objectives, and requirements

- Produce planned deliverables

- Provide a flexible system designed for future changes

- Minimize maintenance cost during the remainder of the operational
life cycle

- Provide systems integrity and security

There are other goals to be achieved that are mostly germane to
interests of the development organization. These are:

- Facilitate measurement of professional performance and productivity

- Assist in measurement of organizational performance and productivity

- Develop/maintain functional business knowledge and expertise

- Maintain/improve technical and professional skills

- Provide for optimum use of physical and human resources

- Improve and maintain credibility with the user

C. Organizational Functions for Project Management

The Information Systems Department (ISD) within Shell is
organized in three internal departments according to broad areas
of responsibility. These departments along with functional systems
coordinators manage information systems for the corporation. Following
is a brief explanation of the province and responsibility for each
of these.

Systems Analysis and Development (SA&D) is responsible for all
information systems development activities including systems
analysis, systems design, programming and preparation of
implementation plans. This paper refers to this department
as the development organization.

-430-

II. THE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMNT (Cont 'd)

Systems Support and Implementation (SS&I) is responsible for
all control, maintenance, enhancement, and extension of existing
information systems, user consultation for those systems, and
the implementation function for new systems. This paper refers
to this department as the support organization.

Systems Technology and Consultation (ST&C) is responsible for all
professional training, techniques and standards, corporate data
base management, and scarce skills utilization management. This
encompasses techniques, standards, procedures, and advanced
systems technology for business and technical sytems.

Systems Coordination is responsible for coordinating and assisting
user organizations in the assigned functional area. This includes
new systems requirements, funding, and coordination of all data
processing activity carried on for the user.

In addition to the organizational functions described, there are
additional components essential to the project management effort.

A user Steering Committee is responsible for a development project
or group of related projects to direct the development team on
policy, procedural and organizational matters affected by develop-
ment activities. The committee monitors project activities
to insure priorities, schedules, budgets, scope and objectives
remain consistent with user desires. Most importantly, it makes
key design and implementation decisions for the organizations
affected by the development project.

The Quality Assurance function (discussed in detail on page 12
of this paper) serves as a managemet assurance that project
plans, risk assessments, internal project reviews, and quality
assurance audits are accomplished. In our organization, the
quality assurance function reports to the development manager
and also is responsible for areas discussed elsewhere, such
as the project orientation phase, estimating review board,
and project completion activities, along with all organizational
performance tracking and reporting. In general, we consider
the quality assurance a resource optimization function for
our development organization in that plans or commitments and
staff resource availability are in accord.

The Systems Management Team is a management strategy team
consisting of managers of the development and support organizational
elements discussed above. They function to determine degree of
management required for development, implementation, and support
activities and their primary function is to make decisions
relative to balancing overall resources against commitments.

-431-

II.* THlE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPM4ENT (Con td)

The team also serves as the authority to adjudicate any conflicts
which may arise. Another key function is to combine develoment
and support requirements and allocate resources based upon
work plans.

User Management of each operating or service function in Shell
has a focal point for systems development and support activities.
The actual job function and title vary based upon size and
complexity of the user requirements but typically would
referred to as Manager Information Systems for a given function.
In some cases a staff of liaison personnel supports such a
function in addition to a high-level management team in the
user organization with authority and responsibility for expendi-
tures, work direction, priority setting, planning and budgeting,
etc.

We also make extensive use of "user experts" or representatives
as part of a resource matrix approach to development. During a
certain phase of the development life cycle they may be assigned
specific development activities or become part of a development
project team. Another approach to maintaining functional user
knowledge and involvement for system development is the assignment
of user "operating specialists" to the development organization.

Project Coordinator - When a Projects Manager is responsible for
a major system development effort comprised of a number of highly
interrelated and interactive projects, a function is needed
to provide consolidated visibility, planning and control. A
separate position of Project Coordinator is identified to perform
these functions normally shared by the Projects Manager and
the Project Leaders. This position assists both the Projects
Manager and the Project Leaders in the following ways:

- Provides the Projects Manager with additional time to perform
required administrative duties and control functions.

- Allows the Projects Manager to be effective at a higher
level of user interface.

- Allows the Project Leaders more time to concentrate on
their specific projects, and enhances comunication between
those projects.

- Provides a focal point for direction of cross-project
support services such as data base administration and project
assistance.

-432-

II. THiE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont' d)

The Project Coordiator function may require either a full-
time assignment or part-time assignment, possibly shared with
other project responsibilities.

General duties include:

- Responsibility for centralized coordination of functions
common to all projects within a large systems development
effort.

- Maintain central project visibility to users and project

development staff.

- Coordinate project planning, design, and control.

- Status reporting and staff support activities between projects.

Normal administrative duties of the project manager/leader
such as personnel, budget, direction of overall project activi-
ties, etc., are not included in this function.

Refer to charts for systems and project management on pages
A-3 and A-4.

D. Management of the Project Development Cycle

The end products of the development activity are typically
characterized as large, complex, one-of-a-kind systems, with the
construction process being bounded by a difficult communication
process and lacking a common blueprint mechanism between users
and developers.

While the activity can be viewed as consisting of several
discrete successive phases, the system development process in the
real world rarely has clear-cut phase boundaries. The approach
toward project management must recognize this and provide an
atmosphere for managing variances in the process as a normal course
of business.

A system development life cycle can be described by an orderly
series of logically interrelated activities - groupings of which
are referred to as phases. Phases are identified by discrete
achievement points which serve as management decision opportunities
and review points for past and future plans, accomplishments, and
expenditures.

-433-

11.* THE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont 'd)

The system life cycle in Shell is viewed as follows:

1. Project Origination

This is the process by which a user and the development
organization develop problem statements and decide to proceed to
the Project Definition Phase. A project plan is developed to
ascertain skills requirements and availability for conduct of
remaining phases and a quality review is conducted by development
and user management. This is perhaps one of the most important
yet neglected phases of the life cycle which will have impact on
succeeding phases and influence the degree of success.

Based on a stated need by a user and/or the data processing
staff, the systems coordination manager, in conjunction with the
appropriate user representative, will develop a general problem
statement or objective. The coordination manager identifies user
management (project sponsor) who has responsibility in the user
organization for development of the project proposal. This
objective is submitted to the systems development manager for
assignment of a projects manager who in turn identifies appropriate
staff levels and skills needed (Project Team) to develop the
project proposal.

Allocation of resources and a start date for the project
proposal can then be established. This is done by the systems
development and systems support managers in consultation with
the user functional management, the systems coordination manager,
and when appropriate, the Manager of Systems Technology and
Consultation. This teams (the Systems Management Team) carries
authority and accountability within the organization for overall
balance between resources and project commitment strategies.

2. Project Definition

At this phase the problem statement is translated to a
detailed project plan together with very approximate cost estimates
including an upper bound. A decision is made at this time
concerning the need to conduct a feasibility or cost/benefit
analysis which is normally required.

if a feasibility study is needed, the projects manager will
form the team for the feasibility study asking for assignment of
other data processing and user personnel as needed. The systems
coordination manager, in conjunction with user management (project
sponsor), will establish clearly defined focal points for the
study within the user community and insure that required user

commitment and participation is obtained. However, the final

-4 34-

II. THE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont' d)

responsibility for the study rests with the systems development
organization. At completion of the feasibility study, if
continuation is approved by user management, the project enters
the systems development phase.

3. Systems Development

During this phase the project proceeds with preliminary
design, through detailed design, programming and testing,
adhering to accepted standards and guidelines and drawing on
necessary skills as required to produce a quality product.

For most large projects, a steering committee is formed.
User personnel on the committee should be appointed and charged
by user management (project sponsor) in consultation with the
appropriate coordination manager(s). The chairman of this
committee is from the proper sector of the user community and
has the authority to make necessary decisions concerning the
project. A projects manager and other members of the management
team whose participation would add value are appointed to the
steering committee and charged by the Systems Management Team.
The steering committee may assign work teams reporting to them
during the project life.

The project team is composed of a nucleus of development
staff, with other membership, either temporary or permanent,
consisting of personnel from within the data processing and/or
user community possessing the skills required for the successful
execution of the project. This team is named and charged by
the development manager together with other data processing
and/or user management as required. This charge will clearly
delineate the functional responsibility of all team members
to the projects manager. The project team will develop and
implement the system according to established methodology.

Early in the development cycle the level of operational.
phase support effort will be agreed upon and the appropriate
system development staff will be planned to carry the system
into the support mode. Moreover, for most projects an individual(s)
functionally reporting to the projects manager and administratively
reporting to the support manager will be named and charged
to coordinate normal systems support of the project team throughout
the remainder of the project.

Attendance of appropriate systems managers is required at
periodic project reviews to ensure timely decisions on internal
matters and prompt resolution of issues which might otherwise

-435-

II. THIE MANAGEMENT PROCESS FOR SYTEMS DEVELOPMENT (Cont'd)

impact project schedules/costs or the plans/operations of other
development or user organizations.

4. System Implementation

This phase is the process by which a thoroughly-tested and
quality-checked system is placed in a production mode. It
includes all user and data processing training and "must do"
modifications.

The steering committee will continue to function until
implementation is complete. They will approve implementation
plans, start and completion dates, provide user liaison and, if
needed, provide coordination among user groups and the project
team. At the onset of the implementation phase the steering
committee and project team will finalize and agree on specific
user acceptance criteria.

As implementation proceeds the steering committee will
distinguish between "must do" development items and "wish list"
support requests. The impact of "must do" items must be clearly
understood and accepted by the steering committee. The steering
committee will declare the system to be accepted and implemented
from the user standpoint. Where "must do" items involve resource
commitments significant enough to affect organizational
strategies, the Systems Management Team will be consulted.

5. Wrap-Up

This phase consists of the orderly transition of the system
to an operational support mode, the reassignment of project
team personnel, and the conduct of a project completion analysis
and review.

After the system is implemented a determination will be
made by the Systems Management Team as to when responsibility
for continuing support should move to the support organization.
At this time any designated members of the project team will
transfer to the support function to handle future modifications.
A project completion review is conducted and the projects historical
data base is updated to reflect performance of the project
by each phase of the life cycle.

E. Estimating Review Board

There are of course many philosophies of estimating project cost
ranging from estimating only the cost of the next phase to attempting
to furnish a relatively hard estimate for the entire project at

-436-

11. THE MANIAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont' d)

project origination time. In most organizations, the user community
will press for the best expression of the entire project cost before
the project has progressed to any extent. Approaches to preparing
a project cost estimate also cover a wide spectrum, but regardless
of the approach or philosophy followed, an Estimating Review Board
can play an important role in improving the quality of the estimate.
it does this by providing a "detached" review of the estimate by
experienced people.

The Estimating Review Board should have one or two permanent
members plus one to three other members representing the more
experienced professional staff and projects managers. The board
reviews the estimate for completeness, insuring that there is
reasonableness in estimated time and monies to cover all phases
and tasks of the project plan. It examines not only the value
of the parameters used but possible omissions which may well affect
the final project costs. Parameters for which values should be
assigned vary from the expression of system size (estimated lines
of code, number of programs, number of files, etc.), system
complexity, degree of interrelationships, commitment of the user,
skills, and experience of the project team and manager.

A very important function of the Estimating Review Board is to
"look back and compare". This is accomplished by comparing the
present estimate to cost of previously completed systems of similar
size, complexity, etc. This type of comparison places considerable
importance on the project completion data base concept explained
later in this paper.

F. Quality Assurance Function

This function provides development management with an independent
assessment of the quality of project plans, adherence to established
project management process, and end products or deliverables. Quality
Assurance personnel by the very nature of the function itself must
walk a very thin line. To be effective, they must remain objective
and autonomous, but at the same time function as an advocate, rather
than as an adversary, to the projects manager and team. The function
must be the responsibility of competent personnel with extensive
successful project management experience.

They provide a central project and organizational performance
assessment. In addition, they provide input into the development and
refinement of standards and guidelines based on data and experience
from other projects. Through knowledge gained from past projects,
the Quality Assurance function can aid, advise, and provide
guidance for projects managers. Assistance can be provided in
structuring project plans and determining the degree of management

-437-

II. THE MANAGEMENT PROCESS FOR SYSTEMS DEVELOPMENT (Cont'd)

required in accordance with size, complexity and constraints placed
upon the project. Additionally, it can serve as an independent
sounding board as problems arise, or identify potential problems
so that corrective action or alternative strategies can be planned.
In general, it can provide counseling based on experience across
a large number of projects. It also provides objective evaluation
of project status and determines if a project is proceeding according
to plan. This is accomplished through impartial reviews and internal
walk-throughs.

Included also is a check and balance function within the development
process. By independently validating project plans and conducting
initial and periodic internal project reviews and quality assurance
audits, the Quality Assurance function can identify high-risk areas
and suggest possible means to reduce risk, or can recommend contingency
plans.

III. MANAGEMENT AIDS AND CONTROLS FOR SYSTEMS DEVELOPMENT

A Project Management Information System is the support mechanism
that is designed around the management process itself and brings together
all management aids and controls. The individual components, described
below, become the framework to manage projects from initiation through
completion. They help to manage and control overall projects for successful
systems development results as well as to provide information to measure
the organizational and individual productivity and performance of the
systems analysis and development activities.

A Project Management Information System has the following objectives
to support the systems development process:

- Plan and estimate resources
- Schedule time and resources
- Select leadership and assign staff
- Track and control progress
- Record, measure and evaluate results
- Report and feedback status
- Control changes
- Provide quality assurance

A schematic of aid and control relationships is shown as an
information flow chart on page A-5.

-4 38-

£0D-AI04 252 INTERNATIONAL USINESS SERVICES INC WAS I INGTON DC F/G 9/2
US ARMY SOFTWARE SYMPOSIM (2ND) HELD AT WILLIAWSRLM. VIR@SINtA-CETC(U)

WiLSIID1978 S M TAYLOR DAAK7-76-0-0030

EEhhEEEEEEChAhEIh7hhE

111. MANAGEMENT AIDS AND CONTROLS FOR SYSTEMS DEVELOPMENT (Cont'd)

A. System Management Methodology

One of the major management tools is a working, viable system
management methodology. The methodology can be described as a guide
for system development that contains procedures for planning,
managing, performing and reviewing the work of systems development
projects. It is not a Project Management System in itself, but
the cornerstone in a framework for project management - a vehicle,
but one that requires adaptation to the organization and type of
project.

As systems development efforts become larger and more complex
it becomes more important to "steer" a project in the proper direction
during the evolution of the system design. This can be done through
the standard framework within which all required work can take
place in proper sequence. However, within this framework individual
work components can vary with end objective.

The methodology describes a "typical" project down to task
level. It can guide project leaders toward agreed "best practice"
and help avoid overlooking needed work. It serves as a checklist
from which tasks can be added or deleted as needed for a specific
project. It also provides a common vehicle for communicating about
a project: within the project team, within the development organization,
and with users. Emphasis is placed on terms of reference, reporting
relationships, responsibilities, and commitments at the outset.
Standardized documentation of project plans, estimates, and progress
as well as end results are provided.

A methodology is a phased approach with positive, discrete
events, milestones or checkpoints, and work products. It insures
that planning takes place at the beginning of the project itself
and each subsequent phase. It also provides for re-estimates at
each phase for the next phase and for the remainder of the effort.
Timing and manner of project reviews (at checkpoints or milestones)
are specified to ensure project work is complete and in compliance
with established project management methodology. It makes visible
areas of assumption, disagreement, deviation from standards, identifiable
uncertainties (risks), and actual or potential slippages/overruns
for timely management attention.

It provides for increased user involvement both in the work
itself, and in the reviews, to foster awareness and understanding of
this critical role in achieving project goals, and to achieve
continuity and integrity in translating user objectives into system
specifications, and verifying that they are attained. It places
emphasis on user and internal communication and commitment, along
with control of changes which impact elapsed time and cost. It

-439-

III. MANAGFMMT AIDS AND CONTROLS FOR SYSTEK4S DEVELOPM4ENT (Cont'd)

also emphasizes other internal involvement from operations, auditing,
etc.

The methodology can be characterized as a guide (not a
straitjacket) that recognizes the legitimacy of planned deviation and
provisions for change control. It must recognize that the system
development process rarely has clear-cut phase boundaries in the
real world and provide the atmosphere for managing variances as
a normal course of business. It also must recognize that as a part
of a dynamic environment the methodology itself will require constant
monitoring and refinement in order to survive.

On page A-6 is a chart depicting typical project development
phases and sub-phases of a system management methodology. In Shell,
the life cycle is managed with three phases and thirteen sub-phases.

B. Staff Planning System

In the project management process, a key factor to success is the
effective management of personnel. To improve project planning and
scheduling, relate available skills to workload requirements, avoid
underutilization, and provide essential training, a system is
required that provides:

- basic skills data
- current and planned assignments
- availability dates of individuals
- training information
- employee personal aspirations

All data provided will be used as input to the overall management
and decision process used in departmental, project, and career
planning.

Assignments - for each individual, job assignment data will
be maintained. This includes past, current and future assignments
and will provide type of experience (skill), time, and availability
for reassignment information. By including this type of data,
forward project requirements and individual aspirations can
be considered in the management process.

Training - for each individual, all internal (within the corporation)
and external training classes attended are maintained. Also,
future training, both normal skill development and individually
desired, will be input to the system.

The results of these efforts in the area of staff planning should
help in the overall objective of improving the project management

-440-

III. MANAGEMENT AIDS AND CONTROLS FOR SYSTEMS DEVELOPMENT (Cant d)

process and providing meaningful appropriate career path assignments
based upon business needs as well as personal aspirations when
possible.

C. Project Control and Tracking System

Another key management aid is a simple, straightforward, friendly
system for project planning, control arnd tracking. Such a system
for project reporting, estimation, and completion history allows
for entry and tracking progress of work plans and allows updating
of work plans through approved change control procedures.

Project work-plan tasks and estimates are compared to actual
expenditures and completions by project personnel. The level of
comparison is optional but can include sub-project, program, and
task. A provision to identify phases of the development life cycle
is included. Control reports track plan vs. actual for starting
and completion dates and manpower expended. Exception reports
isolate late completion dates and manpower utilized in excess of
approved projections. Reporting periods are approximately every
two weeks and the accumulation of historical performance aids
management in more accurate estimating of future projects while
serving as a measure of performance to plan on a current basis.

D. Project Costing System

This system accumulates all project costs by phase, including
manpower, direct expenses, resources and overhead. The system
produces cost and control reports for management and provides current
and cumulative data useful for tracking manpower and data processing
resources expended compared to approved plans.

Project computer usage is captured automatically at execution
time. Manpower costs are input automatically from the Projct Control
and Tracking System mentioned above. Other expenses are automatically
captured from appropriate source documents.

E. Change Control System

ongoing change is inevitable during any project development
cycle, and the type, amount, and time of a change can have a significant
effect on the successful completie~n of a project. Furthermore,
whether the changes are a result of better understanding of the
user's business requirements, new laws or regulations, new technology,
changes in procedures, etc., failure to manage change as an ongoing
process will guarantee overexpenditures, missed target dates, or
a product which does not meet user expectations.

-441-

III.* MN4AGEMT AIDS AND CONTROLS FOR SYSTEMS DEVELADPMENT (Cont' d)

The effective control of changes, particularly for large
projects, can only be accomplished through consistent application of
a well-understood and managed control procedure. Although change
control should be tailored to best meet the needs of the organization
it serves, the following characteristics should be considered as
minimum requirements:

1. Documentation

Change control procedures should be formalized in a written

document to provide common understanding to all affected parties.

2. Controllable Change

Agreement should be reached as to what constitutes a change
that will be controlled using the procedure.

3. Identification

Recognition of the fact that a change has occurred requires
complete documentation of all agreements on requirements between
developers and their users. The procedures should emphasize that

these documented agreements will serve as the sole basis for

identifying and evaluating change.

4. ISvaluation

Each change must be evaluated in objective terms with respect
to its need, criticality, timing, cost/benefit and scheduling
effect on the project.

5. Approval

The project steering committee, or similar body, will
be responsible for approval/disapproval of all requested changes.

The committee will normally be comprised of both development and
user representatives and will base its decision on the completed
evaluation of the change. The final decision is solely vested
with the user.

6. Notification

A formal communication process must be available for
requesting changes, and for notification to affected parties of
the results and impact of the change request.

-442-

III.* MANAGEMENT AIDS AND CONTROLS FOR SYSTEMS DEVELOPMENT (Cont' d)

7. Records

Formal and complete records must be kept, by project,
of all changes; this includes a summary of cumulative impact
over time of changes on each project.

F. The Quality Review Process

Personnel are appointed to a project Quality Review Board
to represent all interested/affected systems groups and users for
the purposes of concurring with project work completed at each of
the agreed milestones during the development cycle. The Board's
effectiveness is enhanced by appointing one or two members as
"evaluators" who review the deliverables in detail and present
their findings to the Board. The Board's responsibility is not
to "approve" or "disapprove" per se, but to highlight any areas
of disagreement or risk for appropriate management attention and
action. The number of reviews is flexible, ranging from 4 to 10
depending on project size and complexity.

G. Project Completion Data Base

A necesary support element in a Project Management Information
System for the development organization is an historical record of
data from completed projects to assist in planning, managing, and
estimating future development activities. Typical data elements
include size, duration, complexity, cost, performance information
by life cycle phase, assessment of degree of success and user
satisfaction level, tangible economic benefits, degree of compliance
with standards and guidelines, productivity tools utilized, etc.

IV. MANAGEMENT SKILLS FOR SYSTEMS DEVELOPMENT

Successful systems development requires a high degree of business,
technical, and general management skills and experience which must
be developed and maintained. The following identifies those considered
to be most significant.

A. Project Management

Required to manage the end product in the major areas of quality
control, tracking, and people to reach the objectives of on-time,
within budget and to user satisfaction.

-443-

IV. MANAGEMNT SKILLS FOR SYSTEMS DEVELOPMENT (Cont'd)

B. Commuunications

Allows the manager to be effective in giving and receiving
essential information when interfacing with users, subordinates,
upper management, and other development or support groups.

C. Team Building

Focuses on strengths of individuals, group dynamics, project
team objectives, sharing, job enrichment, etc.

D. Business Management

This category is used to identify technical and professional
tools or techniques that support the managerial process. Examples
include problem solving and decision-making techniques, simulation
techniques, planning and forecasting tools, financial analysis.

1. Financial Analysis

Develops skills in cost/benefit analysis to identify real
costs, real benefits, tangible/intangible value, etc.

2. Problem Solving and Decision-Making

Presents the manager with a systematic, quantitative approach
to the decision-making process in selection of imperatives,
desires, risk analysis and regret analysis.

3. Planning Methodology

Provides the manager with methods and tools for short- and

long-range planning of information systems and includes

- understanding the business and processes
- identifying business and information requirements
- defining information systems network.

E. Leadership

Leadership skills are those skills that are concerned with
organizing and directing the work of others. Leadership is oriented
toward the achievement of specified task objectives and does not, as
defined here, include the broader administrative functions of business
and personnel management.

-444-

IV. MANAGEMENT SKILLS FOR SYSTEMS DEVELOPMENT (Cont 'd)

This provides an understanding of leadership styles to assist
managers in choosing a leadership pattern that will be the most
effective for their organization.

F. Technology

Technical skills can be broadly defined as data processing skills
to include the technical specification or usage of programming
languages, data base management systems, file management sytems,
general utility software, micrographics, telecommunications, input/
output media, systems software, and systems analysis and design
techniques. Following are major areas of focus for management skills
development.

1. Application Software Development

Managers must be kept current on software packages available
that will improve productivity and have an understanding of how
software is actually developed.

2. Data Analysis and Data Base Design

Techniques of data analysis and data base design and selection
criteria for appropriate Data Base Management Systems is required
to produce the most cost effective systems that optimally meet
data storage and retrieval/access requirements and provide
flexibility for future requirements.

3. Telecommunications

Managers must be aware of current and future
telecommunications software and hardware technology to properly
direct the systems design effort to take advantage of improved
methods and avoid near-term obsolesence.

4. Other

Managers must be familiar with information systems
philosophies and technologies such as distributed data processing,
electronic funds transfers, electronic mail, word processing,
operating systems, micrographics, optical character recognition,
security and encryption, backup recovery and contingency, etc.

G. Staff and Organizational Performance and Productivity Measurement

Managers must measure and evaluate individual and organizational
performance, proposals, tasks, tools, etc., to improve the overall
performance and productivity of their project teams.

-44 5-

IV. MANAGEMNT SKILLS FOR SYSTEMS DEVELOPMENT (Cont 'd)

H. Business Function Knowledge

Functional (user) knowledge is a term used to identify the
primary operating and service departments of a corporation (e.g.,
Financial, marketing, Manufacturing, Purchasing, etc.). The reference
to functional knowledge implies an understanding of a function's
activities, the relationships between the activities and a firm
grasp of systems and procedures that exist or are required to support
them.

This is needed by managers to understand how and where their
segment of the business fits into the overall business function's
objectives and goals.

1. Estimating and Risk Assessment

These skills are essential in the planning and controlling
aspects of project management. The risk assessment is an important
ingredient in a "go/no go" implementation decision.

J. Staff Development and Administration

Personnel development and administration embraces salary
administration, employee evaluation, career planning, and employee
communication and counseling.

Where practical, managers must provide work assignments that
reflect and magnify the employee's strengths and aspirations,
provide training opportunities for technical and professional
development, and afford their staff the appropriate growth oppor-
tunities and career plans.

K. General Business Skills

General business is used to describe those skills that are
derived from a knowledge of broad-based subjects that can have a
significant impact on business activities. Typical subjects are
governmental policies or controls, company social awareness programs,
principles of business and finance, etc.

V. STANDARDS ANM TRAINING NEEDE) FOR SYSTEMS DEVELOPMENT

A. Areas Requiring Standards, Guidelines and Advisories

The term "standards" has many meanings and evokes highly
subjective (if not emotional) reactions. It is useful to define
several categories and to note that it is possible to allow

-446

V. STANDARDS AND TRAINING NEEDE) FOR SYSTEMS DEVEDDPMENT (Cont'd)

flexibility of application within even the most restrictive category.
For example: It is a standard that all projects will follow the
prescribed System Management Methodology. That means that no project
may arbitrarily pursue a totally different course; however, within the
methodology there are many options available to match the tasks,
review points, and work products to the requirements of individual
projects. Suggested definitions are:

Standard - a conceptual, procedural or technical
discipline which is mandatory and must be followed unless
exception is specifically authorized by the appropriate
(relatively high) level of management.

Guideline - a conceptual, procedural or technical practice
that is intended to assist in accomplishing work. They
are to be followed in the absence of specific reasons for
deviation (which must be documented and justified at
review points).

Advisory - a conceptual, procedural or technical advice
of agreed merit promulgated for guidance and assistance.
Compliance is voluntary.

For standards to be meaningful, specific enforcement facilities
must exist. Preferred methods are computer assisted and built into
the application development/maintenance process. When this is not
feasible, then manual procedures must be used. The key is establishing
clear responsibility for standards enforcement and a set of structured
procedures for monitoring conformance to standards.

The cornerstone of an effective standards program is a visible,
workable mechanism for identifying needs, locating expertise and
responsibility, obtaining reviews and approvals, publishing and
cataloging. Euthanasia (mercifully k~lling obsolete or moribund
standards) must also be provided. (See chart on page A-7 for
application of standards in life cycle.)

1. Vendor Software

This is an important area because of the currently growing
availability of purchased software as an alternative to in-
house development, which is becoming more costly over the entire
system life. Evaluation criteria for selection among competitive
products should be established. The specific areas of use
for new software should be defined.

-447-

V. STANDARDS AND TRAINING NEED)ED FOR SYSTEMS DEVELOPMENT (Cont'd)

2. Programming Languagesi

The standard set of supported languages must be defined.
Criteria should be established for selection of the appropriate
language for a given application. Standards are necessary for
structure and coding within a specific language.

3. File Management Systems

Similar to programming languages, criteria for selection
among available alternatives and for structure and coding are
required. Additional standards should be established for use of
various data structures supported by the file management system.

4. Data Base Management Systems

Standards required are similar to those for file management
systems. However, because of increased complexity, integrated
(shared) data bases, and usual teleprocessing access, more
standards are required and must be more rigidly enforced.
Some degree of centralization of the data administration function
is necessary for control and enforcement of standards.

5. Interactive Programming Facilities

Standards should be established for selection of interactive
versus batch facilities. Also for selection of a specific
interactive facility for systems development. Acceptable
performance levels should be defined. Standards are required
regarding when and how to use specific interactive commands
or procedures. Security standards must be developed and enforced.

6. Data Dictionary/Directory

Standards are required for which data and applications must
use the dictionary. Minimal information required regarding data
or program elements and relationships must be defined. Responsi-
bility for updating the dictionary must be assigned and controls
and security established. Standard fixed and optional reports
must be developed. Standards must be developed and enforced
for using the dictionary as the only source for data definitions
with program data areas generated only from the dictionary.

-448-

V. STANDARDS AND TRAINING NEEDED FOR SYSTEMS DEVELOPMENT (Cont'd)

7. Naming Conventions

Naming conventions are particularly important if a data
dictionary is to be an integral part of application development
and maintenance. Naming conventions are required for:

- Jobs (including JCL elements)
- Programs and subroutines
- Program elements (procedures, data areas)
- Data sets
- Data elements and groupings.
- Projects and Phases

8. Design of Data Structures

Standards are required for both logical and physical data
structures. The objectives are to develop efficient structures
while maintaining flexibility for future uses. These standards
are especially important for the complex structures supported by

the data base management systems.

9. Code Generation and Generalized Programming Facilities

Data dictionary and in-house software are used to reduce
programming time and enforce standards through generation of code.
Partial or complete programs can be generated from specification
forms. Data descriptions can be generated from a data dictionary.
Video display terminal screen format definitions are generated
from specification forms.

Use of table and macro-driven code generation software
can reduce programming time and enforce standard techniques
and formats. General trade-of fs are reduced personnel costs
versus increased computer resource requirements and limitations
of functions performed. The trend of rising personnel costs
should lend to increased use of generalized code, generated
code, generalized programming facilities, and problem statement
languages.

10. System Acceptance

Specific criteria should be defined for determining if a new
or revised application is ready for production status. Areas to
be considered are:

-449-

V. STANDARDS AND TRAINING NEEDED FOR SYSTEMS DEVELOPMENT (Cant' d)

- documentation
- integrity and performance test results
- conformance to standards
- conformance to user's specifications
- provision for back-up, recovery, and contingency

11. Security

Levels of exposure should be defined for both unauthorized
access and update of each data set. Standard security measures
should be provided dependent upon the level of exposure. standard
security monitoring procedures are also essential.

B. Training of Professional Staff

To maximize the use of new technology, related training is needed
at early stages in advance of initial installation. The availability
of training as project needs arise helps realize the potential of
dynamic computer technology. Training coverage must adapt to comple-
ment new development support tools (i.e., preprocessors, new compilers,
new macros that isolate the programmer from the intricacies of DBMS
and TP) and new development and productivity methods. For most of
the staff new training and retraining are subsets of complete training
that is required only by a small group of specialists. Many of the
development staff work in high level languages that support structured
programming, consult with skilled specialists, and are trained in
basic/intermediate concepts of the languages that comprise the family
of codes. Classroom materials require effort to be up-to-date and
manuals must be oriented to current standards and procedures.

The training staff should develop and conduct on site classroom
courses to meet the technical requirements of:

- All systems professionals in the uses of new software and hardware
technology and techniques.

- College trained employees, other new hires, and transfers in basic
programming skills and systems design fundamentals.

- Projects managers, leaders, and team members in Project Management
and Systems Management Methodology.

- User groups who communicate with the computer (such as engineering,
financial, marketing, service groups, etc.).

- Other computer-related functions which interface with systems groups
(such as operations, data control, scheduling, user services, etc.).

-450-

V. STANDARDS AND TRAINING NEEDE) FOR SYSTEMS DEVELOPMENT (Cont' d)

- Non-data processing staff who need familiarization with computer
concepts and terminology.

Technology to be applied in project development to satisfy user
objectives creates an intensive challenge for staff training. To meet
this challenge we must attain an equitable balance between training
cost, training needs and training availability. We have found on-site
classroom training desirable for basic entry level courses and courses
with large attendance. M4edia-based instruction provides training for
refresher courses, quick orientation, expanded offerings, and
individual flexibility.

VI. PROJECT COMPLETION ACTIVITIES

Project completion should be a joint activity between user, support
and development management. It is a planned and formal event of the
management process. It should be a discrete event which marks the
termination of development activities. Major activities at this post
completion review and audit include:

- Evaluation, grading and documentation of project team performance,
end product quality, and level of user satisfaction.

- Feedback to project management and staff.

- Review of problems encountered during conduct of the development
process in order to minimize future occurences.

- Review of usage and degree of success with productivity techniques,
development methodology, and management processes.

- Formulation of appropriate recommendations for enrichment of standards,
guidelines, and advisories.

- Update of factors, parameters, and other information to enhance
estimating activity.

- Update historical project data base by recording size, duration
complexity, cost, performance information (by life cycle phase),
assessment of degree of project success, tangible economic benefits,
degree of compliance with standards and guidelines, productivity tools
utilized, etc.

-451-

APPENDIX A

Page

1. Data Processing Expense as a Percentage of Revenue A-i

2. Management Targets ... A-2

3. The Information Systems Department A-3

4. Project Development Organizational Relationships A-4

5. Systems Management Aids and Controls A-5

6. Systems Management Methodology.. A-6

7. Application of Standards to Systems Life Cycle o........A-7

-452-

uJ

LU

u-
0

LLU
idix

U.'A

ULJ

IL

I I
~0 C4

A-1
-453-

uj >-
- (D

0
CW -j uj X

0 : - 7- 0
ui Z LA LU -

ca > = LU I.- -E -
u OA uj uLU 0 W 14:1 cou - U. - 4w w CO 7- CO0 LL LUM LL UJ Uj UJ xc IX _j w A ui W

= 4A -J 7-
w u 0 L^ w LL
CL LLJ LLj - UJ 0

tp 0 UJ

CL
CL

LL
ui

A-2
-454-

42AO
Z 4 4p

I-O

LU~

L7. 0 0
p.-Z II

u 7

U-U

p.-J
-CI-

CL!
w CL I--

z 7-455--

LIJ W I.--

CL 0.

.Ne.
Lo 50CC. a LLI -j

JC~

U.'.

I- w

4-, 1,- -
W0 S~

g! A-5 :.

I-.ac I- '
a: uJ wr maI 0

cm a:
-z

"0

'UC

rn-i

IU -

co LawI

-m -- r a.

ON-- I

i IR C.,9VV Si

-46I-

I in

i GI N N N, N

N - - N- - -
ieI

, C.... , m . . -. K

mlJom
-U,.N N + N + N + N N + N N. N

-459a - A-7m %C, i

Ir N N3 N- 1* N. N N S. =

~ ~In
N2 o N2&, s o

-49-A-

LwU

00L

LLU

IU-

z2

0

UJ O-pu-J CD :l

a>
LU

0 LL.
L

W~ I.-..

LU W L

tU CL-u

z: 0 T w
UJ LU
o Uo
.4 > <DLU

X I.-

LUw
LI

LUG LU 3W I-
U, L^:D In LU CA LU

0-
LUw

zo
0.

0-

c6In

-48-A-U. a.

HA4RDWARE/FIRMWARE/SOFTiWARE TRADEOFFS

Dr. Serafino Amoroso

CENTACS

HARDWARE/FIRMWARE/SOFTWARE TRADEOFFS

SESSION CHAIRPERSON: Dr. Serafino Amoroso

Software Engineering Division
CENTACS

SESSION SUMMARY

In the context of real-time software support, one of the main
advantages of microprogramming is in extending the capabilities of an
existing mainframe CPU either for the benefit of the operating system or
for individual applications. It is a cheaper or more efficient method
of implementing certain functions; traditionally implemented in hardware
or software, as well as aiding in system maintenance by gathering statis-
tics on performance. This session has been concerned with the tradeoffs
that can be made between hardware, software and firmware. The first (1)
paper described an emulator which was developed as a form, fit and func-
tion replacement for the AN/GYK-12 computer. The second (2) paper des-
cribed an effort in which a smart peripheral driven by dedicated firm-
ware was used to provide technology insertion upgrade without disrupting
the operational software. The third (3) paper described the software/
firmware development approach taken on a small experimental missile com-
puter with no available support software.

TACTICAL AN/GYK-12 EMULATOR, Edward J. Beach, U.S. Army
CORADCOM, CENTACS (System Validation Division) Fort Monmount, N.J.

TECHNOLOGY UPGRADE OF EXISTING SYSTEMS PERIPHERALS,
Jeffrey S. Yohay and Martin I. Wolfe, U.S. Army CORADCOM,
CENTACS (Software Engineering Division), Fort Monmouth, N.J.

A CASE STUDY OF THE SOFTWARE/FIRMWARE DEVELOPMENT FOR A MICRO-
PROCESSOR-BASED COMPUTER, James E. Scott, U.S. Army MIRADCOM,
Missile System Software Center, Redstone Arsenal, Alabama

-460-

A Tactical AN/GYK-12 Emulator

Edward J. Beach

CENTACS

A tactical emulator has been developed which is a form, fit, and 2

function replacement for the AN/GYK-12 computer as used in TACFIRE and TOS
The emulator combines the CPU-IOU into one "A" size case and provides 131K
of core memory in each Emulator Mass Core Memory Unit (EMCMU). The emulator
has been demonstrated in a TACFIRE shelter and runs all TACFIRE software
unaltered. A compute and execute TACFIRE fire plan was run on the emulator
one-third faster than on the existing AN/GYK-12. Since the emulator is
microprogrammable, instruction alteration and addition are easily accomplished.
Built-in firmware fault isolation diagnostics allow faults to be isolated to
one of the twelve replaceable modules in each EMCMU.

-461-

A TACTICAL AN/GYK-12 EMULATOR

Edward J. Beach

US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Systems Validation Division
Fort Monmouth, New Jersey

INTRODUCTION

In response to direction by the TACFIRE Army Systems Acquisition Review
Council (ASARC) to provide business competition for the AN/GYK-12
computer used in TACFIRE, a tactical emulator has been developed which
is a form, fit, and function replacement for the AN/GYK-12 computer.
The emulator has been demonstrated in a TACFIRE shelter and runs all
TACFIRE software unaltered. Programs are executed approximately one-
third faster than on the existing AIN/GYK-12. Built-in firmware fault
isolation diagnostics allow faults to be isolated to one of twelve
replaceable modules in the emulator CPU/IOU or to one of twelve
replaceable modules in each emulator Mass Core Memory Unit.

The advantage of utilizing an emulator to replace an existing computer
includes the capability to use new technology to replace components
that are out-dated and thereby increase reliability, availability, and
maintainability. Decreased cost, size, weight, and power and increased
speed may also result. No software expense is incurred since all the
software is retained. A significant advantage provided by an emulator
is the capability to modify the instruction set of the emulated machine
easily and inexpensively.

CONTRACTOR REQUIREMENTS

Control Data Corporation of Minneapolis, Minnesota, was awarded a con-
tract by the Communications Research and Development Command (CORADCOM),
formerly the US Army Electronics Command (ECOM) to design and build two
prototype AN/CYK-12 emulators for use in a TACFIRE battalion configuration.

Each emulator consists of one emulator CPU/IOU (ECPU/EIOU) and three
emulator Mass Core Memory Units (EMCMU's). The emulator's CPU/IOU and
memories are required to be a form, fit, and function replacement for
the AY/GYK-12 CPU/IOU and MCMU's as used in TACFIRE. They are further
required to provide full transportability of software, meet or exceed

current AN/GYK-12 performance, obtain identical logic results, drive
existing TACFIRE peripherals, and provide, as a minimum, the same
expansion capabilities as the AN/GYK-12.

A demonstration that these requirements were met is being given by
installing the emulator in a TACFIRE system in the field and performing
the TACFIRE function through test scenarios and artillery training fire
missions.

The TACFIRE system is used by the Field Artillery to increase artillery
efficiency, expand its effectiveness, and expedite command decisions
through automation. TACFIRE consists of tactical equipment used by
operators in the field to aid the commander in delivery of fire. The
TACFIRE system consists of priority driven multi-task operations which
perform the following functions: fire missions, fire planning, fire control,
target intelligence, target analysis, ammunition and fire unit status, and
meteorological data processing.

EMULATOR HARDWARE

The AN/GYK-12 emulator CPU/IOU and emulator Mass Core Memory Units
replace the CPU, IOU, and MCMU's in TACFIRE. The characteristics of the
emulator and of the AN/GYK-12 include:

a. thirty-two bit instruction word;
b. one, eight, sixteen, thirty-two, or sixty-four bit data word;
c. memory expandable in 131K MCMU's to a maximum of 2M words;
d. memory access control and protection for program and I/O

separately and internal parity checking;
e. one-hundred basic instructions plus 50 extended mnemonic

instructions;
f. nine addressing mode combinations;
g. sixty-four program levels;
h. sixteen 32-bit general purpose registers and 16 page registers per

program level and special purpose registers;
i. program initiated, but independently operating, I/O data transfers

at rates up to 400,000 words per second. A queue word for each program
level provides stacking of interrupts in automatic priority and high speed
multi-program switching in single or multiple processor configurations.

The EMCMU has a cycle time of 1.2 microseconds, which is slightly over twice
as fast as the cycle time of the AN/GYK-12 MCMU. The emulator memory inter-
face is based on Control Data's 480 computer memory interface. Therefore,
one cannot replace the AN/GYK-12 MCMU with the EMCMU without also replacing
the CPU and IOU with the ECPU/EIOU. Similarly, if one replaces the CPU
and IOU with the ECPU/EIOU, he must also replace the MCMU's.

-463-

........- w 7I,

The ECPU/EIOU is enclosed in one TACFIRE "A" size case, taking half the
space of the AN/GYK-12 CPU and IOU which require one "A" case each.
The emulator enclosure and C-frame together serve as a carrying case

and allow the ECPU/EIOU to be rack mounted in the shelter. Equipment
slides on the top and bottom of the C-frame allow the enclosure to be
extended out of the C-frame for access to the two Power Supply Modules
(PSM's) mounted in the rear half of the enclosure. The front panel is
hinged and may be opened to gain access to the logic modules which are
plugged into receptacles on the wire-wrap plate. The power and signal

connectors are located on either side of the front panel.

The front panel of the emulator CPU/IOU is shown in Figure 1. The
eighteen Diagnose Status Register lights which are used to display
error conditions on the AN/GYK-12 CPU's front panel are condensed into
a six digit octal display on the front panel of the emulator. The
AN/GYK-12 IOU's nine indicator lights for Data Exchange, Device Channel,
and Memory errors are condensed into a three digit octal display on the
emulator. This space saving allows room for the remaining indicators
and switches of the CPU and IOU, and for additional controls to run and
monitor firmware diagnostics.

The enclosure of the EMCMU is similar to that of the ECPU/EIOU. The
EMCMU has only one PSM in the rear of the enclosure. Beneath the PSM
are two doors for access to four Core Memory Modules (CMM's). The
remaining four CMM's and the logic modules are behind the front panel.

Each of the logic modules in the ECPU/EIOU and EMCMU is either a single
or double card assembly consisting of one or two ten layer printed wiring
boards bonded to a heat sink with either a 152 or 228 pin connector
mounted on the bottom edge. Up to 56 integrated circuits are mounted on
the surface of each board. Test points at the top edge of the printed
wiring boards are used for interconnections between the two boards. Ramp-
clamp retainers at the outside edges of the heat sink secure the module
in the enclosure and conduct heat to the cooling fins. The single
circuit card assemblies have a connector on the top of the module used to
bring the signals to the front panel and its connectors.

EMULATOR ARCHITECTURE

Functionally the ECPU/EIOU, as depicted in Figure 2, is comprised of the
emulator CPU processor (ECPU), the emulator IOU processor (EIOU), the
external buses, the operator/status panel, and the power supplies.

The ECPU, whose design is based on Control Data's Tactical Microprogrammable
Processor (TMPP), consists of four modules: the Micromemory Module (MMM),
the Processor Control Module (PCM), the Arithmetic Logic Module (ALM), and

the I/0 Module (IOM). The MMM contains the firmware which emulates the instructions

-464-

CPU/ IOU

rCPU INT 1

rROGRAM LOAD

0@ @
DIAGNOSTIC STATUS

16
r-CHANNEL--i

r-. ! T- 1 r7ACC ADO- 1

r-10CANLFAULT

0 0

MEMORY FAULT

000"
r /TIMEOUT FAULT- 1

F-FIRMARE DIAGNOSTIC CONTROL

r-FRATA EXCHANGE CHANNEL SELECT

A C

FIGURE 1. EMULATOR CPU/IOU FRONT PANEL

-465-

a

* C4

-466-

of the AN/GYK-12. The PCM decodes the AN/GYK-12 instruction for operand
and operand address data and generates microtransform data to the ALM to
select firmware to be executed. In the ALM, various signals, including
the contents of file registers and microtransforms, can be selected for
routing to other parts of the ECPU. The ALM also contains an adder which
allows boolean functions and shifts to be performed on data before it is
routed through the ECPU. The IOM is used to communicate with the EIOU
and with the Computer Test Set (CTS).

The EIOU, whose design is based on Control Data's 480 computer which uses
the Am 2901 microprocessor chip, consists of three modules: the General
Processor Module (GPM), the Special Support Module (SSM), and the I/O
Exchange Module (IOX). The GPM consists of data manipulation hardware,
micromemory address control logic, and 1K of 48 bit word micromemory.
The SSM contains 2K of 48 bit micromemory for use by the GPM, communi-
cation registers and multiplexers for communicating with the ECPU, event
logic for timing and control, Real Time Clocks (RTC), Communications
Security Interface Network (CSIN), and I/O memory access control. The
RTC's, CSIN, and I/O memory access control perform the same functions as
they do in the AN/GYK-12. The IOX module contains three TACFIRE type ac I/0
channels, each capable of interfacing with eight devices, and a dc I/O
interface which provides an interface between the EIOU and the ac I/0
interface and provides for I/O expansion up to 15 external ac I/O channels.

Communication between the ECPU, EIOU, and the EMCMU's takes place over
the external buses called bus 0 and bus 1. The external buses also
interface the ECPU with the EIOU for communication with internal non-
memory devices, such as the RTC's, CSIN, and Diagnose Register. Bus 0
is accessed only by the ECPU for memory operations with the EMCMU. Bus 1
is shared by the ECPU and EIOU for both memory and nonmemory operations.
The two buses have identical operating characteristics.

Two Bus Extender Modules (BEM's) increase the driving capabilities of -
and provide receivers for - the external buses which interface the ECPU/
EIOU to the EMCMU's. These modules are functionally transparent to the
ECPU/EIOU and the EMCMU interfaces.

The Panel Interface Module (PIM) contains the registers and control logic
to hold the information in the indicators and switches on the front panel
and to communicate that information to and from the EIOU.

-467-

j

The two Power Supply Modules in the ECPU and the PSM in the EMCMU are
identical. They convert 270 volts dc to +5 volts, +15 volts, and -12
volts.

Functionally the EMCMU is composed of Core Memory Modules (CMM), Bus
Extender Modules, a Memory Control Module (MCM), and a Power Supply
Module.

The eight CDC-14 CMM's each contain 32K by 18 bits of core which include
a parity bit per 8 bit byte. This totals to 131K of 32 bit words of
core memory per EMCMU, which is the same as the MCMU of the AN/GYK-12.
Internal to the CMM's are an interface card and a storage assembly. The
storage assembly contains the magnetic cores and drive sensing circuits.

The BEM's of the EMCMU are similar to the BEM's of the ECPU/EIOU except
the former lack terminating resistors on the bus lines. The BEM's
provide two ports for access to the EMCMU's.

The MCM contains the timing and control logic necessary to interface the
memory to the two buses from the ECPU/EIOU.

Both the ECPU and EIOU have their own Computer Test Set (CTS) channel.
The CTS serves as a maintenance console for the emulator and allows for

program control and emulated instruction set modification through the
use of the read/write micromemory in the CTS. Other features include
the dynamic display of memory and registers on a CRT and the capability
to modify them through keyboard action. Ability to set conditional trans-
fer and halt switches and to set address, operand, and level breakpoints
are additional features.

EMULATOR FAULT DETECTION AND ISOLATION

Since the emulator architecture differs from that of the AN/GYK-12, the

software fault detection and isolation programs of TACFIRE will not isolate
a fault to a card, even though they may indicate that there is a fault.
Since one of the emulator development ground rules is that the existing
TACFIRE software may not be changed, firmware fault detection is built

into the emulator to isolate faults to the card. A two digit octal display
isolates the faulty card and indicates its location by row and column in
the case. The fault display may be advanced through four possible fault
locations, with the most likely location being displayed first. The diag-
nostics are written such that after the first card has been tested, only
previously tested circuits are used to test each card. If the diagnostics
fail before the first card is checked, that card is most likely at fault.

-468-

ECPU/EIOU diagnostics and non-destructive memory diagnostics are run each
time the emulator is powered up. ECPU/EIOU extensive memory diagnostics
can be run by pressing the Fault Isolation Diagnostics (FID) button after
switch selecting memory diagnostics.

EMULATOR EXPANSION CAPABILITIES

The AN/GYK-12 emulator is designed to allow expansion to meet the needs
of foreseeable applications. The I/0 section allows for expansion of up
to 15 channels or 120 external devices. Up to 16 EMCMU's may be daisy-
chained to the ECPU/EIOU. Two additional ports may be added to the EMCMU
to obtain a four port memory. Instructions may be modified or added to enhance
the instruction set of the emulator.

With these expansion capabilities, and especially with the instruction set
flexibility provided by the micromemory of an emulator, the future for the
AN/GYK-12 emulator and other emulators looks very bright.

REFERENCES

1. AN/GYK-12 Computer Principles of Operation Manual, Litton Systems,
Jan. 72.

2. AN/GYK-12 Emulator for Battalion (LP) TACFIRE System 570043A Processor
(CPU/IOU), Control Data Corporation, 1977.

3. AN/GYK-12 Emulator for Battalion ('.P) TACFIRE System 570044A Mass Core
Memory Unit (MCMU), Control Data Corporation, 1977.

4. Beach, E. and Mercurio, J., "Emulation Capabilities of a Micro-
programmable Multi-Processor System", Proceedings of the Seventh
Annual Pittsburg Conference on Modeling and Simulation, April 1976,
9-13.

5. US Army Contract DAAB07-77-C-3033, "AN/GYK-12 Emulation",

Fort Monmouth, NJ.

-469-

CQ

-I

t ii

-LJ

L -

-40-

uC

-M Lu

EZ 0

Lu 0.

C...)

LiiJ

W 2!

C~a.

00

a. CO

LLLL

-471-

LU

10 -aa) 1 0hiot fJ©L0i L0

C) 0 - I 1j~~. a D
CLL 1L0 ;©o4"~~0 Ii [=1 -, io 10 20

L~ 0

10 ~ 0[10 0.L L .0L [!f
0D 0 00 ;O

0 (D

r--4

j er(-0 -0 - -0 0 00

It-o72-

I-n

49 UU

Liil

1122

044

'-4P >, a 1

C) U3Q

(.0 a) a

0 a) a)C :

144

(D

-47 3-

cr

rcf
-ac

1 a~ O

C~) oa

C)C

0-4

-474

w k

cDZ LU

C=) = -

<. 0

LL.LL

LiiM

0.0

C) 0U

s-eLL I-
I-U 0

CII LUL/,-

I-4 5-

AN/GYK-12 EMULATOR

CPU/IOU

CPU/ IOU
r
" - '

w
°

ft -- 1

rCPU INT1

@ 0

GRAM L.OAD0.-O.- 0-
o-.@ a

- IAGNOSTIC STATUS

r CHANNEL---:-

r- TE!. g oT'- ' o-A

- FAULT%

N..,t. .c..* no.r00

I/0 CHANNEL FAULT

000
r ="tdCIORT FAULT -

T14EOUT FAULT-' ,6 -*"
r-IRMWARE DIAGNOSTIC CONTROL-n

0 05 0 ..- ..
o 6-:L. Oi

rOATA EXCHANGE CHANNEL SELECT

-476-

cn

c wj

00

~z z

CD

- I

C14

SM F2

-47 7-

LUU

-J

I-0

-478-

LUU

LU u
UL-

LI

CA)
LL-J

LUJ

Il-

LUL

LU LU
C-

L-

CCD

LLLL

IO

LaiU

LL- LUI LL-
C) C) I-- /

CD F-C/) 2= LU

I- LU

CDD

-479

C13
U

LUJ

LUJ U
UL-

C,

CD4

-e C/)
r=1 LUJ

LUJ
CY-1C=) =3

LL-4

- - ,,
C=)D

C=)

LUI

- L

D.) Cl- L

C) C-) C=
-C LU C,
I-

LUI -n oI

C) L- - C)L

r-4 CO>

-- C)I A

-480-

U

Cl))

w JL

-I LU

DC:) 0- LU
LO CD

F-- LUJ
CD w) C/)

C:) C/') CD
F-C)l) C

w cal LU C=)
C=) :) _ C)

C- . LUJ CD

C) CM -j -~ c: C)
C) C:) w LUI __

Lo C:) wr b_- LUJ 0.
I-- F-- cn 2 C)l

CD a) ()j LU LUJ C/) F- C/)
- z C=) C LD _j
I- ~ C) C_.) C3 C LUJ 0.. LU

0- .. F- V F-7F-
w C/): CC/) C/) P- C) LU

CD F- fI-N c LU - I CD L

-l CD4 LU - C

.1i V) LUI LUJ CD
F->- cz- cr 0 j LU D F- C)

LU~ % a - LU C~r
cn 00 C) C) CL F- 0.

CM1 -IV ,E C:) ac: > C)
u-i (N ' LU LUI CD P-_ to ~ za

I__ Nr-I :-Z r- 0 C/) r-i -4 C

-481-

CM

C-, U

-4-

-JI

-j

uJJ CD

U--4

u-I

Cl- C")

C144

-482-

LUM

LUJ

2-:

C)

- CD
LLJL

F- Az- L

F- C~n-

LL L.L
LU LU -J

m:: Cd)

L)U LUJ C/
L- F- N -

=L CL)S r - -

T- w - CD
C/))

LU C C. LLJ 4 - z
C/) Nd 04 -

F-- - D Cl)

F- LU -
LUJ L - C)

LU -j

- LU
F- ><~ F- V >

C/)-- LU LU F-C
LU -Uu L

CDLU CD OL.

-483-

LDD

act ,
LUU

I-L

LLLU

CD-

LLI

ILD

L)A

-j LU IL

gIt C-.0 (.: I
CLt LUI M L

- LU CZ)

LO C) (4J
0- 9Q -4

LU u)

0.. .><I I
LL-- =3=

(~o C) -cLcI

Lo LU M ,,

-- 484-

Technology Upgrade of Existing System Peripherals

Jeffrey S. Yohay
Martin I. Wolfe

CENTACS

Technology insertion is the only cost-effective means of upgrading
developed/f ielded system hardware. However, technology insertion may nec-
essitate redevelopment of system software, negating any performance benefits/
cost savings that might have accrued.

The use of smart peripherals driven by dedicated firmware provides
a means for technology insertion without disruption of operational software.
The smart peripheral contains its own embedded computer system to interface
with mainframe hardware/software. This embedded system is driven by soft-
ware programmed in firmware; application of the smart peripheral to an
existing system without disrupting operational software is a matter of firm-
ware redesign.

The Center for Tactical Computer Systems (CENTACS), Fort Monmouth,
N.J., was able to employ the advantages of this technology to develop a re-
placement for the existing mass memory peripherals used in the Tactical
Operations System (TOS) computer-based command and intelligence system. This
replacement, a militarized disk mass memory, was programmed in firmware to
emulate the existing drum memory devices, and provided PM TOS the opportunity
to gain considerable cost/space savings in the fielded systems.

-485-

TECHNOLOGY UPGRADE OF EXISTING SYSTEM PERIPHERALS

Jeffrey S. Yohay and Martin I. Wolfe/ US Army Communications Research
and Development Command

Center for Tactical Computer Systems
Software Engineering Division

Fort Monmouth, New Jersey

1. Introduction

High technology computer-based systems are employed by the government for
many diverse applications. In non-defense applications they may be large
information and record keeping systems; in the military, they may be command
and intelligence aids, or may control a great variety of electronic hard-
ware. All of these systems have one thing in common: they are all pro-
ducts of commercial computer technology, and all will inevitably be
obsoleted by that same technology.

In this paper, the Army's Center for Tactical Computer Systems (CENTACS)
Fort Monmouth, NJ would like to present its "lessons learned" from a
recent project undertaken to upgrade an Army computer-based system.
These "lessons" have provided many insights into the avoidance of that
inevitable obsolescence mentioned above, and have provided new strategies
to effect the technological upgrade of an existing system at minimum cost
and with maximum flexibility.

2. DOD Computer-Based Systems

A computer-based system is one centered about a central processing unit
(CPU), an input/output unit (IOU), and associated main memory and
peripherals. Included among the peripherals are auxiliary mass memory
devices (magnetic disks, drums, tapes), and input/output (I/O) devices
(CRT and keyboard terminals, line printers, and card readers and
punches). These devices are controlled by main-memory-resident soft-
ware, typically in the form of a CPU-dependent operating system (OS).
This OS controls, through the IOU, those peripheral devices required
during applications software execution on the CPU. The entire computer-
based system may be "embedded", i.e., a one-application dedicated system
running within a hardware system and performing a series of tasks for
the operation of that hardware only. In this case it may or may not
have an OS; the single application program may control peripheral devices
and perform its own I/O. Additionally, the program may be contained in
"firmware", i.e., hardware memory devices programmed through hardware
alteration ("burning-in" of bits in a semiconductor memory, for instance)
to perform a software function.

DOD computer-based systems are typically closed application systems designed
to perform a well defined number of tasks. These systems usually have
strict performance, environmental and stress requirements which are rarely
faced by commercial computer systems.

-4i ,-

For these reasons, the DOD system is usually designed "ground up" to
meet the needs of a specific user. Improvement or revision of such
a system becomes limited by those same requirements and the initial
design. The existing systems must advance to the new design goal
through the bounds set by the user. These bounds may be application
oriented or financial; nevertheless, their imposition often results
in abandonment of planned system upgrades. Eventually, the only
means of reaching the new design goals is through another "ground-up"
system design - a wasteful and inefficient process.

3. Technology Insertion

Tne CPU/IOU and its memory/peripherals are products of one of the
United States' fastest-growing high technology industries. CPU/IOU
architecture has grown tremendously versatile, allowing multiple user
and remote timesharing applications, and providing vastly decreased
hardware execution time. Physically, a system comprising of a CPU,
IOU, and 64K (1K = 1,024) words of memory that required an entire
room 15 years ago can now be placed on a few semiconductor chips.
Semi-conductor memory devices have gone from 1K to 4K to 16K to 64K
bits per chip in the space of a few years.

Along with this fast-growing technology has come dramatic increases in
hardware performance, and co-responding decreases in hardware cost.
In the Army's own Tactical Operations System (TOS), the old-technology
magnetic drum mass memory device is capable of storing 9.3 million bits,
at a cost of 0.8 cents/bit; ai modern-technology magnetic disk mass
memory device can store 663.7 million bits, at a cost of 0.1 cents/bit!
Technological advances have extended the limits of hardware performance
to areas undreamt of by early system designers, and with less cost
and less physical space requirements.

Thus, the problem faced by computer-based system managers is one of
"ftechnology insertion": the insertion of high technology devices into
an existing system to improve system performance and lower system cost.
This problem exists because of the modular nature of these systems;
technological advances may occur in one or more of the hardware types,
but not in others. Order-of-magnitude (factor of 10) performance
increases or cost decreases may occur in any one hardware area, justi-
fying a system upgrade in that area alone. Additionally, overall
system budget constraints that would otherwise prevent continued
system improvement will have less effect If system planners can upgrade
each hardware area a lone. The original system design objective can
be retained while system hardware is upgraded.

4. The Software Problem

Dramatic improvements in hardware technology are not, unfortunately,
the only yardstick by which to measure computer-based system performance.
Despite order-of-magnitude advances in hardware, systems are still

-487-

controlled by software, and software remains the biggest stumbling
block to overall system improvement. Improved software management
techniques and block-oriented high-order languages can assist in
reducing software costs, but nothing has advanced software technology
to the level achieved by hardware. Whether it requires 1 minute or 1
hour to execute a software algorithm, the greatest cost remains in
the many hours required to formulate, write, and debug it by an
applications programmer, and the many more hours to be spent by the
same or other programmers to upgrade and maintain it.

Thus, it is in the interest of system planners to minimize disruption
to operational software. The amount expended in software upgrades
can be considerable; add to that the cost of maintaining a new software
package, and the life-cycle cost can be quite high indeed. The worst
case would be the expenditure of that money without gaining either a
significant increase in system performance (through new features, or
improved algorithms for old ones), or a significant decrease in system
cost (through language improvements or improved programming techniques
for simpler maintainability).

Technology insertion that disrupts operational software results in
that very same worst case. Software must be changed (not upgraded)
to accomodate the new device; no software performance improvement
is required or expected. A tremendous expenditure of limited funds
must be made in software to effect an improvement in hardware. As a
result, the system planner is usually forced to forego the technology
upgrade; the software cost increase negates the hardware cost decrease
(or performance increase), and the system is forced to remain at a
static level of technology. The result is obsolescence, and eventual
forced replacement by another system built "ground up" with modern
technology, only to begin the wasteful cycle anew.

5. The Smart Peripheral Solution

Technology insertion without disruption of system software can be
effected only through use of upgraded hardware that can be operated
with existing software. At first, that would seem to be a simple
solution; the problem lies in the great diversity of software and
hardware, requiring a new "solution" every time an upgrade is made
to the existing system, Peripherals would have to be designed speci-
fically for each system to be upgraded. The design (or re-design) of
peripherals for individual systems could be done only at great expense
in time and money. Moreover, many government applications require
highly specialized equipment, and generally of a much greater ruggedness
than that required by commercial environments. The result is often
a long, ground-up design cycle that begins with modern technology, but
results in and obsolete device (as compared to present technology)
when finally fielded. The technology thus inserted would already be

obsolete.

-488-

Design of hardware to meet software requirements also imposes a
tremendous area of specialty on what may already be a highly specialized
piece of equipment. The additional cost of re-designing the hardware
provides the mirror image of the software worst case: the hardware must
be changed, not upgraded, to meet software operational requirements.
Again, the tremendous added expense many negate the expected system
improvements, and the new technology will not be utilized.

The recent upgrade to the TOS system by CENTACS faced the problem
of technology insertion without software disruption, and found what may
be a ilust desirable solution. TOS is a command and intelligence system,
receiving information on enemy troop movements from forward observers,
and forming a large data base from which commanders and intelligence
officers may draw needed information to aid in making battlefield
decisions. The computer used is the Army's AN/GYK-12 CPU with its
associated IOU and peripherals. Among those peripherals are magnetic
drum and tape mass memory devices, upon which the intelligence data
base is to be placed.

The drums are to provide fast, on-line access to the data base;
the tapes are used to store ("dump") information as necessary, and
to save any desired data that can be stored off-line. Both are
specialized, militarized units drawn from existing (1960's) computer
technology. Both employ obsolete technology, out-dated by the lengthy
ground-up design time required to field them.

The drums provide the worst example of this hardware obsolescence.
They consist of a controller and up to 8 drums, occupying almost half
of a standard Army S-280 truck-mounted shelter(!) Their total
possible capacity is under 75 million bits, at a total (1977) cost
of over $600,000. This compares to commercial magnetic disk memory
units storing up to 660 million bits, and costing $40,000, that can
fit a fraction of the required space! Worse, the drums are inadequate
for their task; TOS Operable Segment (TOS2) field tests resulted in
several complete system shut-downs due to insufficient drum storage
and several "throttles" when messages were temporarily not accepted
for the same reason. This test was run with a 4-drum system; purchasing
4 more drums at a cost of $285,000 provides a most limited solution.

The tape units, though not as much affected by obsolescence as the
drums (far less development has taken place in this area), have the
same problems as with all tape storage systems; extreme slowness of
data access and easily damaged tapes. Data can be accessed over
10,000 times faster on the drum than on the tape, and field conditions
play havoc with the tapes and their associated hardware. Their unre-
liability make their replacement as an effective mass memory device
imperative.

The problem, then, is to insert modern mass memory commercial technology
into the TOS system, and provide significant performance increase and

-489-

life-cycle cost decrease while doing so. The latter constraint makes it
imperative that TOS software operate unchanged; but how can this be ac-
compl ished?

The great diversity of hardware and software mentioned earlier pro-
vides both the problem and the solution: Commercial peripheral manufact-
urers, faced with this same diversity, turned to the "smart peripheral":
a peripheral device with its own embedded computer system performing the
simple application of controlling the peripheral in response to CPU/Iou
commands. This embedded system is run by a driver program stored in firm-
ware, which can be programmed to drive the device with different command
sets, depending on the system into which the peripheral is placed. By re-
designing the driver firmware, one peripheral can serve the needs of a great
variety of users.

Thus, the smart periphcral provides the solution to technology insertion
without software disturbance. Though the aim of the insertion is to pro-
vide the system with the high-technology "dumb" end of the device (i.e.,
the mass memory), the "smart"~ end of the peripheral allows the mainframe
hardware/software to talk to this "idumb"l end and control it for proper
system utilization. Most importantly, ground-up peripheral design is no
longer necessary for individual system upgrades; successful technology in-
sertion efforts can now be measured in months, not years, and at far less
expense.

The availability of militarized smart peripheral devices enabled
CENTACS to investigate the applicability of this technology for replace-
ment of the TOS drums. The result was the use of a Control Data MD640
militarized disk unit, programmed in firmware to emulate the drum units,
with the potential of replacing the magnetic tapes at any desired time in
the future. Two of these units used as disks (not as emulators) could
provide order-of-magnitude increases in storage capacity, and would cost
$480,000 less per TOS system than the present drum and tape devices. The
resultant savings in physical space will allow TOS to place their present
two-shelter system into one S-280 shelter, saving both a shelter and an
M-36A five ton truck to transport it; the life-cycle cost savings could
amount to over 50 million dollars!

It may also be noted that future TOS upgrades, whether in hardware or
software, that affect operation of the drum emulator disk, can be included
into the device through firmware re-programming. The smart peripheral thus
guards against its premature replacement due to system upgrades in other
areas.

6. Summary

In summary, it is clear that important ground has been broken in the
development of government computer-based systems. The need for re-design
of entire systems to keep pace with advancing commercial technology can be
eliminated by the use of technology insertion, while technology insertion
is made economically feasible by the use of the smart peripheral.

-490-

1A

C/)CD o -) _ _

LU C/, Z:2 rr:

L&.r j.- <c

C/)

C-J

CT:)

LU

T-
LU)
wL

I--
><

Q_ J
a*-- ~1

= -n

C...)I- CL

LU -491-

LUU

LLI-

n- w

LLLU

(E7 LL: LUJ c .J

LU' LUI LLU

Il- >-fr

LLUJ

Lii

uCL- 7T
~LU

3tl LJ an __

>- -G') C-'

I.- -
LU' Li) L 2

L2J I 49c-

NowU c~

coii
-J:

LLJ

LULJ

= LU -

O~LU

0- LU C

LD Cij LU) LL >
LO /)c -j LU C)LU.

C:) z'J C I L NJ -j

LLI LU GO) -C-) C/) I-- = r LULU P-4 Li)~J

U- __

8

D8

-493-

LL~

LLJ C/)

C,

L'LL

/)

LU1 L

P ia: - c!: C/
c LU LU

T - -:n _ 0

a- L

>- LU L

LU-

LU -U

CD/

CD>-

-494

c, CD

A Case Study of the Software/Firmware

Development for a Microprocessor-Based Computer

James E. Scott

U.S. Army Missile Research & Development Command
Missile System Software Center, Redstone Arsenal

This paper described the software/firmware development approach
taken on a small experimental missile computer with no available support
software. A cross assembler was written which allowed programmer defin-
ition of micro/macro assembly language and a first attempt was made at
microcoding for a digital autopilot application. It was soon obvious
that some higher level programming approach would be needed to cope with
impending program modifications. At a minimum, it was judged that a
macro instruction set should be defined to simplify the programming pro-

cess; however, severe time and memory loading requirements appeared to
dictate optimization to the micro level.

The solution chosen was to develop a compiler from a specialized,
limited HOL to a "trial" macro instruction set. Sample runs were made and
analysis of the compiler output resulted in the design of a macro instruc-
tion set highly optimal for the application. An editor/optimizer was then
written to incorporate the new instruction set as the last stage of com-
pilation. The finished product has proven to be flexible and highly
effective. Also, because the scope of the development was limited, only a
low-level effort by personnel having little translator writing experience
was required over a short period of time.

-495-

A CASE STUDY OF THE SOFTWARE/FIRMWARE

DEVELOPMENT FOR A

MICROPROCESSOR-BASED COMPUTER

James E. Scott

Missile System Software Center
Guidance and Control Directorate
US Army Missile Research and Development Command
Redstone Arsenal, Alabama

I. INTRODUCTION/BACKGROUND

This paper outlines the history and technical approach taken on the software/
firmware development for a microprocessor application. This work was performed
by the Missile System Software Center, US Army Missile Research and Development
Comand, over the period 1975-1978. The application is a digital autopilot (DAP)
for a 6 inch diameter missile.I,2 The DAP computer is an experimental, in-house
design based on the first commercially available 4-bit slice bipolar microproces-
sor chip (Monolithic Memories 6701). The computer is 16 bit and contains 1024
words of main memory (256 RAM, 768 ROM) and 1024 X 50 bit words of microprogram
memory (ROM). Microinstruction execution time is 750 nanoseconds and size is 6
inch diameter X 3.5 inches with power requirement of 50 watts max. The objective
of the hardware design was to demonstrate that a small, minimal hardware confi-
guration digital computer could be built with potentially low production costs
and could serve as a modular design for multiple missile applications.

Given the minimal hardware approach, it was expected that the DAP applica-
tion would load the computer significantly. The design approach of a completely
microprogrammable machine was believed to be a means of providing enough proces-
sing power from a small amount of hardware to solve the real-time flight problem.
From a software development point of view, the need to do microprogramming on
a "minimal hardware" machine had the appearance of a difficult hand optimization
task. It certainly would have seemed incredible to consider that a higher order
language (HOL) with all its advantages and "inherent inefficiencies" might be
used on such a project. However, as this paper will show, an HOL approach was
chosen that proved to be extremely effective at maximizing the performance of
a minimal hardware machine.

-496-

II. APPROACH

II.1. IialSupport

The first software support efforts were an emulator and a controller/
debug program. The EmulIator3 was developed concurrently with hardware design
and has proved to be a powerful tool for studying basic characteristics of the
machine design and for identifying specific features which might require special
or unusual attention by a programmer. In order to check out the first lab proto-
type computer, a test facility was required. The Controller/Debug System4 was
developed based on an available minicomputer facility (see Figure 1). This
controller/debug system was designed and software was written concurrently with
latter stages of design of the DAP computer. From the system teletype an
operator can load programs in octal, run programs, inspect memory and internal
registers, insert break points, and perform various other functions and tests.

11.2. The Assembler

Entry of programs of more than a few words in length from a teletype is,
of course, tedious, time consuming, and error prone. An assembler was definitely
needed. However, at the early stage of program development no macro instruction
set had been defined; and even though the emulator had provided microcoding
experience, a micro instruction set had not yet been adequately identified. A
suitable solution was a user-definable (meta) assembler.

A cross assembler was developed on another minicomputer facility with
disc (see Figure 1). This assembler was designed to process both micro and
macro code. It is interesting to note features of the assembler which permitted
a very quick implementation.

1) Very rigid "fixed format" source statements - Fixed format simplified
the task of scanning source statements. Although free field is not
available, the user can specify his own format.

2) User defined symbols (mnemonics) - This feature, along with the fixed
format, actually made the assembler designer's job easier since con-
tinuing support for an expanding source language was put in the hands
of the user.

3) The assembler is coded in structured FORTRAN. Translator writing
(or any program coding) in structured HOL is, of its nature, a big
plus.

The conception, design, and coding of the first version assembler was
accomplished in one man month. This work included an object tape output module
and a loader linked with the controller/debug system. An additional two man
months has been expended on the assembler for the addition of features (e.g.
symbol printout table) and the accommodation of an expansion of the microprogram
memory word size from 48 to SO bits.

-49 7-

r - -v,

11.3. Initial Application

With an assembler available one analyst spent six months designing, micro-
programming, and testing a first version of the DAP application software. The
coding was done from a "microcoder's" point of view: the program was viewed
as "!micro"l in nature with the main program being resident in microprogram
memory and tables of data and special address links being resident in main
memry. When major changes in the DAP flight equations were considered, the
estimate for a microcoded software redesign was close to the same six man months
which had been required for the original equations of similar difficulty but
different form. Also, it was expected that the DlAP equations might be modified
several times before a version was accepted for flight tests; and follow-on
programs might involve further modifications. It was obvious that some other
coding scheme would be desirable in order to expedite the programming task.

11.4. The Macro/Micro Dilemma

A clearly simple approach to making the DAP computer programming task
reasonable would be to drop microcoding, define a macro instruction set,
implement the macro instruction set in microcode, and do coding essentially
in "'normal" assembly language. However, analysis of the program already written
in microcode and evaluation of even more demanding new requirements indicated
that memory and time loading were already problems. It was difficult to envi-
sion a partitioning between main and microprogram memory which would be much
better than the very efficient one which had been developed for the first
microprogram. The two analysts reviewing the problem were not aware of any
approach for proving that what had been done was nearly optimal! Several
arrangements of main and microprogram memory were studied, but no significant
improvements were discovered and an adequate macro instruction set was not
obvious.

The problem stated in more general terms:

Given a specific application for a microprogrammable computer,
how can one develop software and firmware to produce a highly
optimal uatilization of the hardware?

It is interesting that the solution chosen for this application was
sparked by departing from the "lmicro view" at the machine level and by looking
instead to the system requirements. From the requirements it was apparent that
equation solving was the largest part of the DAP processing, that sequence con-
trol was rather trivial, and that 1/0 was relatively straightforward and could
be handled efficiently by special purpose macros. Indeed, there was no reason
that the requirements could not relatively easily be translated into some HOL
(the application had been previously coded in FORTRAN for off-line simulation
purposes). If an appropriate ROL program could be used to state a solution to
the processing problem in a rather efficient manner, such an HOL program could,
in effect, be used interchangeably with the requirements statement. The problem
noted above might then be restated:

-498-

Given an HOL program, how can one efficiently translate it to a
microprograimmable computer? Specifically, how can macro/micro
tradeoffs be made for a more effective hardware utilization?

Of course, what is asked for above is an optimizing compiler. But this
compiler would have to resolve the macro/micro tradeoff dilemma. Such a reso-
lution did not appear trivial. Compiler optimization for any target machine
is not a particularly easy task, and microprogramming is an added dimension of
flexibility and difficulty. The partitioning of macro and micro code is really
an allocation of resources problem. How many macro's of what size are needed?
What combinations will produce good or even adequate results? A compiler
capable of such a level of resource allocation might take considerable develop-
ment effort (a luxury not affordable on this R&D project).

H1.S. The Compiler

A compiler usually translates an HOL program into one or more inter-
mediate forms; an intermediate language (IL) output can be the means for
making a compiler more readily retargetable. The IL which might be output
by a compiler can be very target machine independent and, for certain classes
of translation (i.e. computation), can be an efficient and straightforward
representation of the source HOL program. In other words, the DAP equations
written in HOL might be translated into an IL (possibly a simple assembly
language) which would represent those requirements (equations) about as
efficiently and completely as the HOL statements. This implies that if a
proper IL could be chosen as output of the compiler, the IL translation of
the HOL program could be an accurate and reasonably efficient mapping of the
requirements. If this IL were chosen such that it could be reasonably imple-
mented as a macro instruction set on the DAP computer, a compiler could solve
the processing problem from a functional point of view but not necessarily
from an efficiency standpoint. A question arose: Why not choose an IL,
compile to it, examine the output code and generate from that a more appro-
priate (time/space efficient) macro set?

Such work appeared feasible, but the time frame and level of effort
required was of prime importance. As was noted earlier, this particular
application is computation intensive. Greater than 90% of time and memory is
delegated to the solution of arithmetic equations. This fact was the key to
a means of implementing an HOL approach on a low budget. Why implement a full
HOL like FORTRAN when a simple subset would suffice? Also, since the project
was essentially experimental in nature, what justification could there be in
attempting to~ "generalize" the approach? Why spend many man years trying to
solve the world's problems when a few man months of effort could produce an
effective solution for the specific application and at the same time could
maintain enough flexibility to handle a class of similar problems?

The compiler with editor/optimizer was developed in four man months.
It is coded in structured FORTRAN and resident on the program generation mini-
computer system shown in Figure 1. The following discussion presents some
information pertinent to the compiler effort.

-499-

The HOL chosen is a very specialized FORTRAN subset plus data declara-
tions. See Figure 2 for a list of features. The need for data declarations
can be appreciated by realizing that the hardware support is for only 16 bit
integer add/subtract, that multiply is microcoded, and that no other computa-
tional operations are available. Divide was not required for the application;
therefore, a divide macro was not written. With only integer operations
available, scaling had to be handled in some fixed point fashion. At the
beginning it was not exactly clear what fixed point arrangements would be
feasible; full data declarations facilitated the modification/addition of data
types in the compiler.

Sequence control involved only some simple decision making and did not
appear to warrant any particular degree of sophistication. Therefore, the
FORTRAN arithmetic IF was chosen for its ease of implementation. The IF is
limited to test of single data items (not expressions). Recent efforts have
resulted in updating sequence control to structured forms. This was done by
utilizing an availr'ble preprocessor and limiting logical tests to comparison
with 0 (equivalent to the arithmetic IF test). See Figure 2 for a listing
of the structured forms employed.

The restriction on the IF test is a rather crude limitation, but it is
indicative of a "get the job done" attitude. It is also indicative of a rather
inexperienced compiler writer, a point worthy of note! The author had very
little experience at compiler design, but was able to accomplish a successful
"subset" HOL implementation.

The IL selected as output of the compiler is based on one accumulator
and two levels of addressing. Only 256 words of main memory are directly
addressable; indirect to one level is available for addressing RAM and 512
words of ROM. Figure 3 lists the compiler generated macro set (IL). It was
anticipated that the "one accumulator" virtual machine would not make efficient
use of the actual hardware which has 16 registers. However, compilation to a
single accumulator appeared to be a worthy simplification with allocation of
other registers possible in a post-translation effort.

Once the compiler with IL code generator had been completed, the DAP
equations were compiled to the simple IL. Manual review of the generated IL
led to the following observations:

1) Certain repetitive patterns of IL output suggested the possibility
of combining those sequences into new macros. This was the impor-
tant key to the development of more efficient macros.

2) For this application, only one additional register was required for
arithmetic temporary results. New macros could implement this feature.

3) As was expected, some simple optimizations which had not been included
in the compiler should be incorporated (e.g. elimination of NOP's and
unneeded accumulator loads, reduction in the conditional branches
generated for IF's).

-500-

A new set of expanded macros was designed and microcoded. An editor/
optimizer was written to perform some simple optimization and edit in the new
macros. This editor/optimizer was incorporated as the last stage of compila-
tion. See Figure 3 for a listing of the editor/optimizer generated macros.
The process of macro review and design was an iterative one which was consi-
dered complete after the most obviously useful new macros had been incorporated.
The search for better macros was by no means exhaustive.

Figure 4 depicts a sample program segment translation from structured
source to macro code. It should be noted that the listings are only partial;
storage reserved for data and linkage and the actual mnicrocoded macros are
not shown.

III. RESULTS

Three versions of the DAP application have been coded:

1) Microcoded - This first attempt was only partially completed due to
updates in requirements, changes in the computer design, and emphasis
on the HOL approach.

2) Flight Version - This HOL version is the final result of numerous
updates, including a state variable redesign, to the DAP equations;
it has been tested in an in-the-loop simulation and has been burned
into PROMS for the first flight test.

3) Structured Flight Version - This is a redo of the flight version in
structured form. It was not available in time to meet testing require-
ments for the first flight test. Subsequent DAP software will be
developed using structured forms. For this application structured
forms had no adverse effect on efficiency.

Unfortunately, an accurate quantitative comparison between the microcoded
(1) and HOL (2 or 3) versions has not been made. One reason for this is that
the 1-OL capability was available early enough to make updating of the micro-
coded version to the new state variable design unnecessary. Also, although
an HOL version of the microcoded version is possible, no such effort has been
attempted. The analyst responsible for all application software (except the
original microcoded version) and for development of the DAP macro sets has
intimate familiarity with both the micro and HOL approach. It is his evaluation
that the efficiency of the compiler generated code is comparable to that of the
microcoded version.

The use of HOL has greatly reduced turn-around time for application
program changes. This reduced turn-around time has enabled system designers
to view the software as less fixed and more experimental, a great advantage
in a research program.

-501-

IV. CONCLUSIONS

1. The II)L approach developed was effective on a "minimal hardware"
computer. Subsetting and specializing of the HOL made possible rapid develop-
ment of the compiling system by personnel having little translator writing
experience. The availability of a facility for developing translators in
structured HOL was beneficial.

The HOL effort expended on this rather small scale project is further
evidence that machine level coding, even for time-critical application software,
should be a dying art.

2. Firmware, when combined with the compilation process, proved to be
particularly effective at maximizing the performance of the minimal hardware
computer. It is noted that the expanded macro set is the product of hand
optimization based on recognition of repetitive sequences of IL output; thus.
the compiler is capable of compiling efficiently to only a specialized class
of equations. As a matter of expanding compilation to capitalize on microcode

capability for a larger class of problems, it would be feasible to develop a
macro generator which could automatically generate a set of appropriate macros
for each compilation.

-502-

REFERENCES

1. Asquith, C. F., T-6 Digital Autopilot Data Processing Analysis and
Specification, Report No. RG-75-36, US Army Missile Research and
Development Command, Redstone Arsenal, Alabama, March 1975.

2. Plunkett, K. W. et al, Design and AnalZsis of a Microprocessor-Based
Digital Autopilot for Terminal Homing Missiles, Report No. T-78-57,
US Army Missile Research and "evelopment Command, Redstone Arsenal,
Alabama, March 1978.

3. Brookshire, J. R., Multipurpose Digital Microprocessor Emulator,
Report No. RG-76-62, US Army Missile Research and Development Command,
Redstone Arsenal, Alabama, May 1976.

4. Baxter, W. F., Microprocessor Controller/Debu System, Report No.
RG-76-61, US Army Missile Research and Development Command, Redstone
Arsenal, Alabama, May 1976.

-503-

z ~I

01.

E'3
u

0..

zz
0W

504

DAP HOL FEATURES

The HOL is subset FORTRAN with full data declarations required and extended

to structured sequence control forms by means of a preprocessor.

Data Declarations

DECLARE ident: VARIABLE (fixed point only)
CONSTANT X.XXX (decimal)
INTEGER XXX (decimal)
OCTAL XXX
ADDRESS ident (used to build or access
LINK ident data structures)
INTERNAL XXX (compiler information)

Computation

Standard FORTRAN arithmetic replacement statement

ident = arithmetic expression

Sequence Control

IF(*)-THEN-ELSE-ENDIF *The only test allowed is one
IF(*)-THEN-ORIF-THEN- ENDIF variable compared with 0.
DO WHILE(*)-ENDDO
DO UNTIL(*)-ENDDO

Arithmetic IF (processed by the compiler as
GO TO output by the preprocessor;

programmer use is discouraged)

CALL (presently used only for direct

macro code insertion)

Other

Comments (C in column 1)

CONTINUE
END
Special direct micro or macro code insertion

The following are compiler processed, but not implemented in the code
generator:

READ, WRITE
SUBROUTINE
RETURN

FIGURE 2

-505-

'- -4 - -

4))

t -t 04
4 -4 4-4 -4 v-4- 0- j4

LU to V). to4 .-4 4- 14 .) .

91.)~~0 -W
zU 12W cl +

-1- 0-4 I . 4- 4J - O-- .

Ow 0 c < 04)
4)

4.1

V) 04E- 00
co U- 0~ 0- 4

LU 0 -4 r-Ct I.~-~- +j41 4

0 0 0 04 40 C

40 .44-4
0-JO 4)

4J0 0 t

>- o-4 u 0 D D

to. 414 01 -j 40 C
SOU4_ 440 0 -4:)"

4)4j (D4 00 co 4

1-0 ~4) 0 10
0(A 10.4t -14 9:~ 14 CU 4
0 4jCi~ r-'-.I

4J 4) V-4
0 ~44 * 4.) 4) +4

14 14 1-4 -4

0) '

Z t0.- t 40 t 4-'C
-H4- -4(Q~ 0,. '.-i 14

9 0

~~c >-. 41- U~
+0 .4-4 j+jr 4 *0

0A
4.41

U '4 4-4 ~4) 414 1- 14
co r=~~ . 4) 0)

4)4) 0 4-f 4
C14r.4~ " +j 4) 1

1-- j.q14Cl - 4 4) 4
004 E- Q .x# -4 40

"0~ . 44 4)
Ld a. 0. r-.L 001

0 4-4 4-4 1

~~4 -4: 0- 4-

-d -N0 k04-0 CU

r .-14 .,f C

ca0 $4t

P4to0) to
I.. 41 14 .,

-506-

Na sCsw&%w& wwt.g a0 0 e c I

0% 0

C 2

2 0 A2

-44 .r o- It Mtw . S....
+j ~2 0S .~X..Q.h01 X

-4

00<4% 0
LLI CJ-. 8* 80 8 0 88 8

a -A2

C; 00

4-4 0. 40

9.42 00.C a. ft 0.0 a. Z .2 -. . Z;3 .

mm az a - a a a db aw

0~ 1 0 A Z .

xox* i~ a! o w z . 2

0 4 * ea - - s(I-N

00 -9 lbN2

I2
2- 0.2 o

.1 S aw 8 G. 808 808 808 08

4- C

4T 2.*= 0. 2

r & z
0 30 8 .41.S

In ow I-.- a 0. Lp A

La a -a 8 .- a r a ..

4 0 I7.12..

5 0. 0LZ440-.O-L.?O.JZ8I
0 Nn k

00 2 2 N02
1 .

-MCC

4-a

- I-

I-- C.3

LU M:0_4

C= CZ) Il-

I- cm LL c

LLJI I
= k

LL- CL- Co.
C=:l D L0

LU n D-DC

co I 0- C.3.
C..3 a) C_-qo

- 4-M .- 0 C)

CO ca $,- I -W4-a4*- C
a =

r= CD

CU_ 1o- 0o.- C

C- "m0 C- Ul
-- L0 0a)

0.. CL GO. co..>Cj C%j 0: I

C) L-- .M 1-- 0 -r v 0- Lf
C- 0EC U0:

LU r- CL

-508-

a-a

L=UL

CDCQI

-i CD
LUI

LL-J

0_ C/3

-or

-o o o
CM Lc~-- .- 4- -

CD L-.. CO --I-- Lo
4-' 0 - co 4-' in. CO o co

Coc 0 EO 0- CD co04-0 C3 4-1

-509-

03a

0D1.- wco

C.0 CD COL-
CL- -00C

LU C

C-, O

LU -j
-j = -I C*

CD CD0

co' LUJco cco

LL- 03

= L 1
wU

f0-c C.

4-0 C3

&0 V3 a-&

-510-

4t it

0 ft
a t

4t 49 49

A t *K at wfl m .13 ~(
it 49 e- ut n i-b-- JD rJ x T w1 x T x > a m

4t .-. z fxt-0 >-> -> . . -
0 -3 '3 '3Z)- 9'Jf)c-

itf
a[u

it -*6 49
49 f z it
ft 0 I9

41- 7- 4Rf
xt 4A t

0 L f.t if Tf 0K F. g 0

5- -C K. N % ' l .F.0 f, % .KftN ?% 1,P. .Kr . N n P.a

it i

4 t

4t n, 4

It 41 f
i5 t 4K f

49a -aft.

at

LU -

Cl- LU

C--l -- 4

a weewesie a owes a amwee eei wo Was se
9 ewommom a mace a oo wee w we mama ass

4 .44 .4 4 .4.-4 .4 .4 -04-4 -4 .4. 4...44.4 .4.4 4 .4 -

a W Oq ca v a RD 49a W qr MW aq99 99 9 9 M%

ft) -0"il D -4" -0 . $ M F e"- e n "K.4 -4 .4dO~V ~ . in - *q
MOWm) aqq 49 M0 1 s OR10 P NP 99. (V. ID'~~i~ s oMWCY WM

n qi~ W in e wwv4-4Va- - cm W .4vv0 M v to.4 M~. -f0fv oW o.. -

a WW1 q1 Wq W 1 a 191W 1 49 W 4 94W -b4 .44C -4 .4.-.4 9 4 . W 9144 W. ini
Is W99 M0 IsCd.c 1. -40 0 cm K . . .4 0 403 100i'# P. ? 9QCmV- V

N. -.319 .4N n P..IO 0u W cmcm kin p.ON wIV r. P4. F..-6 -g 4 ol 4 0 Qd M0013 99 -4N NN 9 9 9m -0 V S_4 WN s .4 (9 .4d%

a o 4 6)~) 0l vaW c" - 40CM0 to M &))'') WV 40q W qoWW4K cN 00 % VCj c 9c

ftM*t.- a wein in in ewe 64 a 4M W - W- w in to9G9 9 9 I.. a99 .4 9m 9

" ol 0 "99 9 " "99 " qW999 9 9 99 IV~ 1W1W 99.WI

6I MM S 49 W39 9 t 99 W 9D,99 9 3 M 99 .4 .9.
a W1 M69 .9 . MI W99 Is M 9 9 9 19. (919 CA6. Is

*4 -4 -d9. 9 94 .99. -4 -Q.3 99 . 9 -9 -63 3 3o
o -.44.~- 4.40-9 .4 W 4-% 4 M a -4 3 2 -dM& 3. '99R c.a9

&a 6v w 1.9 9 S~9 9 4996.19 Q 9. 99 & .999 9 M& M.9 Zv1 vM -

0 49 M 4 .4 W-* 'M fs s LIm o -6-' 9i 9 M99s W1 S99 93 9 9 9. 9 9 PQS39l 5

;.3 69 .4 -6 44 9439 3 6 .4a .4 4 .4 o 999&3 6s.4 -4 4.4 -444. 4

4 6

41 1- 0- Wa 0 (3 a -A in 3 LI u 3
0 6 - Al Ua. .: X Crr IX r Ir

da 4 b MC M M) Ma IL. Il- G LC L .MM(L L M canM..M a. aa.aa a.a. aa 2aa. CL L I fd

I"S 41 0 U C 6g C 2 -7 y4 6c 3

C 61 u C.V U 41(MId"V IV-1 I c II 45V 1 a q 1 r "3 41 "a 'T WV.:~
I.- 6K CL O Co. M.3 .1 0 1 . WxM ID x xx .4 -4L C(3 x M W1:L V A:.. n1~ I'x 3
z a

Z~- #A 0)43g~U 1
or 41 a 62 u u jW Mt9 41 L3 L a. 1.9 J t*3 x 0 LAS C 'Ci in U* biLJ L) M d K c- 4Mt

CL 4.~~ ~04 L 444 ~ 4 0 44 41.Z L Q

N5 W P. ~ -r Ic LaiM, Z5- 0 x -I--XI- - - r- 0 L5 a

so 0. M W - 6M. a IL la

u . -
cmlI >00-1(

LU CD

-512-

4D*

C-

C

04-P 4-a

LU -V
-c 0 L- 0 0

-- 0 0 o 4-I
C. C 0 4- (c

-L o C.. (D

CO 4- 0o

0 cc 4-1

00 C D

4-a C2 w o w as
0o0c

C3C

C) CCD

CLI C13 C-13- C m -

777--

C) -V C CD

Q- C0 I- - 0-CO4

0 D El C~0

CD 2m - = - .
C=. C.3C rn 0)

0l co~ C.) w

0 m 00 - .- 0U
CD 1.D C2 ca 4-' W~-

CD. 0D C.

4-' CD. CU

02-

-< 0

-~ C=
4U .0 ca

4-' COM

_ - W-C ca Ca

CDC C.)D

- 0 ..04-'C 4-- LA

CDU CL 1-

0D 0 0..
C3 -0 - 0

0 *-W 0D
0D-p -

ca C-L 0 4-

0 01

"C3a LU -

LL -=

-NC

-514-

I-0

LAJ

C= V
-J3

C-3 ~ CD 1

CZ-

CO

LLU

-515-

4D c Lz

Z - 4 Ax o n r il Ili .4co I

I. zw I& k Zl U U L3 zi
z ~ g i- - - X.L2 01 1.h0
" JJ.- - - - 3. 4)O 63.- P'..J a4om

4 -z z. s4 z- -IQ --. & LOh U iN.2 AO

sd M 444 -ao .4 a, m1 Umm O

2.4 -U- WU 0 ChA - -- W I Aj

'!D' -.. !i -1 0 "~J4.W rt 3. is j1..

-1 u- Li4 u uL U U Z'i Zi LjuUL)i i C

AJS 4) J. J .. J.J 40 AlL' U 43 b-b-b A)4' _a.53(Lk- ja0 L

00K
Ch (a Nm Ch a)

aL 0§. aw 3. 3 * @3
5E LIUUs U U U L) u Ut U Li u

C. -3 .0. 40 Oh CD06# -N 1* IV X4 0 ? m V at m 04 W n) 4 o m) V N m la 3 4 N~ W3 4 'n 0 f% V M3
----4- .4.4. . ('3 Cm 01 MV CV C CVa Cm Od Fri 41 lo) tw) PO) ;0.4)) ~

V.,

z

0

CDC

LU a

m. 054 N

10.4 L '0 GO)L 0.. CPI

m. U.S kawTM-jW4I I jzM

CD M-9 A - .J.W 4- -- Z a)0 M00 m

C3 40 n 04~ Z Z -4) -X-
'At 4 7-a: - -1--- 1 5- OD4

tz 4 cc I-vu Ir >--,. ZZ2 xOL 9L _j " U
SAj~ > 4-&4a -. a ~'C) ' L .4 co. m 0 I

4 -AU .-M* -. r 0 . * 4

!D30 f n E& LU _S 41 J3I 104 I.4
L.IA z -1 * - 4 Ul

wU J434 L A A 1 Ali ii J.LO1AJ r4 5Z A m w - LL A. m
4-044 4 44~ 3c 3c 3J x t3 T . - .)U

-C- <- - a 4-CA- K a% C _i. r - (

-516-

GRAPHICS

Dr. N. Radhakrishnan

WES, COE

GRAPHICS

SESSION CHAIRPERSON: Dr. N. Radhakrishnan

U.S. Army Engineer Waterways Experiment Station

SESSION SUMMARY

This session addressed graphics standardization and the application
of graphics to color and 3-D geometry. The topics presented showed that
graphics is an important design tool. It is a tool that saves both time
and money by presenting data in the engineer's language-graphics. Since
graphics can and does play an important role in engineering design, there is
a concern throughout the graphics user community of using various software
packages. A standard graphics package will provide both program and pro-
rammer portability'which can translate into dollar savings in both training
and dissemination of information. The four topics that have been presented
were:

GRAPHICS STANDARDS by Bertram Herzog, University of Colorado

GCS AND GRAPHICS STANDARDIZATION IN THE ARMY CORPS OF ENGINEERS
by James M. Jones, II, U.S. Army Corps of Engineers

3-D GEOMETRY GENERATION WITH A PRACTICAL APPLICATION
by Fred T. Tracy, U.S. Army Corps of Engineers

COHERENCE CONCEPTS IN COMPUTER SYNTHESIZED REAL-TIME DISPLAYS
by John Staudhammer, North Carolina State University

-517-

Graphics Standards

Bertram Herzog
Director, University Computing Center

University of Colorado

The field of computer graphics is reaching a degree of maturity
that workers in the field are seeking to draft a proposed standard for
compucer graphics--especially software. Several national and international

standards groups are working on this problem. In the United States, such
activities are sponsored by ANSI and the Graphics Standards Planning Com-
mittee, GSPC, of the Association of Computing Machinery's Special Interest
Groups for Graphics, SIGGRAPH. This latter group, GSPC, has drafted a
proposed standard, often called Core. Several authors have reported on
their implementation of this draft. Revision of the Core, in response to
user critiques, is under way.

A description of the essential elements of the Core was presented.
Examples of programs written using one of the implementations illustrated
the features thought to be ready for standardization.

Finally, a report of current standards activities was given with
an appeal for user participation to ensure that a good standard will evolve.

-518-

NOTES ON GRAPHICS STANDARDS

The talk is primarily a progress report of the Graphics Standards
Planning Committee of ACM's SIGGRAPH. The reader is urged to con,*ult
COMPUTER GRAPHICS, A Quarterly Report of SIGGRAPH-ACM, Vol. 11, Numbers
3-4, Fall 1977 for a report of the major accomplishments which include a
review of several graphics packages and the specification of the CORE
proposal.

This CORE proposal has resulted in several trial implementations.
The implementors reported their woGrk at a session of SIGGRAPH 78 in
Atlanta in August 1978. Their papers are published in COMPUTER GRAPHICS,
Vol. 12, Number 3, August 1978. The important titles are:

TIGS An Overview of the Terminal Independent Graphics System

by Robert L. Heilman, Batelle Columbus Labs, Columbus, Ohio and
Jean M. Marchant, Control Data Corporation, Arden Hills, Minnesota

Core Standard Graphic Package for the VGI 3400

by Ken Levine, Vector General, Inc., Woodland Hills, California

DIGRAF - A FORTRAN Implementation of the Proposed GSPC Standard

by James R. Warner, Margaret A. Polisher, and Robert N. Kopolow,
University of Colorado Computing Center, Boulder, Colorado

An Implementation of the ACM/SI(GRAPH Proposed Graphics Standard in a
Multisystem Environment

by Richard G. Kellner, Theodore N. Reed, and Ann V. Solem, Los Alamos
Scientific Laboratory, Los Alamos, New Mexico

A Microprocessor-Assisted Graphics System

by Griffith Hamlin, Jr., Los Alamos Scientific Lab, Los Alamos, N.M., and

Thomas Crockett, NASA Langley Res Center, Hampton, Virginia

A Flexible, High Performance Interactive Graphics System

by Roger J. Hubbold and P.J. Bramhall, University of Manchester,

Manchester, England

-519-

A more complete review of the previously reviewed graphics packages
together with a comparison to the CORE is given in a paper edited by
Ewald and Fryer entitled, Final Report of the GSPC State-of-the-Art

Subcommittee and is published in COMPUTER GRAPHICS, Volume 12, Numbers 1-2,
June 1978. In this publication can be found reports about the ANSI
activities and the plans for GSPC for 1978-79. The following pages are
reproduced with permission of ACM.

-520-

ACM/SIGGRAPH GSPC

Goals and Activities*

Introduction

The second Winter Meeting of the Graphics Standards Planning Committee, GSPC, was
held at the University Computing Center, University of Colorado,.Boulder, Colorado in
March 1978. Twenty people, in the role of GSPC members, implementors, and observers
attended the meeting.

The meeting had two main purposes. The first was to hear reports on relevant
graphics activities that had taken place following the publication of the GSPC Core Sys-
tem design. In particular, constructive comments were made by current implemcentors cf
the Core and similar graphics systems. The second purpose of the meeting was to define
future goals and activities for the GSPC, and to reorganize the membership into
appropriate working groups. These definitions and organizational plans were produced by
a workshop approach--many subgroup m '.tings were held to develop recommendations that
were then considered during reconvenings of the whole group.

Meeting topics and results believed to be of general interest to SIGGRAPH members

are summarized in the remaining sections of this report.

Current Goals and Organization

The major goals of the GSPC are:

1. To continue technical studies appropriate to computer graphics standardiza-
tion.

2. To disseminate information resulting from the studies, interface with other
standardization groups, and establish dialogs within the general graphics com-
munity.

The current co-chairmen of the GSPC are:

Bob Heilman Bert Herzog
Battelle Columbus Labs Computer Center
505 King Avenue University of Colorado
Columbus, OH 43201 Boulder, CO 80309
614/424-7340 303/492-4331

Several "standing" subcommittees of the GSPC are:

I. Speakers' Bureau:

Bert Herzog, Chairman

This bureau is a mechanism for providing speakers to organizations seeking
information about GSPC activities.

2. Education and Publicity:

Tim Dreisbach, Chairman
SofTech, Inc.
460 Totten Pond Road
Waltham, KA 02154
617/890-6900

-- Tis sumiary is priinarily composed of extracts taken from the Report of the CSIC
Winter Pleeting, 1978. That report was submitted by GSPC Co-Chairmen PV,! lleillan nzd
Pert Herzog and was based on a draft version written by GSPC meinbers Peter Pono, Ti;,1
Dreisbach, and Jim Michener.

-521-

This is a relatively new activity in response Lo the GSFC's important role in pro-
viding continuing education to the graphics community on 1 he imlportancc of s;tan-
dards and current standardization activities. Some items in need of p,,blicity, to
all types of audiences, are graphics standards efforts in general, exi:;ting GSPC
outputs, and current GSPC activities.

3. Core System Comments and Review:

Margaret Polisher, Chairman
Computing Center
University of Colorado
Boulder, CO 80309
303/492-6501

This activity provides a formal mechanism for handling questions and comments on
the GSPC Core system. Correspondence received by Margaret will be forwarded to the
appropriate GSPC members or subgroups. As in the past, replies will be coordinated
and sent to the initiating correspondent. Margaret is beginning to work with Tim
Dreisbach on an effort to publish frequently occurring comments or ones with impor-
tant technical implications, together with their corresponding responses. If there
is enough interest, this could be accomplished through brief, but regular, sections
in Computer Graphics.

4. Implementation Surveys:

Peter Bono
Naval Underwater System Center
Code 314
New London, CT
203/442-0771 (x2754)

This activity provides a clearing house for information about current implementa-
tions of the Core System and similar software packages. Implementation efforts
have, and are, being surveyed and cataloged.

5. ANSI Coordination:

Bob Heilman, Chairman

This activity provides a formal mechanism for coordinating the technical efforts of
the GSPC with the activities of the ANSI graphics study group. A rich dialog is
expected because there are numerous individuals who are members of both groups.

As a result of the Winter Meeting, a number of additional subcommittees were organ-
ized to pursue technical topics.

6. Core System Refinements:

Vic Wallace, Co-Chairman Elaine Sonderegger, Co-Chairman
Computer Science Dept. 2615 Sixth Street #J
University of Kansas Santa Monica, CA 90405
Lawrence, KA 66044 213/822-1511
913/864-4482

The purpose of this group will be to reconsider portions of the Core System design
in response to comments and criticisms. It will expand on portions of the design
that were not fully defined in the 1977 Status Report. Particular issues already
identified are text and other output primitives, input requirements, segmentation
and control, output device-coordinate systems, etc. The group's long-term goal is
the publication of a revised Core System de:,ign document by August 1979.

Yr)>

7. Core System Extensions:

Lansing "Chip" Hatfield, Chairman
Lawrence Livermore Labs
P.O. Box 808, MS L-156
Livermore, CA 94550
415/411-8567

The purpose of this group is to ensure that the Core System will not preclude
effective use of computer graphics capabilities as they now exist or will likely
develop in the near future. Some appropriate subjects to be investigated are ras-
ter graphics, color, conic functions, high-performance devices, and distributed
processing systems. Working documents for at least the color/raster areas are
being drafted for review by STCGRAPH '78.

8. Core System Partitioning and Protocols:

Andy Goodrich
Computing Center, North Campus
University of Michigan
Ann Arbor, MI 48109
313/764-2121

This group will be investigating methodologies for partitioning the Core System.
As one example, criteria based on program structure and portability issues could be
used to identify a basic kernel of routines within the currently rich system.

Other topics to be considered are actual specifications of kernel routines, specif-
ication of other system partitionings, possible pseudo-display code formats and
protocols, etc.

9. Graphics Program Structure, Techniques, and Higher-Level Requirements:

Tim Dreisbach, Acting Chairman

The goal of this activity is to relate software engineering methodologies to
(interactive) computer graphics and to determine if specific programming guidelines
can be defined. A possible topic to be considered is how the notions of well-
structured programs are specifically reflected in graphics software; for example,
can "Elements of GraphicSs Programming Style" be identified? Other areas that can
be addressed are oiw riaphics pro grams can be designed to improve user interfaces,
i.e., implementors of commion graphics functions (linear algebra for viewing
transformations), and higher-level requirements (e.g., hierarchical modeling sys-
tems, graph and plot generation systems).

A focused direction for this group cannot be determined until its membership and
leader are identified. Tim Dreisbach is serving as acting chairman until a per-
manent individual is appointed; volunteers are encouraged to step forward.

10. Fou. 'ition of Computer Graphics Standards:

Jon Mleads, Chairman
Tektronix, Inc.
P.O. Box 500
Beaverton, OR 97077
503/682-3411 (x2229)

This group is to investigate the role of graphics standards over the long term.
Planned areas of work include a forecast of technological advances and an analysis
of their impact on graphics systems, hypothesizing what people really need and how
tomputer graphics can help, prophesying new areas where graphics can be effectively
utilized, and developing a taxonomy of man-machine interactions from functional and
applications viewpoints. The committee will review the other GSPC activities based
on these considerations.

-523-

Beci i;e the five tc'n ic.'al !;uhon:mittees art! newly formed, their m'mberships are
currently opea. All interested individuals are encouraged to contact either the
GSPC co-chairmen or specific subcommittee chairmen.

GSPC/ANSI Relationship

As mentioned previously, a close relationship exists between these two groups, with
several individuals belonging to both. During the ANSI Study Croup meeting in February,
Peter Bono served as an official liaison representative of the GSPC. The ANSI members
were invited, and many participated, as observers to the Winter Meeting of the GSP1C.
The GSPC regards itself as a technical and educational body that can provide a knowledge
base in support of the ANSI group's activities.

A concern was noted among some ANSI group members regarding the momentum of the
CSPC Core System and the potential for a resulting defacto standard. There is general
,nsensus among the GSPC people that premature "freezing" of the current Core System
1.,posal is highly undesirable. The GSPC has no "official" authority, nor any desire,
to legislate standards. However, both groups recognize the possibility that standards
development recommendations by the ANSI group might include a suggestion that the ACM,
SIGGRAPH, or even GSPC specifically, be authorized as a technical development body.

Existing and Forthcomig Paprs

The 1977 Status Report of the GSPC appeared in Volume 11, Number 3 (Fall 1977) of
Computer Graphics. It contained a summary of the State-of-the-Art Survey and the func-
tional specilication of a proposed Core System. Additional copies can be ordered,
prepaid, from:

Association for Computing Machinery, Inc.
P.O. Box 12105
Church Street Station
New York, NY 10249

ACM and SIGGRAPH members: $ 9.00
All others: $12.00

ACM SIGGRAPH has endorsed magnetic tapes of the Status Report that can be obtained
from:

ATTN: SIGGRAPH GSPC 1977 Status Report
University Computing Center
University of Colorado
Boulder, CO 80309

PRICE: $50.00/tape

An informal GSPC presentation is currently being planned as one part of the SIG-
GRAPH '78 poster session. The goals are to discuss technical issues related to the GSPC
report in small-group fashion, to inform interested individuals about the current GSPC
status, and to solicit comments and volunteers. Topics related to the activities of
specific technical subcommittees (perhaps as reflected in draft working papers) can be
addressed.

A compatible set of papers on topics related to the Core System design has recently
been produced. These papers were not directly done as a GSPC activity, but were written
by several members of the original Core System design group. The papers are scheduled
to appear in the December issue of ACM Computing Surveys (Vol. 10, No. 4).

On-ag Implementations

Last December and January, a questionnaire was sent out to 22 people known to be
working on, or considering, a design or implementation of the Core System. Fourteen
replies were received.

-524-

The envisioned Host Environments included equipment from eight to ten computer
manufacturers, seven to eight programming languages, and approximately twenty different
display devices. Equal interest was expressed in all four levels of the proposed Core
System.

Machine- and operating system-independence of the implementation was unanimously
deemed "very important." Language independence was much less important, with nine
responses in the "not very important" category and only four judging it "important."
Importance of device driver portability was split. Seven felt that it was important,
five not important, and two expressed no opinion.

Four principal areas of concern emerged from the Remarks Section of the question-
naire:

1. Device-Independent Pseudo-Display File Representation

2. Device-Independent/Device-Dependent Interface

3. Device Driver Portability

4. Storage Allocation and Memory Management Problems

Seven implementors and one implementation designer accepted invitations to describe
their efforts at the GSPC's Winter Meeting. Richard Fryer of the China Lake Naval
Weapons Center described a Level 2, FORTRAN, mini-computer system. Ted Reed of Los
Alamos Scientific Laboratory described the Common Graphics System--a joint approach to
graphics for Sandia, LASL, and the Air Force Weapons Laboratory. Jim Warner of the
University of Colorado Computing Center described DIGRAF--"Device-Independent Graphics
for FORTRAN." Peter Sih of the IBM Los Angeles Scientific Center described a non-
product-oriented implementation of the Core System accessible from APL. Dick Puk of
Sandia Laboratories described the BGP-- Basic Graphics Package--Level 2 implementation
of the Core System and its relationship to the Common Graphics System (CGS) described by
Ted Reed. Dave Verhoeven of Tektronix Inc., indicated that industry has some problems
contributing to standardization because of the proprietary nature of their work.
Although the 1977 Core System definition serves as a focus for internal development,
there is a hesitation to create a product too soon, in light of possible differences in
the eventual standard. Andy Goodrich of the University of Michigan described an imple-
mentation of the Core System built on top of an existing system, IG, having a hierarchi-
cal picture structure. Jim Michener, of Intermetrics, Inc., proposed changes to the
Core System derived during the design for the interface between device-independent and
portions of an implementation.

-525-

GCS & Graphics Standardization
in the

Army Corps of Engineers

James M. Jones, Il
U.S. Army Engineer Waterways Experiment Station

This paper described the Army Corps of Engineers (COE) involvement
in computer graphics and the role of the Graphics Compatibility System (GCS)
in the development of a standard graphics software system for COE now and
in the future.

The Corps has long been involved in passive graphics -- producing a
plot either on-line or off-line. This often meant plotting a certain data
set several times to eliminate all input errors. It was only with the devel-
opment of interactive graphics that the Corps' engineers could interact with
a plot and correct any errors prior to producing a final plot.

When the Corps became initially involved in interactive graphics,
it was recognized that a graphics software system was needed that could
support several devices (passive and interactive). This would provide both
computer program and programmer portability. The Graphics Caompatibility
System (GCS) developed and supported by West Point Military Academy/Computer
System Command/Army Material Command was selected.

The Waterways Experiment Station (WES) Automatic Data Processing
(ADP) Center developed several applications using GCS. As the use of GCS
expanded to several Corps' offices, graphics training courses were provided
for Corps' personnel. When West Point was no longer able to support GCS,
administrative support and maintenance of GCS was transferred to the WES ADP
Center.

GCS was enhanced and modified to support new state-of-the-art
graphics techniques. Both a two-dimensional and a three-dimensional version
of GCS are available and can be used with several graphics devices on dif-
ferent computers. New capabilities include data structures, segmentation,
pseudo display files, and Hershey software character fonts.

As the result of a Corps-wide Graphics Colloquium, GCS will soon
become the official graphics software standard for the Corps. With Corps'
use and input from a newly formed Users' Group, GCS will continue to evolve
and provide a graphics stpndard that will not confine or restrict the Corps'
graphics users. Future work includes support for interactive color graphics
new input features, and hidden line/surface capability.

-526-

GSC and GRAPHICS STANDARDIZATION in the ARMY CORPS OF ENGINEERS

James. M. Jones

Introduction

The Army Corps of Engineers has been actively involved in
passive computer graphics since the early 1960's. It was widely

recognized that passive graphics:
a. Eliminated massive paper output

b. Gave the engineer results in a form he could readily
understand (graphs)

c. Saved time and money

Although passive graphics provided the engineer plots of his
data, it was still a tedious process because he could not interact
with his data as it was plotted. The engineer would view the plot,
detect some data errors, correct those errors, and re-submit the
corrected data to produce another plot. This process was repeated
until an error-free plot was produced. An example of this process
is the use of the finite element method. The finite element method
assumes that the forces that interact in a complex structure can be
calculated by subdividing the structure into a series of small, finite
pieces, and computing the forces in each piece. For a finite element
analysis an engineer used to:

a. Manually divide the structure into small, finite elements.

b. Provide element numbers, node numbers and x, y, Z
coordinates for the nodes.

C. Punch this input data.

d. Pre-process the input data and produce a plot.

e. Repeat steps b-d to eliminate any data errors.

f. Apply the error-free input data to an analysis program.

g. Post-process the output data and produce a plot.

h. Repeat steps a-g until "good" output results.

Interactive Graphics and GCS

In 1972, the Waterways Experiment Station (WES) ADP Center
purchased a Tektronix 4012 storage tube terminal to provide interactive
computer graphics. It was felt that interactive graphics would result
in:

a. Greater productivity of engineers' time.

b. Better design of structures

C. Better analysis of complex structures

d. More engineers using computers in their work

-527-

Now the engineer could interact with his plot, correct any errors
and produce one final, error-free plot.

There were several graphics software packages available that
supported interactive computer graphics. To prevent duplication of
resources (people and money), a survey was conducted to determine
if one graphics software package could support both passive and
interactive graphics ont several graphics devices. Corps offices that
were involved in graphics were visited to determine existing and
potential graphics requirements. Visits were made to other federal
agencies, commercial vendors, universities and colleges, and several
experts in computer graphics. The Graphics Compatibility System (GCS),
developed and supported by the West Point Military Academy, Computer
Systems Command and Army Material Command was selected. The reasons
were:

a. Supported state-of-the-art graphics concepts

b. All subroutines written in FORTRAN

c. Operational on Honeywell computers

d. Supported multiple graphics devices

e. Non-propriety software package

f. West Point/Computer Systems Command maintenance and
support of the system

g. It had been field tested and used by other agencies

After selecting GCS, WES obtained funding from the Office of the
Chief of Engineers (OCE) to develop civil engineering applications.
WES obtained "seed money" from Project Idea (Army Material Command) to
develop pre- and post-processors for the finite element method.

Mr. Fred Tracy, WES, developed a 2-D pre- and post-processor
with GCS and a Tektronix 4012/4014 graphics terminal. The engineer
uses the crosshairs on the terminal to interact with his input
boundary data. The program automatically generates a finite element
grid and numbers the nodes and elements. The final grid can be
developed and displayed on the Tektronix terminal. A cost analysis
comparison (1975) with the earlier passive graphics technique shows
the advantages of interactive graphics.

Passive Interactive

Labor $ 950 $ 260
Computer 120 320

Plotter 6 6

$1076 $ 586

-528-

This is representative of the savings achieved with interactive
graphics.

GCS was used in developing other graphics applications. As
the use of GCS expanded to several Corps' offices, graphics training
courses were provided for Corps' personnel. In 1975, West Point
was directed to no longer support GCS and in January 1976, administra-
tive responsibility for GCS support and maintenance was transferred
from West Point to the WES ADP Center.

GCS Status

While graphics applications were being developed, the initial
2-D version of GCS was enhanced and modified to support 3-D graphics
with new state-of-the-art graphics techniques. Among these were
data structures, segmentation, psuedo display files, color, and Hershey
character fonts. Figures 1-6 illustrate several GCS features.

GCS was favorably evaluated by the "GRAPHICS STANDARDS PLANNING
COMMITTEE, STATE OF THE ART SUBCOMMITTEE, ACM" in a graphics system
comparison document. Their general comments are:1,3

The Graphics Compatibility System (GCS) package is
a set of ANSI FORTRAN-IV - callable subroutines unified
through a named common area called Graphics Status Area.
The system attributes and control options are provided
through this area. The software provides a display
of two-dimensional data and the extensions allow three-
dimensional data.

The software interface is provided in several basic
levels:

1. Simple graphics input/output

2. Window-viewport management with
secondary axis control

3. Graphing and analysis output

4. Buffer management for dynamic
refresh systems

The calling sequences are short and consistent. The
basic modes of operation are controlled through two
routines (USET, UPSET) that set the modes and values
for the central management interface, which is the
shared common area.

New documentation has been published. To support training of
Corps' personnel in GCS, several computer-aided-instruction (CAI)
lessons have been developed. There are two versions of the lessons -

one provides text output at an alphanumeric terminal (Figure 7) and
the other provides both text and graphics output when used on a

-529-

Tektronix 4014 graphics terminal with hardcopy unit (Figure 8).

Standardization

On 1-3 August 1978, a Corps-wide graphics colloquium was
held to exchange information between the different Corps offices.
Ninety-four Corps' individuals attended and it was determined that
there needs to be a standard graphics software package for Corps-wide
use. GCS will be the basis for this standard and an EN (engineering
regulation) is in the draft stage. Not only has use of GCS grown
in the Corps, but there are over 150 government agencies, colleges
and universities, and private industries that have obtained GCS. A
GCS Users Group was formed at Siggraph (Special Interest Group on
Graphics) in Atlanta, Georgia, 22 August 1978 to support their
needs. This organization will be a significant driving force in
standardization efforts.

Future

With continued support and use by the Corps and input from the
newly formed Users Group, GCS will continue to evolve and provide a
graphics standard that will not confine or restrict the Corps' graphics
users. Future work includes support for raster graphics4 , new input
features and hidden line/surface capability.

-530-

CALL ATTACH CG. ',SAVE, ',S, 0 1ST,)
CALL USTART
CALL UPSET COLIBPAY FILE',t1.)
CALL UIJTLTY C 'LOAP LIBRARY FILE'.g &
CALL UPSET C'TPXNATR ', '< v
CALL UCET (*VIEW DisTANM1I)
CALL UVVPLNb C162U.)
CALL UWD4io c-iuu. too. -too. too..
CALL UIVIEW ~1.
CAlL UDAREAC..7,.1.
CALL U~flJ
CALL USET COPERSPECTIE'
CALL UINVOK C*VILLACQ*,
CALL UDAREAC.t 3.,. 2)
CALL UOUTL
CALL UVIW -7.-i...... 9.
CAJL. UCET C COSRMAPHZci
CALL UZNVOK C 'VILLAW')
CALL USET C' EXTRALARGE CHARACTERS,)
CALL USET C*PeVZCE UN:TS',)
CALL UCET (*ACE14TER)
CALL UPPJ14T C7.. 7, 'PP.OJECTX~fl NODtFS"')
CALL LPRZI4T C7. .. S: FIGLIE W.)
CALL UENI)
STOP

PJECTION MOMS

-531 -

CALL USCTART
MAL L1PAREA .. 1..8I9)

CALL LJYJEW Cirb.. , .~.E..S.
CA LNDMac-g.g~-us.
CALL UCET (GCnLHPRICAL)
CALL UCRCLE (O,.S.
CALL uPseT czVALurpsa..)
CALL UcRCLE (A. 5.
D~O 10 La1.34eGj9
THETA - I - I
CALL USJNOV CSU...THF-TA..

10 CALL USPE CS.THETA.fb.>
CALL UGSET c ERJPALARG.se)>
CALL USET CIDEVXCE')
CALL UsET c.ACENTER')
CALL USET C'f=TANGUZLAK)>
CALL UWKXNT (.7..-.7. *CYLINMRCAL MMIATMsv
CALL UPRIT c7..s/FcpE z\->
CALL UENP
STOP

cYLDPRZCAL cmw=TEs

-532-

AD-AIO4 253 INTERNATIONAL BUSINESS SERVICES INC WASHINGTON OC F/G 9/2
US ARMY SOFTWARE SYMPOSIUN (2ND) HELD AT WILLIANSRUROP VIRINIA--ETC(U)
1978 S M TAYLOR DAAK7O-76-O-0030

UNCLASSIFIED7 ././EEE/EEEEEE

IEEEEllEllllEE
EIIIIIIEEIIEI

CALL WTART
CALL UPAWActt.aI3
CAL uvm t3.C.S.U..U
CALL U0~ Ca. W-"S.
CALL LWT C"HOAL ~L4JMATEIFX
RAPMAS - so.
ZLW -CV aEO i OTO

to~~ IF UA 1.2 o2
00 IS 1 1. let.=

T~r - J- I
CALL USAM RDU. .*MD

UW - 41a I

I~CALL U5PWH CRWAvETA>I
CALL USNOW CT.A..a.*
CALL USTA C3..9=.3.

CALL UPRIN C7,.CPHMALCOTINTEV

CALL MM~ C7,. C 2NW3\

CALL UM~
S1W

6PMZAL COM NAT

PXEVJIL 6

-533-

CALL UCTAFrT
C"L URPAMA CZ., tZ.. .8. 18-.)
CALL USET CMM>)
CALL I*'SET C'VEAZC&. .4.)
CALL WiSer cW1aRZffAL. .4.)
CALL UW3DO -. .- S 1)
CALL UPsrT COT=,. L>
CALL UPSET C*TCYl 1.>
CALL IJPSET CX1 AW 01 AND HUN 0LUGGO CLE.)
CALL LJST POAEL'
CALL U6A=(ScAZ.6..8..
CALL USA3CCcA(S,.U..S
CALL UMaCLE M4.4..9.0)
CALL U3SY6 C2. 2. 2. 1. 2 .a.B,.
CALL MPSE CRikibZZ1H1..ib
CALL IWWTE COVERTXCI. .S>
CALL UPSET CRAS.Z.3
CALL USET CfVLOG')
CALL U6ET CWLCJSER'>
CALL USAXrS c A-..C3..
CALL U~cCLe C4. 4. 3.9>
CALL uwr T CIWQARE")
CALL MSET C ACWMTER
CALL M6ET CEXTRALARE)>
CALL USET CIPEV=C twlZso
CALL USE ('NELDS)
CALL UPRINT 47.. .7, SAS. A= C RSATMH\
CALL UPR33NT (7.. .S.'FX.RW -f\)

'S

Iwo

.& 1

IIM

-534-

CALL WMART
CALL UDARZA CZ.. It. .U. 1U.M,
CALL U0(VO C6..4..
CALL MEN SU.B.S.Z.Z..
CALL UPSETC .S)
CALL UGET CW0)
CALL UET C'UIPTO.
CALL UPSET CIHCZMNTAL' 3>
CALL UPSET C*VWrAL , .9;
CAL UPSET c-LASL.SS.)
CAL.L UPSET C*TZWP. .53
CALL UPSET CTM...)
CALL USAXUS Cf. S. a.....>
CAL.L USET CjA~~os'
CALL USOET c irtKALAREl
CALL USE? C'DEVICE')
CALL USE? C'ACOW1rER'
CALL (SV~D4T C7.. .7, I". A=I CRATZW4V>
CALL UP~Zt1T or m a*>
CALL UB
S13

40

* * a p

-55

WAL XC481>. YC41 ZC481) >,
R - 19.

ZCI) - I'UIitC-I * R/2M.8 - R
T a SURTCRust - ?CIMMW.
xcI) - coSCZC w CC w T
yC) an SM4CZCD 0 6.6> * T

to c~ITD6*
CALL U6TART
CALL UPAWAc I2CU> 1.8
CALL UPSET 'H*Z*"--' 0 1
CALL UPSET C*VfT=& IL. 12)

CALL IJ69 CE N.10..6,6.
CALL USEr C#'All"TER)
C"L U1WIW CS-.. It.

CALL IUSPL CCRLARGE..41 AI#
CAL USIE Co.VIG.

CALL USET (7..7'SDPLWO>SV

CALL UIRIT (7.::. .SFIZ* r*
CALL UM

S1W.

SPIRAL ON A SPHERE

-536-

FORt THOME USMR VHO DCW TO COM P~h ATA ANALYS TltMIUUI
CURVE FMrr1 6 XNTO THM OPAPHICAL APLXCAT3OM SUPIOMES
*tLJ6t'Ts AMP #UIASTSG# SIMP POVW OF PACirrXUAkA mWRTANvCE.
ULWT SHOWL WC USED WHOE XT IS D06=0 TO 0TAIN THE CLOFCS.)

AND Y.'XNrt~EP CYD OF TIE LXNEAR MUATMM. Y as CC + Yl. TIE
EOUATXOI RW~4~ TIE DESTr LMNEAR r=1 TO A t4.4ER OWN Or
U$Wt-4UPL DATA POINTS CCONA14 114 ARRAYS X AMP Y).

tL*-T 16 CAL'I By I

CALLI ULMIFT CX.Y.XN.SY*X)

LO0K AT EXAMPL* 6.8 PLEASE.

PUSH RETRN To CONTXI4J

OULASlg 0 0 W~JDD USED WHON A OLOAS-601A * POLYNOMIAL, CURVE!
FXT XS DZSIRED. IT RETURNS THE N+41 COEFP=ENTlS (ZM ASCOMP
ORDWR OF THE POLYNONXAL OF DECREE N WKD2u4 RERW TH E 'am*

MI TO A SMRIS OF USEtR-SPPI DATA POXNTS. XT 16 CALLI AS

CALLI ULSTSO CX.YXN.COSFF>

WHMR X Z6 A USCR6-6UPPL.IE ARRY CONTAMM148 XII VALUES OF THE
INDEPENDENT VARIABLEs Y IS AN ARRAY Of XII VALUES FOR THE DMP.-
ENDENT VARIAPLE. X IS X THE N06CR. OF VALUES IN CAWH OF TIE X ANP
Y ARRAYSj AND COEF XL AN OUTPUT ARRAY WXCH CONTAINS TIE M14
COEFFICETS OF THE POLYNOIAL VMH4 WASb FXrrLrC TO TIE DATA.

PUSH RETURN To CONTntz

IN ORDE TO SPEC2WY THE DEGRE OF THE POLYNOMIAL WHICH XG TO
DM FirTEI TO THE DATA. IT XL NECESSARY TO CALLI UPSET DEPORE
'ULSTSG9 Mg INV1O(E. FOR THE GENRAIZED CASE WFTLIED ABOVE.
A SUIABLE CALL TO UPSET WOULD WE'

CALLI UPSET C POLYNOKIAL.FLOAT N)

SEE CXAMPLE 6.1IQ FOR. THE USE OF THIS CONCEPT.

PUSH RETURN TO CON4E

OUPUT FRO ALPHAU0ERI T0MIAL

FIM.DC 7

-537-

VOM TtOsW IJSMR WM PCW TO C014PM PATA At4ALMSS TtIUB1

ULMIFT ANP *IJATSG' e0U.,P raVg Or PARTICULAR K!OrAN~C
*UL.D4TO OJLD W USM WM~t rT XS P96SW TO WTAZN 'nM SLOMMS
A.NO Y-MfNtWCT CYX) WF THE LtEAR MJAT~4 Y me SX + YX. Tke
FMJAT7~h P" -4T THE 'PCST' 1-TCA FXT TO A tEUtWC OMtI OF
W"ME4Fl U"'= PATA POWIS CC4TAXh'Ig 11 AMAYS X AM4P Y).
OULMWTO £6 CAL I M

CALL ULhIT CX.Y.Xti.S.YX)

LOOK AT EXANLE 6.8 PLEAC.

PUSH RMW TO COITII4 AND THE IXAW4LC WZLL aC noe

WrTPLf F'RM TVAT 4614 TOOLMAL

-538-

Acknowledgements

The above work was funded through the Army Integrated Software
Research and Development (ISRAD) activity and the Office of the
Chief of Engineers (OCE). The work was done at the R&D Software
Group, Automatic Data Processing Center, WES, under the guidance of
Dr. N. Radhakrishnan.

References

1. Graphics Standards Planning Committee, State of the Army Subcommittee,
Graphics System Comparison Document, The Graphics Compatibility
System (GCS) Software, June 1978.

2. Primer on Computer Graphics Programming for the WES ADP Center,
Manual No. 78-1, August 1978.

3. GCS Programmer's Reference Manual for the WES ADP Center, Manual
No. 78-2, August 1978.

4. Foley, J. D., Templeman, J., and Dastyar, D., Raster Extensions
to GCS, September 1978.

-539-

Three-Dimensional Geometry Generation
With A Practical Application

Fred T. Tracy

U.S. Army Engineer Waterways Experiment Station

The paper described techniques developed to generate both geometry
and loading for structures. These techniques are applied to the practical
application of analyzing stability of three-dimensional structures.

Geometry is generated by using three types of basic building blocks.
They are: (1) two-dimensional cross-section with depth (called block), (2) 8
node brick element, and (3) group of planar polygon patches. The cross-
section can be defined in the X-Y plane and extended in the Z direction or
defined in the X-Z plane and extended in the Y direction. Line segments
forming a cross-section can be either straight, circular, or quadratic, and
any number of holes may exist in a cross-section.

Loading is defined in a consistent way as the actual geometry of
the structure by defining geometries whose volume represent the amount of
force. Directions (-X, +X, etc.) complete the definition of a force.

The three-dimensional stability analysis requires the computation
of weight and centroid of the structure, and computation of forces and
moments from the loads. Thus, algorithms were developed to do this.

-540-

THREE-DIMENSIONAL GEOMETRY GENERATION
WITH A PRACTICAL APPLICATION

Fred T. Tracy
Waterways Experiment Station

Vicksburg, MS 39180

This paper describes techniques developed to generate both
geometry. and loading for structures. These techniques are applied
to the practical application of analyzing stability of three-dimensional
structures.

Geometry is generated by using three types of basic building
blocks. They are (1) two-dimensional cross-section with depth (called
block), (2) 8 node brick element, and (3) group of planar polygon
patches. The cross-section can be defined in the X-Y plane and extended
in the Z direction or defined in the X-Z plane and extended in the Y
direction. Line segments forming a cross-section can be either
straight, circular, or quadratic, and any number of holes may exist
in a cross-section.

Loading is defined in a consistent way as the actual geometry of
the structure by defining geometries whose volume represent the amount
of force. Directions (-X, +X, etc) complete the definition of a force.

The three-dimensional stability analysis requires the computation
of weight and centroid of the structure, and computation of forces and
moments from the loads. Thus algorithms were developed to do this.

Introduction

These are several applications where three-dimensional (3-D) geometry
must be generated and displayed. Further, volumetric computations such
as volume, weight, centroid, moment of inertia, etc., are required.
Thus more than points and lines must be specified. Questions also
arise as to how to display the generated geometry. This paper describes
techniques developed to generate and plot geometry and loading of
3-D structures. The practical application of 3-D stability analysis
will be used as an illustration of the techniques.

Generating Geometry

Data that describe geometry are either points, curves, surfaces,
or solids. Three types of solid pieces can be used:

a. Blocks
b. 8 node brick elements
C. Clusters of surface patches to form a solid

-541-

RIF

Figure - Two-dimensional Cross-section

Figure 2 Generated Block

-542-

Block

A block consists of a two-dimensional cross-secti6nal definedin either the X-Z or X-Y plane which grows in the Y or Z directionrespectively to form a solid piece of geometry. Figure I shows atypical cross-section defined in the X-Z plane, and Figure 2 showsthe generated block. The X-Z plane is the default plane.
Figure 3 with the accompanying data file shows two cylindricalblocks one generated from an XZ cross-section and the other from anXY cross-section.

19 xz
20 PON 430 1 -5 0
40 2 0 0 -5

60 4 00 5
70CIRC 125
80 CIRC 23 S
9OCIRC 3 4 5
l" CIRC 4 1 S
110 BLOC BLI 109. 48.120 1. 1.
13841 2 3 4
148 XY
150 Po0N 4
165 -5 205
170 6 0 15 5
1807 5 20 5
1998 8 25 5
200 C1RC S6 S
210 CIRC 6 75S
220 CIRC 7 8 5
230 CIRC 8 5 5
240 BLOC BL2 100. 40.250 1. 1.
26 4 5 6 7 8

Figure 3- Two Cylinders

Note that in the data file XZ says that the data refers to the X-Z plane,and XY is used to switch to referring to the X-y plane. Also points arefirst defined, then any curves, and last the block itself.

-543-

The line segments describing the cross-section can be either straight,
circular, or quadratic. Further, the section can grow smaller or

larger as it is extended in the Y or Z direction. Any number of holes

(culverts, etc.) can be defined in the cross-section as well.

The cross-section can grow in a constant, linear or quadratic
manner in the third dimension to form a block. Figure 4a-e shows

various types of blocks.

a -constant growth b -linear growth

c -different scaling d -curved line segmento

e -quadratic growth

Figur Various Blocks

-544-

The great thing about the block is that the majority of data is
generated with the user only providing cross-section information
and a depth. The generated (X,Y,Z) coordinates are computed
from the ones input for the cross-section (X-Z plane) by

YNEW = YOLD + DEPTH
XNEW = (XOLD - XAPEX) * SFX + XAPEX
ZNEW = (ZOLD - ZAPEX) * SFZ + ZAPEX

where DEPTH is the depth, SFX is the scale factor in the X direction,
SFZ is the scale factor in the Z direction, and (XAPEX, ZAPEX) are
the coordinates of an apex. Interpolation points for the generated
quadratic line segments are computed by

YINT = YOLD + DEPTH * .5
XINT = (XOLD - XAPEX) * HFX + XAPEX
ZINT = (ZOLD - ZAPEX) * HFZ + ZAPEX

where HFX and HFZ are scale factors provided by the user. Similar
equations exist for a cross-section in the X-Y plane.

Brick

The 8 node brick element is another useful way to describe geometry.
Higher order elements with curved sides will also be implemented.

Surface Patches

Sometimes it is desirable to describe a solid piece of geometry by
a group of surface patches. This program allows planar polygon patches.
Higher order parametrically defined curved surface patches will also
be incorporated. Also, an interactive graphics program that allows
input of 3-D geometry via the tablet (soon to be released) outputs
patches.

Practical Examples of Geometry

Two examples of geometry are given here. They represent structures
for Lock & Dam 2 on the Red River (work done by Mr. Tom Mudd and Mr.
John Jobst, St. Louis District Corps of Engineers).

-545-

Operating houses on top of dam piers

-546-j

-~ -~-w

Li

Figure 5 - Front Viev

* ' A ~

:2

Figure 6 First Block

-548-

8

S
a
a

a
a
a

A

a S.

S.

S..

Figure 7 - Second Block

-549...

Figure 8 -Complete Model After Rotation

-550-

Figure 9 -Window Plot

-551-

Lock Monolith Near The Gate

-552-

..- I~ luJ1

Figure 10 -Front View

-553-

Figure 11 -First Block

-554-

Figure 12 - Complete Model After Rotation

-555,-

__ __ __ __ __I

Figur 13 -Windo P0 o

-556

Poor-Man's Hidden Line Algorithm

The "poor-man's" hidden line algorithm was used in the first
example (Figure 5-9) to dash the hidden lines. Note that this
worked well when plotting single pieces of geometry, but is not

adequate for plotting the entire model. The second example (Figure
10-13) used all solid lines. This too is adequate only for plotting
individual pieces of geometry. The conclusion is that full hidden
line capability is sometimes required, but due to cost considerations,
the poor-man's algorithm will suffice for editing purposes.

Generating Loads

The following general types of loads can be input:

a. Water
b. Unit strip
c. Weight
d. Line
e. Point
f. Planar piece

Loads are stored as geometries whose volumes represent forces.
With a direction specified (-X, +X, -Z, +Z, etc.) the force is completely
defined. A line load is stored as a surface whose area represents the
magnitude of the force.

Plotting Loads

Two modes of displaying 3-D loads are required:

a. Display a designated cross-section of the geometry and loads.

b. Display in 3-D the volume representing the load.

Practical Example of Loads

Figure 14-18 illustrate a lock with its corresponding loads applied.
The 2-D cross-section mode of display is used here.

-557-

Figure 14 - Original Geometry

Figure 15 - Cross-Section of Geometry

-558-

Figure 16 - Apply Horizontal Water Loads

Figure 17 - Apply Horizontal Soil Loads using STRIP
Command

-559-

Figure 18 -Apply Vertical Water and uplift
Loads

-560-

Analysis

From the general geometry module volumes, weights, and centers
of gravity are computed. From the general load module forces and
moments in the XY, and Z directions are computed. This information
can be applied to the base of the structure to determine its stability.

Acknowledgements

Special thanks go to Dr. N. Radhakrishnan, Special Technical
Assistant, ADPC, WES, for his advice and support in this project.

-561-

Coherence Concepts in Computer Synthesized

Real-Time Displays

John Staudhammer*

U.S. Army Research Office

*(On Leave from North Carolina State University)

A computer display device and supporting software is described
for the display of images of three dimensional objects directly from a
minicomputer to studio quality television. The system is capable of dis-
playing complicated moving objects. Each frame of a television picture
is generated using a compact image run-length code so that each frame
may be expanded to a normal television signal in 33 milliseconds. Seq-
uences of these images are used to generate real-time cartoons without
the use of photography.

The success of this compaction scheme depends on the existence
of coherence in the synthesized image. Normal television scenery contains
five details in the background to make this scheme successful. However,
synthetic scenes, such as are used in computer aided design of object
assemblies, generally are preferred not to have busy backgrounds. In these
cases the encoding scheme can be used with great success. The particular
hardware described here is designed to operate on the PDP-11 Unibus using
a normal DMA controller which limits the usable data rate to 800,000 bytes
per second. Thus, each TV frame must be described with about 26,000 bytes
of data.

Objects having several hundred facets, with or without smooth
shading, and objects having curbed surfaces, such as space filling atomic
models, can be successfully displayed. All these objects show coherence
such that from a visible image point a simple prediction can be made of
succeeding visible points. Special digital hardware operating at television
frequencies is used to generate groups of display points.

-562-

COHERENCE CONCEPTS IN COMPUTER SYNTHESIZED REAL-TIM DISPLAYS

JOHN STAUDHAZ4MER

U.S. Army Research Office
Research Triangle Park, North Carolina

(On leave from North Carolina State University)

ABSTRACT

Details are presented of a system using special hardware for displaying
views of three-dimensional objects as a succession of color television
images of studio quality in real-time. This cartoon film creation capability
operates from a conventional minicomputer and uses a special video generator.
The generator receives control information from the computer, at normal
computer speedsi, and from this generates real-time video signals. Visibility
and shading are pre-calculated by the computer, but are played back in
real-time and may' be recorded as a standard video tape. Objects having
hundreds of planat polygonal facets and smooth surfaced objects having
several hundred curved surfaces may be displayed as an animated cartoon.

INTRODUCTION

Three-dimensional objects, such as architectural assemblies, cartographic
surfaces and sculpted hulls are usually described by an ordered set of
points for display by computer graphic devices. The simplest display pro-
cessors will draw a straight line between successive data points thus
producing a lofted or ruled surface representation or by merely drawing
the edges of the planar polygonal surfaces that delimit the object. Some-
times a smcothing process is applied to produce many plotting points which
lie on some interpolating curve, often a spline function, controlled by the
surface data points. In this latter case too the plotted points are still
connected by straight lines. Each line in the image can be considered an
edge where two surface elements meet. Until there is a very large number
of such edges in a small area of the image the surface will have breaks
and will not appear smooth.

For visualization of the surface mechanical plotters and direct-view
cathode ray devices are the devices used predominatly. An object repre-
sented by such line drawings is termed a "wire fram~e" display. For inter-
active graphics usage hardware can be used to rotate, translate and scale

This work was supported by Grant MCS75-06599 from the National Science
Foundation, Division of Computer Systems Dhesign.

-563-

such wire frame displays under the immediate control of the operator.
Objects having several thousand edges may be so manipulated by well-
established hardware manufactured by such vendors as Adage, Vector General,
and Evans and Sutherland. Figs. 2 and 9 show such wire frame pictures.
Note that a sense of mass is missing from these objects: their images
appear as chimerical phantasmagoria.

A more ready visualization of the objects is achieved by the use of
a half-tone rendering of the visible parts. Much effort has been expended
by various groups of workers over the last ten years to achieve ever better
looking imagery in computer produced photography. For interactive graphics,
for example in the design of buildings and vehicles, photographic imaging is
typically too costly and too slow. Unless images are produced relatively
rapidly, typically in a fraction of a second, the thought process in the
design activity is disturbed to such a degree as to interfere with creativity.
Photography is, however, the prefered medium of documentation of the
(static) results.

By far the most cost-effective process for visualization of complicated
three-dimensional constructs is through the use of color television. Tele-
vision may be used to present a large number of views of an object being
designed to an observer. While the image resolution of an individual view
may be limited, the collection of views, the cartoon film, can present much
more information, so that a user may learn much about the designed object.
For example relative motion of the various parts of the object during rotation
and translation will give vivid clues to shape, size and depth.

The use of standard or near-standard television allows the computer graphics
user to benefit from the develipment efforts in the TV Industry, which pro-
duced economic color display devices of acceptable resolution. The broadcast
TV standard image consists of 525 lines, 485 of which are visible. A new
set of such lines is painted once every 1/30 second. Each line is made up
of about 52 us of visible sc-an. (from left to right on the normal TV display)
and 12 us of blanked retract: (from right edge to left edge.) Hence the
vertical image sampling is 485 lines. Each line can be thought of as
being made up of a series of colored dots, the picture elements, or pixels.
Since the normal display has an aspect ratio of 3:4 (vertical to horizontal
size) one would require about 648 pixels to have a TV image equi-distantly

'Sampled in both the horizontal and vertical directions. For such an image
the inter-pixel timing would be about 80 nanoseconds.

The usual practice is to have a buffer memory which is continually read
with a video rate counter. The buffer memory is an exact image (in digital
form) of the display screen contents. Usually one byte of grey level (256
levels) is allowed for black/white displays. If all three channels of a
color display were encoded with eight bits each there is a requirement for
24 bits for each pixel. This scheme would allow over 16 million different

colors. Seldom is such wide choice required, except in special discrimi-
nation studies. Even natural scenes contain far less color, at least in
major sections: skies are mostly blue (or brown, depending on geography),

-5 64-

lawns are green (or brown), buildings have near-uniform color, etc. Conse-
quently far fever bits are required to describe a scene and a color look-
up table (a "pallette") is used to read the true color represented by the
stored information. In essence, the display image becomes a large "paint
by numbers" creation, with the numbers possibly having various meanings in
different parts of the image. Normally a one-byte descriptor is used in
the buffer memory with a "mode" indication as to which of several pallettes
are to be used.

Some commercial display devices operate with 480 lines and 640 pixels/
line, close to the above specifications. A buffer memory containing 512
lines x 640 pixels is easily constructed from five 64 K memories. Using
today's technology buffer memories can be constructed with 5 memory chips/
bit in the buffer memory. Display lines 481 through 511 can be used for
control storage or the display could be scrolled. Other display systems
don't use the full horizontal scan and produce a 512 line by 512 pixel
image or, using the full horizontal scan, use a 3:4 pixel spacing on a 512
x 512 grid. Most display devices fill the display buffer from a standard
computer and therefore take a rather long time to change an image. At a
one Megabyte I/O transfer rate from the computer, the required time of one
quarter seconds is about ten times the frame repetition rate of normal
television. Since most minicomputers have lower I/O rates and require
additional protocol time to complete the I/0 transfers, buffer fill times
in excess of one second are not uncommon for systems using normal computer
I/O channels for image subsystem communications. Such images are clearly
not suitable to dynamic cartooning.

Even if a multiported memory is used, where fill time for the buffer
can occur at CPU speeds, the required 100 ns inter-pixed time for a 512 x
512 image requires a very fast computer and extensive parallel operations
in that memory. Additionally, digital storage of sequences of images
requires a vast capacity. For a one-minute cartoon sequence of 512 x 512
images with a one-byte color pallette encoding there is needed a storage
capacity about 450 million bytes.

These formidable requirements clearly require compromises in design
and capabilities. Basically the computer output rate is about an order of
magnitude less than the display data rate required by a television display.
Additionally the data storage capability of minicomputers in main memory
is but a fraction of a single image. A digital disk memory subsystem has
much more capacity, but the data transfer rate is not high enough to sustain
a pixel by pixel video image description. While it is true that very large
computer systems do have adequate I/0 rates and storage capacities, economic
designs for minicompters have to achieve significant reductions in both
data rates and in the amount of required data. The scheme described here
does both.

-565-

RUN-LENGTH CODING

For use in design of shapes and in data representation, spatial rela-
tions between elements of a scene must be depicted. Usually the elements
are relatively simple, and they appear on simple backgrounds. The illu-
strations in this paper are such examples. As an example the image pairs
in Figs. 8 and 9 are of the same design object (a "space ship"). It is
evident that the background is simple (it is a uniform "black") and that
any one scan line, a horizontal line through the image, contains but a few
changes in color. Since the object is made up of planar polygons, each
visible polygon part will have the same color throughout; particularly the
visible segment of such a polygon on a given scan line will be a constant
color. Hence each scan line can be encoded by a simple sequence of (color,
count) combinations. We refer to such an encoding scheme as run-length
encoding.

The color that may be represented in this system is a combination of
32 intensity levels of Red, Green and Blue. This allows some 32,000 dif-
ferent colors in the display device and requires 15 bits per color. Since
any one image may be made up of only a much smaller number of colors, we
may consider a "paint by number" scheme involving encoded color values.
If we restrict the number of colors to 256, the colors themselves can be
stored in a "palette" and referred to by a color-number (of 8 bits). Note
that the color gradations themselves are limited by the palette depth and
could conveniently contain 8 or more bits per primary color. Additional
flexibility may be obtained by using several palettes or an offset in a
larger palette, selected dynamically during image generation.

Similarly most images will be made up of some long bars of constant
color (such as backgrounds) and many short constant-color segments. The
count words will be mostly small integers requiring but a few bits; however,
design simplicity usually dictates a pre-set number of bits for the count
even if often the leading bits are zeros. An 8 bit count is a convenient
compromise.

Hence the run-length coded image will basically be a collection (count,
color) two-byte pairs of words. Provisions are also made for special com-
mands such as line start, line fill, field start, palette select and mode
select (as when one wants to display single dots only or to rewrite palette
locations.) These command words can be conveniently triggered by a ""..run-
length" command of zero followed by a one-byte instruction.

The generation of the image then becomes an interpretation of this
data structure. Since the pixel rate for a 512 x 512 image is about 100 ns
per element (it is about 85 ne for a 640 pixel line displayed at "normal"
TV format) the image generator must be a digital device running at about
10 MHZ rate. Using Schottky TTL technology this is achievable.

The display generator should contain a buffer which holds the display
commands. Tf this generator is to produce moving images, one needs to

-566-

update the buffer every 1/30 second for normal, broadcoast-compatible TV.
The size of the image buffer is therefore limited to what can be transferred
to it in 33 ins. For one of these generators to be operating on a standard
Unibus, the transfer rate, using a standard DR-11B DMA controller, is 2.5
microseconds per 16 bit word. Thus the maximum buffer size needed for
images updated every 33 ms is 13,200 words (i.e. 26.4 K bytes). If a
double-buffering technique is used where the image generation using one
buffer is overlapped with the update of the other buffer, large display
lists may be handled. Normally, however, if images are updated less than
15 times a second, annoying "Jerkiness" results in the perceived (non-
flickering) image sequence.

SOME HARDWARE DETAILS

A single buffer system is shown in Fig. 7. This unit measures 8x8 x
17 inches and is driven from a standard PDPll-45 Unibus through a DR-11B
DMA controller. This device is an improved version of an earlier computer
controlled generator Cl) which was used to produce the image shown in Fig 8.
Both the older and the newer generators produce studio quality TV imagery.
The newer version was custom built by this author and his associates and
is in operation at Ohio State University. The images in Figs. 2-6 and Fig.
10 were generated by this device, each image in 33 ins, and displayed on a
normal color TV receiver. Sequences of such images can be recorded directly
on a TV recorder thereby creating a videotape of a color-TV program without
the use of photography. Several tapes made by this method are listed in
the references, in Section B.

The video generator consists basically of two first-in first-out (FIFO)
stacks. One, consisting of 16 K 16 bit words is the buffer referred to
above. It can be filled at the Unibus transfer rate through an interface
to the DR-11B in the computer system. This first FIFO can simultaneously
be emptied into a second FIFO of about 2 K bytes on demand from the second
FIFO, which has a cycle time equal to the TV image pixel rate. This fast
FIFO is used to buffer busy segments of the image, which may be displayed
with each point possibly requiring a separate instruction. Since the large
buffer may be filling with the next image list when a given image command
is required by the TV generator, the function of the fast buffer, the
"Detail Buffer (DB)" is to load level between the image output rate and
the "Image Buffer (IB)" fill rate (determined by the computer output rate).
A controller manages these two buffers and also issues requests to the com-
puter to put data on the DMA output lines.

Within the computer system sequences of output images ("frames") are
kept on a large fast disk, a 44 Mbyte RJP04 disk drive. During image gen-
eration, the controller of the TV generator seizes the tUnibus, effectively
usurping all the system resources for the image generation.

Besides the two FIFOs the TV generator contains table look-up hard-
ware for the palette and a set of D/A converters for generating Red-Green-
Blue primaries which are then displaved on a RGB monitor and may be further

-567-

used to derive baseband video or modulated video (channel 6) for CTV dis-
tribution. The baseband video may be recorded on a normal commercial TV
recorder, thereby producing a TV film. Examples of imagery produced by
this system are Figs. 2-6 and Fig. 10.

SOME SOFTWARE DETAILS

Much software was generated for this system by the Computer Graphics
Research Group at Ohio State, Dr. C. Cauri, Director for making the device
conveniently usable in interactive cartoon generation. This work is
described in (3, 5-7).

In composing a cartoon sequence, the operator constructs a starting
frame and specifies motion of parts of that frame (or specifies an ending
frame). Between key frames all intervening frames are calculated. The
composition of each key frame and of motion of the key frames is done inter-
active by using a wire-frame display of objects (see Figs. 2 and 9). The
operator sits at a console containing two display screens, as shown in Fig.
1. On the right the wire frame display appears, on the left a shaded color
image is shown (examples are Figs. 3 and 4). The shaded image is calculated
in background mode and displayed with a periodic update. The time between
these updates depends on the image complexity and the computing power avail-
able to service the displays. For an image complexity represented by Fig. 3,
the visibility of surface elements, their shading and the conversion of the
visible scene to run-length encoded form can be accomplished in under one
second (Ref. T3). Construction of a key frame proceeds from retrieving
primitives from a disk file (i.e. "cubes"), molding them interactively
(i.e. moving corners under cursor control), assembling a collage of such
objects and assigning certain attributes (i.e. color for faces, subassemblies,
etc.). Direct view of the object is provided by the vector display, a Vector
General 3D display. Each object is made up of a collection of opague poly-
gonal facets. Each vertex point is described by a triplet of (x, y, z) co-
ordinates, each value with a full 16 bit word. Hence a rather large dynamic
range of scaling is available before data accuracy problems appear as gran-
ularity of the produced image. This system is therefore a true three-
dimensional "cartooning" system. Indeed objects can be made up of inter-
secting surfaces, surfaces with discontinuous edges (i.e. cutouts, such as
windows in a wall) and objects can be made to traverse each other.

Dynamic effects on the key frames, such as zoom, pan, motion and
rotation, are handled by a software package which allows the operator to
specify various effects which are simultaneously applied to the key frame
to produce subsequent frames, and thus the illusion of motion. Calcula-
tion of the required run-length commands is a software function and
normally requires off-line calculation. The run-length commands for a
display sequence are stored on a disk; at the end of the calculations for
all frames in the dynamic sequence, the TV generator hardware described
above is turned on. This hardware then "dumps" the disk content to the
scan display.

-568-

Editing of sequences can be done rapidly. Since software is used to
control virtually all facets of image generation, the rebolution of calcu-
lations need niot be identical to the attainable display resolution. Rather
one could calculate a cruder image (say on a 256 x 256 raster spacing) to
check on image dynamics, coloring, sequencing, etc. Only when a satisfac-
tory design has been achieved, would one need to generate all display
points for a pretty image.

Similarly, if a photographic quality image is desired, assuming the
availability of a photographic display device, the same data structure
can be used to calculate a higher resolution image, and produce the
required commands for photo production. The advantage of the video dis-
play mode is that it can be used for interactive creation of sequences,
which are impossible with photography due to the long turn-around time
required by photographic processing. We note in passing that the Polaroid
instant movies do not have the spatial resolution, the signal/noise ratio,
the color fidelity and reproducibility of the studio quality TV imagery
possible in this system.

SOME APPLICATIONS

A system comprising the hardware and software items outlined above
is described in (3). The system has been used to produce a number of
video tapes running as much as an hour. A 44 Mbyte disk has enough capac-
ity to hold about one minute's worth of run-length commands; sequences
of such short animations are edited as normal television tapes to yield a
full show.

The subject matter can be almost anything. Tapes have been produced
to describe the system (Tl), to explain the creation of animation sequences
MT), to illustrate geographic surfaces and population trends (T3), to
produce teaching aids for deaf children and several other subjects.
Several single frames from (T3) are shown in Figs. 1-5.

Since the system is capable of creating images of objects containing
several hundred thousand edges, images of curved objects can be produced
without noticeable faceting. Similarly surface texture can be approximated
by many small facets as is shown in Fig. 6.

EXTENS IONS

Three dimensional moving objects form the basis of the dynamic
imagery produced. Part of the software process is the calculation of
apparent color from a knowledge of the true color of a surface and the
orientation of that surface relative to the observer. Consider a cube
which has faces colored the same viewed from a direction along one of the
body diagonals. The outline of the visible body is a hexagon and if all
visible surfaces were colored their true color, a hexagonal flat surface
would appear on the display screen. In order for the edges between faces

-569-

to be perceived, there must be a slight color change at the edges. This
is accomplished by modifying the "true" color, i.e. the color one would
see when looking normally at the surface. The modification is a function
of the angle formed by surface normal with the direction of the observer.
Thus for each planar polygonal surface a separate modification function
must be calculated. However, only one such calculation need be done for
each surface, no matter how many visible points it possesses; also the
function used is some power of the cosine of this angle, and therefore
relatively easy to calculate.

More sophisticated coloring algorithms may consider distance to the
observer of a visible point in assigning a value to the apparent color.
Such calculations become very time consuming, but can simulate more inter-
esting visual effects, such as fog and clouds.

One may also use surface coloring as an indicator of an other dimen-
sion. For example a complex function of a complex variable has really
four dimensions: the real and imaginary parts of both the independent
and the dependent variables. Alternately the dependent function may be
represented as a magnitude and a phase angle, consistent with such usage
in the automatic controls literature. On the simplest level the indepen-
dent variable is chosen as the x-y plane, the magnitude of the dependent
variable as the z-direction and the phase angle of the dependent variable
as a color scale. The relations are:

s -x + jy

F(s) -F(x + jy) = P(x, y) + j Q(x, y) =M e j e = M /0

0 -arc tan (Q/P) -7<e <

The variables (x, y, M) are determined as a triplet of values and dis-
played as an (x, y, z) 3-D value. The surface is generated on a grid of
(x, y) values in a limited range of (x, y):

XLOW <x <XHI xi = xi 1 + Ax

YLOW <y fYHI Yi .Yi..+ AY

and the corresponding Mu e values are determined. The surface is then
made up of triangular surface elements whose vertices are neighboring
points. The surface is thus a set of triangular tiles, whose color how-
ever is assigned a value representing the average of the three angles at
the three vertices.

The color scale itself must be chosen carefully. We note that the
angle 0 may be a full circle value; therefore, the color representation
must be a scale which unambiguously runs through a set of values and closes
back on itself. Such a circular scale cannot be achieved with a binary

-570-

representation, such as a gray scale. However, the three primary colors
Red-Green-Blue may be so used. We also note that the phase angle scale
should have a large number of gradations (i.e. should be of five gran-
ularity) so that a good representation can be achieved. Fig. 11 shows
such a surface calculated on a 41 x 51 (x, y) grid; moreover, the magni-
tude value, shown vertically on the figure, is the log magnitude M':

M' -ln (M) -1/2 ln (P 2 + Q 2)

(We note that calculation of the logarithm or the square root requires
basically the same amount of time). The color scale is made up of 96
elements:

00 - (Red - 0, Green - 32, Blue -0)

10 Rd 3,Gen 0 le=0

1l20~ = (Red -0, Green =0, Blue = 32)

This arrangement allows a fineness of 360/96 4" per color value; in any
given range for each angle increment one of the primary colors is
decreased linearly while the other is increased. For example in the
range -1200 to 00 for each 40 increment in the angle the Blue value is
decreased by one and the Green value is increased by one. This results in
a scale of binary colors; one might replace any one of these with a
tertiary color, such as White, to identify a given phase angle without
additional compiltations.

Similar schemes can be used to introduce one higher dimension by
using time as another independent representation. Also one can use two
colors as representations of two independent variables; however, there are
not very many colors that can be distinguished as absolute values by eye,
hence only a crude representation is possible. By using a 3-D grid, 2
different color scales and time, each as orthogonal scales, one can repre-
sent six dimensional functions in this manner (9). It must be pointed
out that sequences are complex variable surfaces, in essence a five dimen-
sional function, is about the limit of reasonable representation in this
scheme.

Clearly great simplifications in the above display processes are
possible if one were to work only with two-dimensional patterns. A
system for pattern design ("textile patterns") was demonstrated using the
display generation schemes described in this paper which allows interactive
creation of such patterns.

SMOOTH SURFACES

The representation of a 3-D object by a limited number of planar
polygons can lead to a faceted representation of curved surfaces. For
example a smooth sphere will have the appearance of a golf ball; see also

-571.-

Figure 8. One gets away from this faceting with planar polygonal repre-
sentations only if very small color changes occur between adjacent polygons.
Usually this is achieved by using a very large number of polygons in the
object representation; hundreds of thousands of edges may be used if one
wants a high quality image. Adding texture to the surface helps also;
but the process of texturing may introduce many edges in the imagery.

One may handle a limited number of polygons in the basic object
description and use a finer representation only for the visible parts of
the object. This scheme reduces the visibility calculations required
but will leave boundaries (i.e. silhouettes) as a set of relatively crude
straight lines. Again special processing may be used to improve the
silhouettes' fidelity.

The advantage in handling planar polygons for the object representa-
tion is that all the algorithms are well known, many have been reduced to
special hardware, and many of the processes have been structured for
efficiency of display.

Another method is to represent the objects with better approximation
primitives. For example the spaceship "engine" in Figs. 7 and 8 could be
made up of a cylinder having curved sides rather than a set of planar
rectangles. In general the polygonal surfaces are made up of a collection
of rectangles, that is, areas where the position of each boundary point
of the region is prescribed by the straight edges. (Unless special care
is exercised, these regions are not planar; however, one can always
approximate each rectangular region by two triangles which are guaranteed
to be planar.) This representation insures surface continuity on the
object, but the abrupt slope changes across the polygon edges lead to a
coloring change. Since the eye is a very good image differentiator,
these edges become enhanced and lead to the apparent faceting in the
display.

To preserve continuity of the slope across neighboring surface areas
("Patches") one needs to prescribe not only the function value, but also
the slope of the patch at the boundary. For rectangular areas two local
orthogonal parametric coordinates may be used. Usually these coordinates
are normalized to the range 0 to 1. Then the surface description will
be two orthogonal families of functions. The value and slope of every
member function are prescribed at two points. The simplest of such func-
tion is a cubic, and the representation becomes a bicubic description of
surface patches.

In generating visible points from such surface descriptions, visi-
bility calculations become more involved, the surface normal must be
calculated at each visible point separately, but silhouettes are no
longer approximated by straight lines. The number of surface primitives
(i.e. patches) is far less than with polygonal approximations giving com-
parable fidelity. A study of some simple objects (a bottle) rendered by
facets (over 300) and bicubic patches indicated a reduction of an order

-572-

of magnitude (8). The surface normal calculation requires the lion's
share of the total computing; however, some faster approximations may be
developed in the near future to speed this task.

This process can also handle translucent objects, such as artificial
images of transparent glassware. The bicubic object description/image
generation scheme is general in that arbitrary objects may be represented.
Specialized hardware must be designed to make this scheme operate in near--
real time (8).

Another extension of this display generation scheme is the production
of specialized object images in real time. Prism-maps, such as the one
shown in Fig. 5, can be produced with special hardware. Here advantage
is taken of the image structure coherence in that all surfaces are normal
or parallel to another. Indeed only one angle need to be calculated
for the entire set of prism tops, and this angle is modified with a
simple calculation to determine orientation and a-priori visibility of
all surfaces. Only obscuring of some surfaces must be calculated;
this is a much simpler task than the random surface orientations in Figs.
3, 4, 8, 10. Real time display of images of the complexity shown in
Fig. 5 may be achieved with modest hardware.

Specialized curved surfaces may also be easy to represent with
modest equipment. For example molecular models require spherical surfaces.
Fortunately the spherical surface is the Aimplest of doubly curved sur-
faces to handle (without perspectives). Every section through the sur-
face has a circular trace, the shading of which may be kept in a fast
read-only memory. All that is required is to scale the ROM function to
the proper size in the display, and to assign the basic color for each
section of each sphere. Visibility calculations basically reduce to
finding the starting address in the ROM where the shading function will
begin to be read from, the address increments to take in the ROM to
achieve proper scaling and the number of points to read. Together with
coloring information all the required data can be packed into about four
bytes and decoded by special hardware to achieve a point-by-point dif-
ferently colored spherical molecular display of fairly complicated mole-
cules (10). Two very simple molecule models are shown in Figs. 11 and 12.
The calculation of visibility is far more difficult, but special algorithms
may eventually make even this type of display possible to operate in real
time with only modest hardware.

SUMMARY

A computer display device and supporting software was described for
the display of images of three-dimensional objects directly from a mini-
computer to studio quality television. The system is capable of imaging
complicated moving objects. Each frame of the television picture is gene-
rated using a compact image run-length code so that each frame may be
expanded to a normal television signal in 33 milliseconds. Sequences of
these images are used to generate real-time cartoons without the use of
photography.

_573-

The success of this compaction scheme depends on the existence
of coherence in the synthesized image. Normal television scenery contains
much fine detail in the background to make this scheme successful. How-
ever, synthetic scenes, such as used in computer aided design of object
assemblies, generally are preferred without such busy backgrounds. In
these cases the encoding scheme presented here can be, and has been,
used with great success. The particular hardware described here is
designed to operate on the PDP-11 Unibus using a normal DMA controller
which limits the usable data rate to 800,000 bytes per second. Thus each
TV frame must be described with about 26,000 bytes of data.

Objects having several hundred facets, with or without smooth
shading, and objects having curved surfaces, such as space-filling atomic
models can be displayed. All these objects show image coherence such
that from a visible image point a simple prediction can be made of the
succeeding visible points. Special digital hardware operating at tele-
vision display frequencies is u.ed to generate groups of display points.

REFERENCES

A. Literature

(1) J Staudhammer, "Computer Generation of Real-Time Colored Three-
Dimensional Objects", Proc. 7th Hawaii Conf. on Inf. Sci., January 1974

(2) D.J. Ogden and J. Staudhammer, "Computer Graphics for 3-D Object
Images", Computers and Graphics, Vol. 1, No. 1, June 1975

(3) J. Staudhammer, "Software for Real-Time Image Generation", Proc.
COMPSAC-77, November 1977

(4) J.F. Eastman, "An Efficient Scan Conversion and Hidden Surface
Removal Algorithm", Computers and Graphics, Vol. 1, No. 2/3, December 1975

(5) A.J. Myers, "A Digital Video Information Storage and Retrieval
System", Computer Graphics, Vol. 10, No. 3, Summer 1976

(6) R.J. Hackathorn, "ANIMA-II: A 3-D Color Animation System", Computer
Graphics, Vol. 11, No. 2, Summer 1977

(7) C. Csuri, "3-D Computer Animation", in Advances in Computers, Academic
Press, 1977

(8) J.T. Whitted, "A Scan Line Algorithm for Computer Display of Curved
Surfaces", Computer Grpahics, Vol. 13, No. 3; also: Ph.D. Dissertation,
North Carolina State University, Raleigh, NC, August 1978

(9) J. Staudhammer, "Display of Multidimensional Objects (four and Higher
Dimensions)", Computer Graphics, Vol. 9, No. 2, Summer 1975

-574-

J1

I

(10) J. Staudhammer, "On Display of Space Filling Atomic Models in

Real-Time", Computer Graphics, Vol. 13, No. 3, August 1978

B. Video Tapes

(Tl) C. Csuri, "Demonstration of ANIMA", Computer Graphics Research
Group, Ohio State University, Columbus, OH, Summer 1976

(T2) C. Csuri et al, "ANIMA-II", CGRG,OSU, Summer 1977

(T3) H. Moellering, "A Demonstration of the Real-Time Display of
Three-Dimensional Cartographic Objects", Department of Geography,
Ohio State University, Columbus, OH, Summer 1978

C. Picture Credits

Figures 1 - 5 H. Moellering, Ref. (T3)
Figure 6 C. Csuri
Figures 7,10 C. Csuri, Ref. (Tl)
Figure 8,9 NCSU Signal Processing Laboratory
Figure 11 Ref. (9)
Figures 12,13 Ref. (10)

Note: Figures 1 - 5, 7, 10 are photographs of stop-motion single frames
from re-recorded videotapes.

-575-

ld

ir

Figure 3

Fig. 1 View of Image Generation

Fig. 2 Wire Frame image Detail

Fig. 3 Scan Image from Fig. I

Fig. 4 Rotated Object from Fig. 3

Fi-ure 4

-576-

Figure 5

Fig. 5 Population Density Map

Fig. 6 Textured Surface

Fig. 7 Video Generator

Fi-ure 6

-577-

FIgure 8

Figure 9

Fig. 8 Star Ship- Scan Image

Fig. 9 Star Ship - Wire Frame Image

Fig. 10 Detail of 3-D Object Image

Fisure

-578-

Fi~gure 1

Fig. 11 Pole-Zero Function (Phase Angle in Color)

Fig. 12 Atomic Model - Spinel Molecule

Fig. 13 Atomic Radii Scaled from Fig. 12

-579-

TESTING THROUGH FORMALIZED METHODS
of REQUIREMENTS & PROCEDURES

Norman J. Taupeka

CENTACS

TESTING THROUGH FORMALIZED METHODS
OF REQUIREMENTS & PROCEDURES

SESSION CHAIRPERSON: Norman J. Taupeka

Chief, Systemc Engineering Division
CENTACS

SESSION SUMMARY

This session examined the testing issue which is embodied through-
out the entire life cycle process. Requirements analysis is the key for
clearly stating the functional and operational aspects of a tactical data
system. Structured techniques to address the functionality are described
in the first paper, "A Structure for Developing Verifiable and Validatible
Software Systems" by Jon C. Jervert, CENTACS. The elements of the materiel
developer's needs (Project Manager or system developer) to provide for veri-
fication and validation, and hence reduction of risk and cost overrun and
schedule extension were described in the second paper, "Role of a V&V
Contractor in Development of Tactical Software Systems", by Lieutenant
Colonel Charles R. Lindsey, Product Assurance and Test Directorate, CORADCOM.
The specialized role of the independent tester in conjunction with the
materiel developer to assess system performance and stress capabilities were
addressed as a cohesive team effort to produce acceptable and fieldable
tractical data systems. The third paper was "Software Testing at the System
Level" by J. Gary Nelson, U.S. Army Test and Evaluation Command.

-580-

A Structure for Developing Verifiable
and

Validatable Software Systems

Jon C. Jervert

CENTACS

The purpose of this paper was to provide insight into the
management, definition, specification and development of verifiable
software systems.

Proceeding from a characterization of the management issues
involved in software development a definition of verification and valid-
ation will be given. The role verification and validation plays in the
software system life cycle was discussed. A definition for a verifiable
software system structure was given and the software end-product was
defined.

The relation between software life cycle milestones, guidelines
and documentation for developing software specifications for systems
within different phases of the DOD life cycle that will tend to produce
a verifiable software end-product is given. Some contractual consider-
ations concluded this paper.

-581 -

1. Introduction:

The purpose of this paper is to provide insight into the management,
definition, specification and development of verifiable software systems.
Proceeding from a characterization of the management issues involved in
software development the definition of verification and validation will
be described. The role verification and validation plays in the life
cycle will be given. A definition for a verifiable software system
structure will be developed and the software end product will be defined.

The relation between life cycle milestones, specifications and
documentation and guidelines for developing software specifications for
systems within the different phases of the DOD life cycle are given that
will tend to produce a verifiable system. Contractual considerations
will conclude this paper.

2. Relation Between the System Life Cycle and the Software Life Cycle:

2.1 Hardware vs Software Life Cycle: Before Verification and Validation
can be discussed in relation to the structure and development of software
systems the character of the problem we are attempting to solve must be
defined in terms of the difference between hardware and software life cycle
issues. The most productive way to demonstrate the difference between
hardware and software is to characterize the shape of the resource utili-
zation curve across the life cycle. Figure 2-1 depicts graphically the
consumption of resources across the life cycle for a typical Army hardware
system. Note that peak resource utilization occurs well after Initial
Operational Capability (10C). In typical softwaLre life cycles which have
been characterized elsewhere (see Figure 2-2), the peak occurs substantially
prior to IOC. When software consumes a major portion of the system life-
cycle resources, it is necessary to get top management understanding and
approval of early peak resource utilization. If this is not done, and
the same IOC is attempted to be met, that IOC will be premature. This
results in a fictitious operational capability wherein the user is led
to believe that a real operational capability exists, when in fact it does
not. Unless specifically planned for software development while under
live operation will be traumatic.

In addition to the resource consumption function being different from
that of hardware, the software life cycle has a different set of natural
intrinsic milestones. Unless these are mapped properly into the total
system life cycle, and made clearly visible, then the software part of
the system can not be properly controlled.

-582-

I-

w I-

0-

zoz

U.l- - - -
- -

0J 0
w 0 -

<--; C',

oW Q

0 U-

0

-583-

Finally, every time software maintenance is performed the product
specification is changed. Thus, software maintenance requires a much
higher lever of management than its hardware counterpart.

These characteristics demonstrate that the mission of the Army
System Developer is not only to produce a quality system that performs
its function but also to provide for optimization of the system-, resource
consumption throughout a systems life cycle. One general tool that will
help us meet our mission is broadly termed verification and validation.

For the purposes of this paper verification will be defined to mean
the procedures and criteria necessary to insure consistant progress between
and within development phases of the Army Life Cycle (FIG 2-1) and is the
main subject of this paper. Validation will be defined as the test and
evaluation necessary to insure the performance of the systems function
from both the users and developers point of view.

2.2 Measuring Program Success: Having defined the problem, we now
consider how the project manager can achieve practicl solutions. Questions
to be answered are: That are the controls that shape the curves? How can
we predict their responses? And, how can we validate our predictions in
a changing environment? These questions have been approached by comparing
software vendors in a competitive environment (see Figure 2-3), and some
general conclusions have been drawn.

*Certain software developers have been consistently more
successful than others.

There is a common view that risk can be reduced by going slowly,
particularly if management is inexperienced. However, going
slowly may not minimize risk in the way defined above and, in
fact, can decrease return-on-investment (ROI) dramatically.

*The steep rate of resource utilization by developer Number 1
requires a knowledge of how to effectively use those resources --

in other words, management experience and in applying tools like
verification and validation.

*It is important to understand how and where software fits into
the life cycle of total systems and to what degree software life-
cycle management influences total system management.

-584-

-I

00 U

Z

Eu zz

U -I L

Euu

Euui
0

00

-585

179 0
in 1 L 0

n N

oA 0
#A LU 4n

LU >4
um ad LU

ma ~ LU L

LU0

x eLU
L0 %0L

UL
0

-586-

2.3 Software Life Cycle Milestones: Economic application of Verification
and Validation techniques and project success depend on life cycle planning
and precise system documentation.

Successful life-cycle planning must provide for an incremental
commitment of resources. Increment size can be determined by the time
frame and resources required to achieve a measurable milestone, and the
risk of not achieving that milestone. A set of milestones which have
been used successfully in the past by various software developers are
offered below. These milestones segment that software development cycle
into sequential phases. Each phase should be terminated with thorough
documentation of work completed, a critical review, a detailed plan for
the next phase, and an updated overall plan for the remainder of the
project. A go-no decision can then be made regarding commitment of
resources for the next phase. If a go decision is made, changes resulting
from review are formally incorporated into a continuation plan and the
next phase initiated. Figure 2-4 shows how these software milestones map
into the four DOD life cycle phases.

The following definitons of management milestones for controlling
software life cycles are offered.

1. Project Definition - The problem to be solved must be defined
in general terms. Basic user objectives and constraints must be agreed
upon along with an overall plan and gross estimate of resources required
for their satisfaction.

2. Functional Analysis and Specification - User functional require-
ments must be analyzed and detailed functional specifications developed
for the system.

3. Envirol-ment Analysis and Specification - Implementation and
development requirements, such as equipmentco-nfiguration, languages, and
support software to be used for both the development and operational environ-
ments, must be produced.

4. System Design - Detailed sytem design must be completed to the
module level. A detailed documentation set and a detailed development and
testing schedule must also be completed.

5. Program Development - All programs must be coded and integrated
into a working system. A regression test set must be completed and avail-
able for quality control of future modifications. A training package must
also be completed.

6. Operational Te sting - Initial users utilize the complete system
in a carefully maintained operational environment. Quality control pro-
cedures for supporting the maintenance environment are fully implemented.

-587-

Z cc
Li

z -j-

z C

LU W

U~ E C) i !
4z w

a . 0 >

z'U ><u

Z <0-
z9 0
0 w

>1 4z 0
0~ am I

IL 3E

0 z z
0 0 a
o 0

49 0

a. a wa

-58

0 3E 0

7. Deployment and Mdaintenance -The system is operationally deployed
and maintained for multiple live installations which may be geographically
separated. The training package is used for bringing up live installations.
The sytem is corrected, refined, and enhanced until obsolescence.

In the introduction, it was indicated that software is different
from hardware. It turns out that the set of hardware system life-cycle
milestones, activities, and events within the Army do not require much
change in terms of names and general achievement in order to be used
for software. What they do require are proper interpretation and a
different set of specific measurement criteria for their attainment. This
requirement for management milestones and standards peculiar to software
is very important to recognize.

Verification and Validation tools cannot be utilized economically
without application of good planning, strong milestone management and
adhearance to precise documentation.

2.4 Verification and Validation as a Yardstick: Verification and
Validation provides a set of tools that allow a program manager to judge
the quality of program progress during the life cycle. Figure 2.5 indicates
the major Verification and Validation milestones in relation to the major
development life cycle milestones. The verif icat'lon of systemrs requirements,
design requirements and program requirements and the validation of these
requirements are carried out by completing the general tasks of figure 2-6.
These tasks can be successfully carried out with or without the utilization
of automated tools. However significant economics of resource can be achieved
by the application of the general tools outlined in figure 2-7.

The effectiveness and cost of any Verification and Validation effort
is only as good as the planning that integrates it into a program and a
software sytem structure that allows for a documented software end product.
Without sufficient planning, early in the program, and documentation main-
tained throughout the program, the result could be minimal and the program
cost doubled. Verification and Validation will not replace good management
or good system engineering practices it only provides a tool to increase
efficiency and productivity.

3. Verifiable Software Systems:

Our purpose is to develop a concept for specifying complete software
systems in such a manner that the verification and validation tools out-
lined in section 2.4 can be applied to reduce life cycle costs, as well as
insure proper system function.

-589-

V)D
zU

w c
Oi-L Ia

AU

Lr) _LX_ _

=z - -- (

AL
0 w

'UU
'a'oazo L

- il 0z

-WM CL)za= .M cm C) =-L C/ =L cz-/

a = Lb CO
_ca coEm

ca ==dI ~

ca Cm m Am

-59o0g-

Un

~~Ej
.jLLJ- z -JWu

00

in -1 09>~j - -
U.U

LU~o z 0)0c

00

- (n 0 JZ 3

- 0 i 3: -41

Xd Pi 4i -D ex - ,(~
-)(l9~ =, < C z -JL

w 4 zW
n z 0 z c

z w

= 062 -uc. <C w(L D 2
Z ou()L .

-591 C)W* <i

w 0-zcr
(n -

wz -. a L
z C - oz 7-"

U) -JL j EL

< Oo0: 0 <<c w U
!to- - a ~ W _5D Pw 1 t

-U L-) z In ~a

Q w I.- E

z -L U ZI.
wd LA.)L

LA- U z L
w z x) w 4

=D-O 0LL. ~wx< V)C V
050

a-a
9 7 0 ; -z -

0 ~ ~ ~ ~ ~ M -jo - Zo

- I- '-3 a --
C) w --0 - L) -j u~ _j U /Ga w w L d L

-592-L

3.1 Verifiable Software Systems Structure: It is our inten to develop,
based on the definition of gigure 3-1, a structure to specify software
systems which are major components of a complete defense systems. Such
a software system must meet all of the complete system's operational
requirements and must be maintainable. To develop and maintain a software
system it is necessary to decompose it inot subsystems as shown in Figure 3-2.
There are two major parts of the software system, host and target. The
host software system provides the means to develop and maintain the target
software system which will operate in the field. Each system may be re-
sident on different machines.

3.2 Host Software: The subsystems within the host system shown in
Figure 3-2 are defined as follows:

Host System Software (A). It contains:

* Operating System

* System Utilities

* Programming Systems (dompilers, assemblers, programming,

and debugging aids, etc.)

* Library Facilities

Host Training Software (B). It is composed of software for training
which cannot be accomplished in the field. It includes software for
both maintenance and operation training.

Host Hardware Diagnostic Software (C). This subsystem consists of
the software needed for host hardware diagnostics and maintenance.
It does not include any software diagnostics, but can include firm-
ware diagnostics.

3.3 Target Software: The target software subsystems should all be
operational on the host system, with the exception of the hardware
diagnostics. The target software subsystems (Figure 3-2) are defined as
the following:

Executive Software (D). This is the fielded executive (operating
system) that provides a software operational environment.

A plication Software (E). This subsystem contains the software which
provides the functional capability of the operational target system
such as:

- intelligence

- fire control

- operations

- etc.

-593-

U

w U

W '
Au

0' 0

illiil

I-=
-54

"mm

0

-594-

LU uj LU LU'JUC

zL Lzgu zz-

z
0 ?P,0U

LU j

IALU

EuE 0"0

IU ZLU

I U LU

o CI
In In4

LUU

-595

There may be several application software subsystems within a
system (i.e., the 01, G2, G3, G4, etc.).

Field Training Software (F). This subsystem includes the software
to provide user training in the field, limited by what the target
system can accommxodate.

Hardware Diagnostic Software (G). This contains the field software
to diagnose target hardware Failures. Software tests sets are not
included here.

4. Definition of the Software End Product:,

A verifiable software system must include a set of well structured
elements which are completely documented in detail. Each subsystem
described in paragraph 3.2 is decomposed into a software end product, as
shown in Figure 4-i.

The software end product consists of three different elements.

* External Documentation Library

* Program Library

* Test Library

These elements are defined below.

4.1 External Documentation Library: This library is divided into two
document types, reference Figure 4-2.

- System Outline

- Operational Procedures Documents

- Software Maintenance Documents

The System Outline gives a total software overview, The main purpose
of the Operational Procedures Documents are to give an overview of each
subsystem's capabilities, general guidance for the user and provide the
basis for discussing problems between user arid maintainer. The Software
Maintenance Documents are the tools necessary for software technicians to
maintain each subsystem.

-596-

LU

UL

Xi
0.1

a um

z0

oz z
z OLU'

-597-

LU Z
u ui Z
4C:E 0 Uum
ix D P.-
LU U 4
1-- 0 F-

uj

LU
U tn Z

ezz 0 z
4c Lai <;= LU
Z:E :E

>0 LU =)
t: OUU

09 W)0 0 ad LU 0th

09
0z2

ui Lij LLI
Cie ZLU tn>-ce z ckeLU LU glo I-- 4AFL- go:)-A* LOX 0 0

z Ul I0
tn
04I--x 4 Z

tnLU LU
Z ad CL
0 D LU 0
p

Cie 0LUC Cie LU 4
0 z

4 ZLL. 4LL.
0

-598-

4.1.1 System Outline: The System Outline provides an overview of the
total software system. It contains a block diagram and descriptive
narrative for each software subsystem. A copy of the system outline
will be contained in the External Documentation Library for each soft-
ware subsystem.

4.1.2 Operational Procedures Documents: These documents consist of the
following manuals:

- Command and Staff User's Manual. This manual provides the
commander and his staff with a detailed description of how
to use the system to fulfill their mission.

- Operator's Manual. This manual provides detailed guidance
for operating the hardware (console etc.).

4.1.3 Software Maintenance Documents: There are three document types
within thi's set.

- Subsystem Outline. Includes a subsystem overview with block
diagrams and descriptive narratives.

- Interface Documentation, Describes and defines the Input/output
(1/0) formats, communication formats and data base formats. Refer
to Figure 4-3.

- Programi Description Documents. These documents describe (by
flow charts and narratives) programs/modules and their inter-
faces within the subsystem.

4.2 Program Library. The Program Library consists of two parts, reference
Figure 4-4:

- Coded Media, (sources code, object code)

- Listings, (containing the program statements and the internal
program documentation)

4.3 Test Library. The Test Library consists of three mac4or parts, reference
Figure 4-5:

- Test Data Set

- Test Program

- Test Documentation (procedures and results)

The test library will provide the means to validate the systems

function.

-599-

U

u ZJ
4) WZU Z

oo

I-6
u ~ E -- j .-

D L

3-I
Z DLLJICL

z

-600-

0 DD

LLi

ULU

0

-Ix

00c

0

-01-

'La Irn

'UU

1--

-62

5. Relation Between Life Cycle Milestones, Specifications, and
Docmentat ion:

5.1 General: The software and product model, defined in Section 3,
provides the structure necessary to develop a maintainable system that
meets its operational requirements. However, successful developmnent of
any software system depends on good management and clear defi~nition of
milestones related to the DOD Life Cycle. Two major functions must be
performed to insure successful systems development. First, the combat
and tbr:. material developer must jointly identify an operational or
tactical need. Second, the material developer must identify progress
toward the problem's solution and the method of measuring that progress.
Successful performance of these functions requires exposure of software
related elements as integral to the system throughout the life cycle and
not as separate issues.

5.2 Specifications: Three specifications are necessary for successful
software system development under the DOD Life Cycle. These specifications
are functionally defined in the following sections and consist of:

- The System Specification (Section 6)

- The Software Development Specification (Section 7)

- The Software Product Specification (Section 8)

Figure 5-1 identifies the sequence in which these documents must be
developed and the time they appear in the DOD development life cycle.

The System Specification should be prepared by the material developer
in cooperation with the combat developer. This specification establishes
the baseline functional requirements necessary to design, test and deploy
the system. Development and acceptance of this specification must be
accomplished during the Program Initiation phase of the life cycle, prior
to entry into the Demonstration and Validation Phase, and placed under
configuration management coi±zrols.

The System developmen'. Specification is developed during the
Demonstration and Validation i'hase of the Life Cycle. This specification
provides the allocation of func.tions between computer and non-computer
resources within the system. It also establishes the design necessary
to implement, test and maintain the software system. The System Development
Specification must be developed, accepted and placed under configuration
management controls prior to beginning the Full Scale Engineering Develop-
ment Phase of the Life Cycle.

-603-

U

c-

ul Jww

z
0 v

X JI

jfll

-604-

The Software Product Specification is prepared during the Full
Scale Engineering development Phase prior to starting low rate initial
production. This specification documents the software system imple-
mentation for production and maintenance. The software product specifi-
cation is accepted and placed under configuration managemaht controls prior
to production of any kind.

5.3 Specification Flow. These specifications flow one to the other.
Parts of each specification will become components of the succeeding
specification. The software product specification is the result of the
preceeding specifications and represents the system's software product
and should represent a maintainable software system that meets its
operational requirements and is verifiable.

5.4 Relation Between Software Libraries and Specifications. The softwafe
specifications defined here are structured upon the elements which comprise
the software end product. This structure is modular in the sense that
elements of the External Documentation, Program and Test Libraries are
integral parts of the specifications. As a result, the structure of
documentation and specifications become congruent. Also, as prescribed
in MIL-STD 490, the Development Specification (B-Level) can be discarded
once the Product Specification has been completed.

6. System Specification (Type-A)

6.1 General. Upon entering the Program Initiation Phase, one of the
first steps of system development is the preparation of a SYSTEM FUNCTIONAL
AND PERFORMANCE REQUIREMENTS document (see Figure 6-1). This document
should contain a description of the existing and proposed system as well
as a summary of improvements related to the proposed system. A list of
the new system impacts should be included. Based on this document, the
SYSTEM SPECIFICATION, which consist of five elements (see Figure 6-2),
will be developed. These elements are:

- SYSTEM SPECIFICATION - TOP LEVEL

- OPERATIONAL PROCEDURES

- DETAILED DESIGN AND CONSTRUCTION REQUIREMENTS

- LOGISTICAL REQUIREMENTS

- QUALITY ASSURANCE

-605-

LUU

u LU

0 c

V~ ULL

>- :! a Z Z

Eu4 -'Z0
I- L

LU U

LuZ

zd Z L.JLRJ

Oa.0.

-606-

LU 4

The SYSTEM SPECIFICATION - TOP LEVEL - is a general skeleton of
the overall specification of the system (in accordance with MIL-STD-490,
Appendix I) containing only the top level requirements. The detailed
requirements are contained in the last four documents listed above, and
must be properly referenced in the SYSTEM SPECIFICATION - TOP LEVEL. The
OPERATIONAL PROCEDURES document contains two parts as preliminary versions
of the

- CvM AND AND STAFF USER'S MANUAL

- OPERATOR'S MANUAL

The DETAILED DESIGN AND CONSTRUCTION REQUIREMENTS include detailed
requirements of system performance, design and construction. The LOGISTICAL
REQUIREMENTS contain initial considerations of logistic problems. The
QUALITY ASSURANCE document contains the anticipated quality control
requirements, including testing. The following paragraphs present general
guidance for the preparation of the SYSTEM SPECIFICATION.

6.2 System Specification - Top Level. The outline of this document is
identical to the outline given in Appendix I of MIL-STD-490, but the
detailed contents will be contained in reference documents described below.
Refer to Figure 6-3.

6.3 Operational Procedures. Description of these documents are given
in Section 9.

6.4 Detailed Design and Construction Requirements. This document, as
part of the Type-A specification, shall contain all requirements which
will influence the design and construction of the system to be developed.
Thus it shall provide a detailed description of these requirements as
called for in Section 5 of the SYSTM SPECIFICATION - TOP LEVEL. It shall
contain the following:

a. Performance, design and construction requirements (subdivided
into HW and SW if applicable).

b. Performance requirements related to manning and operating the
system, to the extent these requirements define or constrain the design
of the system.

c. Design constraints and standards necessary to assure compat-
ability of system-HW.

-607-

d. Definition of the technical as well as the man-machine inter-
faces within the system and to other systems.

e. Identification and use of Government furnished property (HW and
SW) to be designed into and delivered with the system, or to be used
with other system equipment as an entity and an integral part of the
system.

The outline of this document is shown in Figure 6-4.

6.5 Logistical Requirements. This document, as part of the Type-A
specification, shall contain all requirements related to maintaining and
logistically supporting the system. It will be the basis for all logistical
tasks during the life cycle of the system.

The content shall be in accordance to paragraph 3.5 of MIL-STD-490,
Appendix I. Additionally it shall specify the system documentation (HW
and SW) (reference paragraph 3.4 of MIL-STD-490, Appendix I). The outline
should be as shown in Figure 6-5.

6.6 Quality Assurance. This document, as part of the Type-A specification,
shall contain all specified requirements for formal tests/verifications of
system functional and performance characteristics, and operability.

The content of this specification shall be in accordance with Section
4 of]MIL-STD-490, Appendix I (subdivided in HW and SW if applicable). The
outline should be as shown in Figure 6-6.

7. Developing the Software Development Specification:

7.1 General. From the System Specification, Section 6, a Software
Development S4ecification must be produced. Figure 7-1 shows the document
structure for this specification. Three levels of documents exist within
this structure. These are the SYSTEM DEVELOPMENT SPECIFICATION, the SOFT-
WARE SYSTEM DEVELOPMENT SPECIFICATION, and the SOFTWARE SUBSYSTEM DEVELOP-
MENT SPECIFICATION. These levels are described below.

7.2 System Development Specification. The SYSTEM DEVELOPMENT SPECIFICATION
allocates functional and performance requirements to hardware and software.
A brief description of both hardware and software systems shall be included
in terms of block diagrams with short explaining narratives. This document
should consist of only a few pages. An outline of the SYSTEM DEVELOPMENT
SPECIFICATION is shown in Figure 7-2.

-608-

J. SCOJ'

This specification gJves a general description of the
syste'm to be developed and a suffic:ient overiew of the

other necc-=sarel docu ie:,(-; to he used as a bais for the

Demonstration and Validation Phase.

o APPIoZCAIVLF DOCUUfENTS

Onlj those documents referenced in Section 3, 4 and 5
shall be listed here.

3. REOUIMEITS

Only the top level requirements should be described
herein (in accordance to MI'L-STD-490J.

13.J Sy.-tr Definition

After an overview: of the functional areas and require-

Ments of the system, the OPERATZO'AL PROCEDURES and

DEVAIL'D DESIGN: AND CONSTRUCTION REQUIREk;ETS documents
should be referenced for details.

3.2 Characteristics

Besides a summary, DETAILED DESIGN AND.COTRUCTIO11

REQUIRE1,UENTS docu:nent should be referenced.

3.3 Design and Construction

Besides a summary, DETAILED DRSIGM AND CONSTRUCTION
REQVIAkEME1A'2'S document should be referenced.

3.4 Docum.ntation

Should reference LOGISTICAL REQUZRE1MENTS document.

3.5 Loy.stics

Should reference LOGISTICAL REQUIREI-IFNTS document.

3.6 Personnel and Trainirn.

Besidcs a summary, the OPERATIONAL PROCEDURES document
should be referenced.

3.7 Functional Area Characteristics

General description etails in the OPERATIO AL
PROCEDURES doc," .t.

3.8 Precedence

4. VUAIXTY ASSURIANCE PROVISIONS

BeSides a summary, QUALITY ASSURANCE ,vumenjt should b.
referenced.

. PREPAM:ATIOK FOR .'ELI"CE'

FIG6RE9

$srTrrL; 5,;]IPICATX'ON * TOP LI:FL

-609-

Io GENERAL STATEMENTS

2., SYSTEM PERFORMANCE REQUIREMENTS

2.1 Performance Characteristics (3.2.1)*

2.2 Physical Characteristics (3.2.2)

2.3 RAM (i.e., reliability, availability, maintaina-
bility) Requirements (2.3.3/4/5)

2.4 Interfaces (technical) (3.1.5)

DESIGN AND CONSTRUCTION REQUIREMENTS

3.1 Government Furnished Property (3.1.6)

3.2 Environmental Conditions (3.2.7)

3.3 Standard Requirements (3.3.1-6, 3.2.8, 3.2.9)

3..4 Personnel and Training (3.6)

,3.5 Human Engineering/Man-machine Interface (3.3.7)

*The referenced paragraphs are out of MIL-STD-490, Appendix I.

FIGURE -

DETAILED DESIGN AND CON'STRUCTION REQUIREMENTS

-610-

1. GENERAL STATEMENT

2. LOGISTICS

2.1 Maintenance (3.5.1)*

2.2 Supply (3.5.2)

2.3 Facilities and Facility Equipment (3.5.3)

3. DOCUMENTATION (3.4)

*The referenced paragraphs are from MIL-STD-490, Appendix I.

FIGURE 5

LOGISTICAL REQUIREMENTS DOCUMENT

1.. GENERAL STATEMENTS (4.1)*

2. RESPONSIBILITY FOR TESTS (4.1.1)

3. SPECIAL TEST AND EXAMINATIONS (4.1.2)

4. QUALITY CONPORMANCE INSPECTIONS (4.2)

*The referenced paragraphs are from MIL-STD-490, Appendix I.

FIGURE b-6

QUALITY ASSURANCE DOCUMENT

7.3 Software System Development Specification. The SOFTWARE SYSTEM
DEVELOPMENT SPECIFICATION allocates the functional and performance
requirements to software subsystems. Each software subsystem must be
a separate Computer Software Configuration Item (CSCI), ref. Figure 3-2.
This specification shall refer to a SOFTWARE SYSTEM OUTLINE as the over-
view document for the entire software system. Further, it shall refer
to the detailed specification' or each subsystem. This document should
be brief, since it refers to subsequent documents in the structure for
details. The outline for this specification is shown in Figure 7-3. An
outline for the SOFTWARE SYSTEM OUTLINE is provided in Figure 7-4.

7.4 Software Subsystem Development Specification. For each defined sub-
system (CSCI) there should be a SOFTWARE SUBSYSTEM DFVELOPMENT SPECIFICATION
containing all requirements for that subsystem. It shall refer to the
software end product documents described'in Section 6, except the Program
Library and the Test Programs and Test Results. The outline for the
SOFTWARE SUBSYSTEM DEVELOPMENT SPECIFICATION should be in accordance with
MIL-STD 490, Appendix VI referencing the corresponding software end product
documentation for detailed descriptions. The documents in Figure 7-1
marked by double block are those which will be maintained throughout the
whole life cycle. Refer to Figure 7-5 for the outline of this specification.

8. Developing The Software Product Specification:

Proceeding from the approved Software Subsystem revelopment Specifi-
cation, the Software Product Specification will consist of the documents
developed in Section 7. However, it will be completed by adding the
Program Library (see Section 4, Figure 2-4) and the Test Programs and
Test Results as part of the Test Library (see Section 4, Figure 4-5).
Thus, at the end of the Full Scale Engineering Development Phase, the
Software Product Specification consists of the following (see Figure 8-1):

- System Product Specification

- Software System Outline

- For each software subsystem

* External Documentation Library

* Program Library

* Test Library

-672-

SwW

>w Xi (/ WI I

k-I Zz
Z no~ I I W/

0:: 1 0 < Ir I- L

U (D
-- I/ ,

I- w I LF

- - D L I F-

IU z
w z Ow ~ ~

am U~?F X '- (-- UF- o e Z

w- 0"~ Im < <
L w LL <

X> F- w F- U- -
0-I z X: Z

I-L z U) = C)
L~w IppC)F-c

zz w
L 0- I-nw

- -L

-613

I. SCOPE/PURPOSE

2. ALLOCATION OF REQUIREMENTS

3. DESCRIPTION OF THE HARDWARE SYSTEM

3.1 Block Diagrams

3.2 Narratives

4. DESCRIPTION OF THE SOFTWARE SYSTEM

4.1 Block Diagram

4.2 Narrative

FIGURE 7-2

OUTLINE OF SYSTEM DEVELOPMENT SPECIFICATION

1. SCOPE/PURPOSE

2. ALLOCATION OF REQUIREMENTS

3. SOFTWARE SYSTEM STRUCTURE
(shall refer to SOFTWARE SYSTEM OUTLINE)

FIGUREJ-3

OUTLINE OF SOFTWARE SYSTEM DEVELOPMENT SPECIFICATION

*-3 -614-

1. DESCRIPTION OF OVERALL SOFTWARE SYSTEM

1.1 Block Diagram

2.2 Narrative

2. DESCRIPTION OF SOFTWARE SUBSYSTEMS

2.N Subsystem N

2.N.1 Block Diagram

2.N.2 Narrative

FIGURE7-4

SOFTWARE SYSTEM OUTLINE

7-5
-615-

1. SCOPE

2. APPLICABLE DOCUMENTS

Only those documents referenced pithin the specifica-
cation should be listed.

3. REQUIREMENTS

3.1 Subsystem Definition

This paragraph shall provide a short description
of the major functions of the subsystem. For de-
tailed description it should refer to the Subsystem
Outline and to the Operational Procedures Manuals.

3.2 Detailed Functional Requirements

This paragraph shall contain a list of all detailed
requirements for each subsystem function in terms of

- input
- processing
- output

The detailed design description is subject of the
Software Maintenance Documents.

3.3 Adaptation

Besides a short'summary the corresponding end pro-
duct documents should be referenced.

4. QUALITY ASSURANCE

Besides a short summary the Test Library should be
referenced.

FIGURE 7-5
SOFTWARE SUBSYSTEM DEVELOPMENT SPECIFICATION

_- 616-

I =-wpm

_ Izo
I 1U

nC

0- I; C

IL~
a-~~ LU I 'I

IM U InI
9Lz I 0

-~ w I 4A

Ii. -j LD L) U)

oA Co 0- in 3 C)M

I,_____ I~

A. 617-

The approach taken above eliminates the Software Development
Specification upon approval of the Product Specification. This is
because it is totally contained within the Software Product Specification.
This approach, which is consistant with MIL-STD-490, provides a well
structured system of documentation and tests for quality control of
the maintenance process within the product specification.

9. Supporting Standards:

9.1 General. Good management control is best maintained through the
use of a set of standards which support the entire life cycle. To
accomplish this, a set of integrated standards have been outlined.
These standards are "integrated" in the sense that they all relate
directly to the life cycle milestones, tasks and'activities set forth
in existing policies and procudures and provide a verifiable thread for
system development. The following paragraphs contain brief descriptions
of possible standards for use. Individual standards must be developed
by the Army and used as needed on a project by project basis.

9.2 External Documentation Standards. Documentation is the key element
for defining user oriented software systems and providing independence
from the original authors. The purpose of these standards are to guide
software developers in providing clear and concise descriptions of the
system and individual programs as they relate to the end user, operating
personnel and people who must maintain or enhance the sytem. Tn particular,
these documentation standards are aimed at producting the following
attributes in a Documentation Library.

* Provide a clear understanding between user and developer as to
what the sytem is going to do prior to coding.

* Allow the end user to initiate requests and interpret his
outputs without the aid of a computer technician.

* Allow operators to execute instructions from the end user
without the aid of an analyst or programmer.

* Allow the system to be maintained or enhanced independent of
any original authors.

* Allow other programs or systems to be integrated without
assistance from the original authors.

-618-

These standards specify the structure and content of the External
Documentation Library. They provide standards and guidance for developing
and maintaining this library and define in detail the specific content
of each document shown in Figure 4-2.

9.1 Program Standards. The purpose of these standars is to illustrate,
for each programming language, the requirements and techniques for writing
structured software code. The importance of developing such standards is
dlamr. There is a great value in adherance to uniform rules so that
programmers may more easily read and understand programs written by others.
There is a need to develop coding techniques that reduce the complexity
of programs, insure program portability from one machine to another, and
to control the entire programming effort. These standards cover develop-
ment and maintenance of the Program Library in Figure 4-4.

9.4 Testing Standards. The principal theme of this standard is that
effective computer software testing procedures require the same level
of management control as expended during preparation of the software.
Software requires testing to identify faults and confirm the correctness
of its performance before the system is made operational.

This standard also advances a secondary theme: test requirements
can be identified as natural extensions of the system's design requirements.
Also, a system's Test Library is one of the principal elements of the
quality control procedural package. This standard addresses the subjects
of software testing and quality control within the phase framework of
the life cycle defined in Section 2. Therefore, considerable detail must
be applied to management control over incremental development and use
of software verification, validatability and testing to establish and
maintain quality control. These standards provide guidance for the
development and maintenance of the software Test Library, as shown
in Figure 4-5, to be used during development and to control changes
throughout the system life cycle.

10. Contractual Considerations:

Presently, most systems under contract call for only the program
library as a configuration item. As described herein, the program
library is only a part of the software end product. In fact, depending
on the life cycle phase, the programs themselves can be relatively un-
important compared to the documentation library. Figure 10-1 shows
the present structure of contract line items, wherein documentation is
a data item and only the computer programs are configuration items(CPCI's).
Figure 10-2 shows the new structure of contract line items wherein the
comptuer software configuration items (CSCI's) consist of all three
libraries which comprise the software end product. In this case, contractor
developed specifications and adopted standards are data items if necessary.
Figure 10-3 shows the hierarchical structure starting with MIL-STD-490.

-619-

LU

z LI

Im

oL z
LLU

CLL

LU ooLU
LL.-z nL

zz
z 0

-6-0

1n
EM CfU
I-r

- 0

In.

V 0% 00O

LL. 0 4
LU z C

zz
0I- 0 ~

VP

U-c

LU

0

-621-

I--

z

u~u

LU

U)n

zz
LLLU

- - - P
-I-4

CL
LL

C>U

-622-

Verification & Validation of Tactical Systems

LTC Charles R. Lindsey
Joseph W. D'Oria

Product Assurance & Test Directorate CORADCOM

The purpose of this paper was to examine the roles and objectives
of Verification and Validation (V&V) contractors as they are applied to
tactical, computer-based systems for the military.

Subsequent to a general definition of V&V, the basic tasks of a
Verification/Validation contractor were discussed from a government per-
spective. The key elements of verification are shown to correspond to
major milestones of the software development -- requirements, design, and
software code verification. The independence of the V&V effort is then
analyzed through a discussion of several validation activities.

Finally, special tasks and timing considerations were examined to
show the extent of the V&V effort over the total software development.

-623-

VERIFICATION AND VALIDATION OF TACTICAL SYSTEM

LTC Charles R. Lindsey

INTRODUCTION

The evolution of large scale, complex, digital computer systems has

recently undergone a significant period of growth. With this growth

has come numerous applications of these systems to real time, command and

control and tactical data systems found within the military. Unfortunately,

the Government has too often experienced difficulties in developing and

using such systems due to the poor quality of the associated software, the

heart of any computer-based system. Numerous schemes have been proposed

to prevent the generation of noncompliant, poor quality software. one of

the most effective of these is the application of verification and vali-

dation (V&V) practices to the software development.

Verification and validation (V&V) is a continuing evaluation process

that assures an orderly development activity throughout the software

development cycle. Briefly, verification is defined as the independent

evaluation process designed to ensure the consistency and completeness of

the software product at any given phase within the development cycle.

The consistency aspect is concerned with measuring the degree to which a

given phase (e.g., design) is in agreement with the previous phase (e.g.,

requirements) in the development cycle. Completeness is a measure of the

readiness to initiate the next phase in the development cycle. Validation,

on the other hand, is oriented toward the final software product; it is

directed at software test and evaluation to measure how well the software

executes according to established requirements.

-624-

Significant cost savings and increased confidence in a software product

can be realized through the support of a well-qualified V&V contractor

during all phases of development for tactical systems.

Such support is designed to provide in-depth technical visibility that

is essential for the Government to maintain control of the overall software

development and to contribute significantly to the confidence in the

program's success. V&V should emphasize the significances of quality

specifications, sound standards and procedures, effective configuration

management, comprehensive design reviews, quality test planning and docu-

mentation, independent validation, and a professional diplomatic technical

interface with all parties involved.

To be truly effective, a V&V contractor must have the skill and diplo-

macy to communicate information concerning problems and potential solutions

in such a way that the progress of the system development is enhanced. By

helping to solve problems, a V&V contractor becomes a viable asset to

ensuring a quality software product and not another critic (in a negative

sense) that only points out how bad things are.

With this introduction to software V&V, we will examine the role of the

V&V contractor in terms of general activities shown in Figure 1.

-625-

VERIFICATION

The following verification activities are considered the most critical

in assuring an orderly software development.

Requirements Verification

One of the keys of a successful V&V contractor is the ability to focus

on inadequacies and problems in software requirements. This ultimately

will lead to the identification of potpntial problem areas early in the

development cycle. Complete and unambiguous software requirements are a

necessary foundation for software development of large complex tactical

systems and one standard for measuring software quality. A V&V contractor

should be able to perform an exhaustive evaluation of the requirements to

measure qualities such as testability, traceability to higher specifications,

completeness, adequacy, and degree of ambiguity that may exist in the system/

software specifications.

Clearly, the specifications are crucial in the development of the soft-

ware because they define required data processing to be accomplished in the

overall tactical application. Therefore, the V&V contractor should analyze

and evaluate the system specification and the software requirements to

verify the testability and implementation attributes required by the software

development process. An important side benefit of this analysis is the

support of independent test activities by providing the relevant objectives

for candidate independent tests.

Figure 2 shows a representative list of criteria that should be used in

the evaluation of these documents. Two of the evaluation criteria stand out

-626-

as being of major importance to software V&V: uncover implicit require-

ments and determine whether requirements are testable. Based on past

experience, these two criteria are the most important to understanding

both the software and the test data that results.

This evaluation also represents the first phase of an incremental techni-

que for verifying that the code correctly implements the requirements as

stated in the system/software specifications. A V&V contractor should

trace each requirement to successively lower documentation levels until the

lowest level software design documents are traced into the actual code.

The approach is based upon the relationship between documents of the hier-

archy in which each requirement at one level must be logically traceable to

requirements in the next higher level and vice versa. A V&V contractor

must recognize the evolutionary character of most tactical programs and

stand ready to evaluate major revisions and/or updates to the system/software

specifications as they occur.

Requirements analysis is directed at resolving requirements issues/problems

to ensure that the following characteristics are realized.

Realistic - Requirements must be achievable within the

capabilities of the data processing hardware.

Unambiguous - Requirements must be stated such that they are

definitive and not open to subjective interpretation.

Consistent - Requirements must be consistent with one another,

with interfacing subsystems and with those at the next higher

and lower levels.

-627-

AD-AbS4 252 INTERNATIONAL BUSINESS SERVICES INC WASHINGTON DC F/0 9/2
us ARMY SOFTWARE SYMPOSIUM (2NO) HELD AT WILLIAMSBURG# VIRSINIAEI'C(Ut

1978 S M TAYLOR DAAK70-7-0-0030

UNCLASSIFIED .E h EE E LEIEEEEEIIIIIII
EiiiiIIIhEEEEE

EEEEEmmjmmEEEE

Necessary -Requirements must be necessary. Unnecessary or overly

restrictive requirements will increase the cost and complexity of

the software and will also impact the design code and testing

schedules.

Complete - The requirements must completely specify the software

product to be provided in terms of accuracy, timing, throughput,

interface control, reliability, maintainability, environmental

conditions, input/output, and human factors.

Testable - The requirement must be testable.

Design Verification

Before coding begins, the V&V contractor should verify that the software

design accurately reflects software functional and performance requirements.

This is important to reduce the risk of entering into an expensive cycle of

specification design changes which would ripple throughout the programming

activities. Although some assurance of design soundness can be gained from

verifying the flow charts and design descriptions by themselves, the tracing

of the design to requirements provides maximum payoff. This encompasses an

exhaustive examination of the documentation that includes a step-by-step

comparison of the flow charts to the higher level documentation.

An approach to design verification consists of a detailed evaluation to

ensure:

Adherence to flow chart standards to reduce the possibilities

of misinterpretation because of variations in the use of flow

chart symbols;

-628-

*That program flow charts describe the flow of data and control

through all parts of the software system;

*That emphasis is placed on the hardware involved, data transfor-

mations made, and the work stations through which control passes;

and

*That the program flow chart is a detailed graphic representation

of the specific operations and the logical sequence required by

the software requirements.

Lower level flow charts should also be evaluated to ensure that they

contain detailed graphic representations of the specific operations to be

performed within the individual program components and the logical sequence in

which they are to be conducted. A V&V contractor should ensure that the

flow charts from one level to the next are consistent and that the lowest

level flow charts are adequate for initiating the next phase of coding the

software. In addition, the following should also be verified:

. Timing requirements in the lower level flow charts are

consistent with the allocations from the higher level;

. The internal/external parameters and file names adhere

to the data base design specifications;

. Linkage arguments are consistent between calling and

receiving modules; and

. Dependency relationships between modules are consistent and

satisfy upper level requirements.

-629-

In addition to the specification analysis described previously, the

V&V contractor should analyze the logic associated with each of the

functional algorithms. This may be done by selecting a group of critical

functions, coding and executing them on the V&V contractor's computer. A

driver can be designed to test the coded functions, and the results can be

checked against expected rs~sults derived from flow chart descriptions.

Such an approach ahs been used to evaluate algorithm completeness, data

base adequacy, and overall control logic within the individual module.

These coded routines may also be used later in the test verification

activities.

After completion of the flow chart verification, the V&V contractor should

continue to review design changes throughout the remainder of the development

cycle. This procedure is necessary to maintain quality documentation for

later phases.

Critical problems discovered and corrected during the software design

phase will eliminate significant cost schedule impacts. Experience has

shown that design problems that are not uncovered until late in the develop-

ment cycle are not only costly to correct, but also contribute to a lower

quality in the software product. V&V contractor activities in the past have

contributed significantly to the development of lower cost, high-quality

software through elimination of a majority of the design problems early in

the development cycle. Problems discovered during the design phase are

easily corrected, whereas these discovered during the testing cycle most

often require an expensive modification of design specifications and code

and usually require that portions of the software tests be repeated.

-630-

Software Code Verification

Independent verification of the coded software is essential to assure

consistency and completeness between the code and the design. The V&V

contractor should verify the assembly and/or HOL source code to determine

that:

* The code satisfies the intent of the previously verified

flow charts;

* The code contains comments adequate to support software

maintenance and test;

Military coding standards and procedures are adhered to; and,

The code is designed to efficiently utilize the hardware

features of the host processor.

This step-by-step verification procedure is designed to ensure that if

the code satisfies the intent of the flow charts, it will satisfactorily

implement all of the requirements of the software specification. The V&V

contractor should verify the code against the flow charts by checking the

comments in the code to ensure that they agree with the commentary in the

flow charts. In addition, the V&V contractor should check all interfaces,

ensure that all branches have been properly coded, and check the coding of

all mathematical transformations.

-631-

VALIDATION

So far the discussion has addressed verification efforts only. Some

of these efforts overlap validation activities. The distinction between

the overlapping V&V tasks should become obvious as validation is discussed.

Validation comprises those evaluation, integration, and test activities

carried out at the software system level to ensure that the final developed

software satisfies the requirements of the software system specification.

The validation activity parallels testing and integration phases of the

software development. It can begin when sufficient amounts of code are

present to perform validation of functional and performance requirements.

Validation activities can be segmented into three tasks, each of which

addresses a separate phase of the validation effort. The first task

involves the monitoring and evaluation of the prime contractor's test

activities. This will allow the Government to be continuously aware of the

validation progress and status. The next task is the independent execution

by the V&V contractor of selected prime-contractor-designed validation

tests in order to audit the repeatability of validation results. The last

task is V&V-contractor-executed validation tests to test cases created

exclusively by the V&V contractor's own analysis to extend the preexisting

validation results beyond that conducted by the prime contractor.

Validation of Contractor Assurance Activities

The V&V contractor should monitor the prime contractor's software

assurance activities to enhance the Government's visibility into adequacy and

status of these activities. This task should be designed to evaluate the

prime contractor's software testing to ascertain the degree to which the

testing demonstrates the software's compliance with Part I Specifications.

-632-

As a result, the Government will benefit from an up-to-date, independent

interpretation of the ongoing testing efforts plus an objective appraisal

of the thoroughness and rigor with which the software is validated.

The V&V contractor should have access to the prime contractor's vali-

dation documentation, including test plans, test procedures, and test

execution reports. Using these inputs, the V&V contractor evaluates the

testing to ensure that:

" All validation tests are traceable in their intent to the

Part I Specifications,

" All areas of the software are addressed by validation

testing;

" Unnecessary redundancy between validation tests is eliminated;

" Adequate test data is recorded to evaluate the results of the

test; and

" Critical software components are appropriately stressed during

validation; and

" Test data is correctly interpreted and applied to derive final

test results.

In addition to evaluating the validation documentation, the V&V contractor

may be tasked to monitor integration/validation demonstrations and formal/

informal reviews. In addition, he may be expected to critique current

test plans, procedures, and reports. The current test schedules should

also be monitored providing advanced warning of any potential slippages.

These efforts will allow an objective, informed evaluation of the prime

contractor's validation program and provide independent review of the testing

status.

-633-

Selective Testing_

The independent audit of selected prime contractor tests by the V&V

contractor can help to assure the integrity of software compliance with re-

gard to Requirements Specifications. The direct involvement of the V&V

contractor with the execution of contractor-developed software will demon-

strate the learrkability and transferability of the software product. This

hands-on experience will give the V&V contractor an opportunity to indepen-

dently evaluate the man/machine user interface designs. It also offers the

V&V contractor an opportunity to understand the testing philosophy and

procedure of the system; this facilitates the generation and conduction of

separate validation tests by the V&V contractor at a later phase,

To accomplish this audit, the V&V contractor will require access to the

baselined, configuration-managed contractor-developed software; periodic

blocks of available computer time on a suitable facility; and various

support software packages and prime contractor validation test documentation.

By using this input in conjunction with the evaluation results of the pre-

vious activity, the V&V contractor is able to select a meaningful subset of

prime contractor validation tests for analysis. This meaningful subset

should be comprised of those prime contractor tests which which are techni-

cally crucial to the functioning of the entire systems under development.

Thus, tests that exercise key algorithms, mode changes, error responses, and

queue/buffer/stack limits, or which stress compliance with critical timing

or throughput requirements should be candidates for revalidation.

Tests selected for revalidation must be well-documented, and the inherent

randomness of software response must be low so that test repeatability is

feasible. The V&V contractor can then attempt to duplicate the results of

-634-

each selected test by the prime contractor by first assembling the

particular test inputs, including preset data such as cards or tap and

any manual real-time inputs that may be specified in test procedures.

After obtaining and recording the test data results, the V&V contractor

can compare his independently obtained results with those obtained by the

software developer and can identify any differences that may exist. It

is this phase in which the V&V contractor's experience plays a vital role

in judging how potentially controversial test result mismatches should be

handled. Close communication between the Government, the prime contractor,

and the V&V contractor is essential to quickly resolve the differences to

prevent animosities and prejudices from developing.

Independent Validation

Independent validation of the tactical software by the V&V contractor can

establish additional confidence in the quality of the tactical software by

extending the validation boundaries. After having performed the audit of

prime contractor validation, described in the previous task, the V&V contrac-

tor should be able to rapidly and inexpensively validate the tactical soft-

ware in areas of design and to limits of stress not achieved in earlier

tests.

The independent Validation task has two primary objectives, the first

of which is to validate the tactical software to baselined test requirements

that may be beyond the scope of prime contractor validation because of

resource limitations or oversights. The second objective is to extend the

results of prime contractor validation into additional scenarios and test

cases. Although these tests will not necessarily extend software validation

-635-

to address any additional requirements, it will demonstrate requirements

compliance for a more diverse set of data conditions than those specified

in the prime contractor's validation.

Experience has shown that errors discovered during the course of

independent validation are found at greater rates when the independent

validation places greater stress on the software than is normally applied

during the original validation.

-636-

ADDITIONALL TASKS AND FACTORS

Evaluate Test Plans and Procedures

Exhaustive testing at each level of development must be enforced to

assure that the operational software will satisfy the requirements and design

specification. During the testing cycle of the proposed contract period, the

V&V contractor should evaluate the test plans of the development contractor,

recommend test tools and techniques which will contribute to increased con-

fidence in the software, and perform independent testing on critical software

items as necessary. Also, the contractor's testing cycle should be monitored

to ensure that test plans have been followed and that the test results

satisfy preestablished acceptance criteria and have been properly documented

and interpreted. Test plan documentation should be analyzed to assure that

all requirements are addressed, that all tests exercise the code adequately,

and that test tools and test procedures are utilized to minimize the occur-

rence of potential problems.

In addition to the evaluation of test plans and procedures, the V&V con-

tractor should independently evaluate the software developer's test reports

to determine such items as percentage of code and interfaces exercised,

and acceptability of test results.

Special Tasks

The V&V contractor is often requested to conduct special tasks such as

performance analysis studies that provide technical responses to critical,

high-risk areas which arise during tactical software development. The

ability of the V&V contractor to provide special software performance-related

-637-

studies offers the Government the capability to more easily adapt to

problems that were unanticipated at the outset of the design effort.

In the development of any large-scale software program, there will

inevitably be inconsistencies, design flaws, and other shortcomings in

the software which could not have been predicted at the outset of the

software implementation effort.

The types of studies envisioned center around potential system-

related problems. Examples of such types of studies that are often

performed in a V&V effort include CPU overload considerations, port-to-

port timing analyses, worst-case stressing scenario development, and

unit sizing. The V&V contractor should be able to develop, modify, and

apply special-purpose models and simulators to evaluate tactical system

and function performance. Such models may be used to derive pertinent

statistics regarding throughput of critical threads, growth capabilities

(timing and storage), I/0 degradation performance, bottlenecks, etc.

Timing Considerations

The V&V contractor should be "on board" at the beginning of the develop-

ment cycle. If the V&V contractor is under contract as early as the

development of the RFP (prior to the proposal period), significant recom-

mendations can be made to the Government concerning Contract Deliverable

Items, design reviews, configuration management, visibility to the Govern-

ment during the development cycle, etc.

-638-

It is recognized however, that many programs are currently under

development. Benefits can also be realized by the Government in this

instance even late in the software development cycle. Activities relating

to 1) evaluation of the software developer's test plans, procedures, and

results data, 2) independent exercise and evaluation of the software pro-

duct by the V&V contractor, and 3) preparation of an independent agency to

support software maintenance activities can contribute significantly to

"measuring" the quality of "as-built" software and recommending corrections

for problems uncovered.

For programs that are currently within the concept and requirements

definition phase, it is recommended that a full range of V&V activities be

applied, from early requirements analysis through final independent system

performance validation. This range includes tasks to assure that the

requirements are properly allocated throughout the design and code, evaluation

of design specifications, evaluation of test planning by the software devel-

oper, evaluation of simulation and system test results, and special task to

address proposing solutions to key problem areas in which the Government

desires an independent recommendation.

For software projects that are currently within the design phase, it is

recommended that emphasis be placed on the evaluation of the design specifi-

cations to determine their consistency and completeness, and also analysis of

the traceability between requirements and design specifications. once the

adequacy of the design has been assured, the code should be verified against

the design documents to ensure that the design has been implemented faith-

fully and efficiently.

-639-

For software projects in the final stages of integration and test, it

is recommended that the V&V contractor first evaluate the prime contractor's

test documentation to assess the need for additional testing and to evalu-

ate test results. Second, the V&V contractor should exercise the completed

software over a wide range of input conditions to independently evaluate

both functional and performance characteristics. Third, the V&V contractor

should conduct evaluations of as-built documentation to determine its

adequacy to support the operation and maintenance of the software to be

delivered to the Government.

SUMMARY

From the above, one can appreciate that the wide range of potential

activities and benefits to be realized by making effective use of a qualified

V&V contractor. Such a contractor can be effective for software systems at

any stage of development; however, the maximum benefit to the Government can

only be gained by initiating the V&V effort as early in the development cycle

as possible. The exponential costs of correcting errors commnitted early but

only found late in the development cycle provide economic justification for

early participation of the V&V contractor.

-640-

Software Testing at the System Level

J. Gary Nelson

Headquarters
U.S. Army Test & Evaluation Command

The paper provided five principles that should be observed in
establishing a viable software testing program (to include system level
testing). Strategies were examined of the integration and system levels.
Test methodologies of vital importance to the system tester were provided.
Among these were software requirements identification and tracing, testing
to requirements, software/computer system simulation and instrumentation.

-641-

SOFTWARE TESTING AT THE SYSTEM LEVEL

Mr. J. Gary Nelson
US Army Test & Evaluation Command

INTRODUCTION

A French meteorological satellite sends erroneous destruct signals
to 72 of 141 high-altitude weather balloons. (2)

The Ballistic Missile Early Warning System (BMEWS) mistakes the
rising moon for a massive Soviet missile raid. (3)

Both problems occurred because of computer software shortcomings.
Consider the Strategic Air Command's Automated Command Control System
(SACCS 465L). One software error happened each day. About 95% of the
SACCS 465L software delivered to SAC had to be rewritten. (1)

Why did these critical problems go so long without discovery and
correction? Because the state-of-the-art in software testing lacked the
sophistication to uncover them during the development test process;
because proper testing that may have uncovered them early in the develop-
ment cycle was either done poorly or not done at all.

The last 20 years have seen unprecedented technological advances
in reduction of size and weight in computer hardware, plus improvement
of the computer power per dollar. These advances have spurred the
technical community into finding more and bigger jobs for the cheaper
resources to do. The technology has gone from tubes/transistors through
integrated circuits to medium-and large-scale integrated elements. How-
ever, two decades ago, software was in an era when highly efficient
programs which used little of the scarce and expensive computer hardware
resources were sought ... when the size and complexity of the programs
could be handled by one good programmer ... when the design of the soft-
ware was largely left up to the programmer's art ... when he tested his
own product. We now see software moving toward an era when high effi-
ciency is not the prime concern since computer hardware resources are
not scarce or expensive ... when the software design is extremely com-
plex ... when self documentation and readability of the code demands
programming standards rather than individual programming style ... when
the only thing that programmer testing will show is that it works
exactly as he programmed it.

-642-

From an economic perspective, it is predicted that in 1985, 95% of the
total system development costs will be allocated for software. (1) If
one combines these estimates with the fact that 34 to 50% of software de-
velopment costs are devoted to checkout and test, it becomes obvious that
software testing merits considerable attention.

This article examines the complex processes of software testing

emphasizing some of the more critical issues.

TESTING PRINCIPLES

Before we discuss specific testing methodologies, let us state some
general philosophical principles that a developer or project manager must
consider in establishing a viable and profitable test program. Some of
these issues will be reexamined in more detail later in this chapter.

Integrated Test Planning

Software testing is not a one-time event. Adequate testing can only
be achieved if it is performed throughout the development phase (and, to
some extent, during the operational phase) of the system life cycle.

As was mentioned before, software problems still exist in often
aggravating quantities through deployment and into operational utilization.
Therefore, testing should be considered throughout the system's useful
life. Please note that testing here connotes planned, disciplined, in-
strumented, repeatable exercises of the system or some developmental test
bed (or the requirements and specifications themselves) with the expressed
purpose of determining some attribute or performance parameter of the
computer/software. Operatikonal testing and field utilization of the sys-
tem should not be included even though problems may be uncovered there.
There are at least four general levels at which software testing should be
considered.

The development of a computer based system must include all of the
participants, especially the testers, from beginning to end. In order to
provide the required lead time and prerequisite activities needed to assure
smooth development and testing, a group which might be called a computer
resource working group should be formed early from representatives of the
user, tester(s), contractor, and project manager's office. This should be
the forum whereby inputs from the various disciplines can be presented,
integrated, and (if necessary) traded off to the benefit of the project as
a whole.

Testing Organizations

Usually, the developing contractor's job is to deliver a complete

system; so, depending on his facilities and capabilities, he could provide

-643-

testing at all levels. In the late 50's the Atlas Missile Program hired
an "Independent Software Tester" to provide additional unbiased software
test support. This Independent Software tester concept has since been
used on nearly 20 major defense and NASA systems. Now called a Valida-
tion and Verification (V&V) contractor, his job extends over the module,
functional area, software system, and in some cases, target system testing.

Regardless of the names of the tester(s) the project manager must
assure that the software testing is coherent and flows smoothly through
the various hierarchical levels. This means that sufficient information
need be transmitted to and among all testing participants throughout the
entire development cycle and that each tester knows explicitly how he fits
into the testing scheme.

Because this testing does exist throughout several phases of the life
cycle, different organizations institute various types of testing each
with differing methodologies and goals. The programmer performs debugging
and checkout; quality organizations perform QA testing or V&V testing;
other groups are responsible for evaluation testing. While still other
groups may do acceptance testing. The point is that since various organ-
izations or activities do perform testing, it is difficult to single out
one individual or organization which has the total responsibility for all
testing functions.

One wcrd on independence of the testing organizations. As previously
mentioned, the early V&V testers were called "independent testers".., but,
independent of whom? They worked for the project manager, not the con-
tractor. This is not to imply that the contractor would be dishonest.
It does imply that the creator of a software~ product is naturally biased
toward the way he produced it. A programmer, testing his own product will
always show that it meets the requirements (otherwise, nothing would be
released). As the development reaches the system integration level, the test-
ing should be even more independent of the developing contractor.. However,
teaing can never be independent of the project manager. To reemphasize,
testing must be an integral part of the development process, not relegated
to down-stream, poorly understood circle on a PERT chart that is destined
to terminate when the budget runs out. If used wisely the payoffs of a
good testing program are high.

Attitude

A proper attitude toward testing in general must be established. Soft-
ware problems historically linger beyond deployment. Testing, therefore,
must be directed toward the identification and erradication of software
problems. This direction is inevitably at odds with the idea that a de-
velopment in which few problems are evident is aesthetically better than a

-644-

development in which many problems are discovered. In this type of system,
development the opposite is true. However, from a testers point of view,
he is hated most when he does his job best. Additionally, the tester
should never be used to give demonstrations and political shows, especially
for computer-based systems. First, this type of system is likely to defeat
the purpose of the demonstration by failing in the middle of the performance;
second, the tester's time and the developer's usually scarce money can be
better spent determining where, when, and how the code "breaks".

Prerequisite Functions

Another basic principle is to assure that testing-related prerequisite
functions are done in a timely fashion. When not adequately provided for,
testing becomes impossible to perform. The result is that testing is de-
layed and/or doesn't provide definitive information about encountered
problems. Systems reach critical decision points with the software not
sufficiently developed. System level testing too often becomes a software
find-and-fix debugging exercise which, for computer-driven systems, is ex-
tremely expensive and very time-consuming. Testing run-ons and delays,
coupled with mounting costs, pressure decision makers into fielding "some-
thing" and fixing It later, hopefully.

Just what are some of these test related prerequisite functions?
Probably the single most important prerequisite function is the drafting
and verification of system/software requirements and specifications. It
is here that the engineering aspects of software are displayed. In this
type of system the software must be designed before it is coded. This
must be done in a top-down fashion to assure that what is coded satisfies the
system's intended goals. Within the Defense community the hierarchy of re-
quirements and specifications is spelled out in MIL-STD-490 and (for soft-
ware in particular) MIL-STD-483. Each level is an embellishment of the one
above it. In software, a high degree of explicitness is needed to assure
success in not only testing, but in every facet of the RDT&E process.
Good requirements and specifications are really the development's road map.

Another prerequisite function is the planning for and procuring of
test instrumentation and test tools. Many automated tools exist on the
open makket today. However, molding and modifying them to fit the
particular software at hand is not always an easy (or practicable) enter-
prise. These automated test tools include categorically:

" Static Analyzers
" Code Analyzers
" Symbolic Evaluation Systems
" Self Metric Instrumentation
* Dynamic Assertion Processor-
" Test Data Generators

-645-

o Test File Generators
o Execution Verifiers
o Output Comparators
o Test Harnesses
o Software Monitors
" Hardware Monitors
" System Drivers

The testing level that uses the particular category of tools moves
from raw code to system testing a3 per this list. In general, consider-
able lead time will be required to adapt or build these tools. For
example, the system level driver is often as complex a device as the
system being driven. It must be operational and validated by the time
the target system is ready for system level testing.

Another prerequisite function that should be performed is simulation,
especially computer/software system simulation. Computer/Software sys-
tem simulations are discrete event simulations that represent the utili-
zation of hardware resources in time during the operation of program/
module code segments. Operating system functioning is also played.
These simulations, originally designed and used to study data processing
installation hardware and job stream architecture, are extremely helpful
throughout the development of these computer-driven systems. Among their
uses are:

o Sizing Studies
o Hardware/Software Trade Off s
" Timing Studies
" System Parameter Interrelationships
o Design Sensitivities

o Resource Utilization
o Time Marks and Windows
o Computational Accuracies

" Test Scenario Design
o Failure Analysis
" Educational Tool

This type of simulation can easily be written utilizing several
existing macro-language software packages available commercially.
These packages allow the user to insert hardware and software archi-
tectural, control, and performance parameters plus a dynamic input
stream. The simulation outputs can cover a wide range of resource
utilization reports in terms of time accumulation and distribution.
As the system software (and hardware) parameters become more firmly
known, this "table-driven" simulation can be easily updated.

-646-

Since this simulation can be used by all participants in all stages
of development (plus maintenance), it should be physically located
centrally within the developing organization in order to be accessible
to all participants.

These prerequisite functions will be addressed later under method-

ologies.

Additional Axioms

We add to the set of principles discussed above, additional testing
axioms given by Meyers (8) which should be considered by management in
formulating its software testing strategies. These axioms do not
represent a complete list; and we offer them here without explanation.

o A good test case Is a test case that has a high probability of
detecting an undiscovered error, not a test case that shows that the
program works correctly.

o One of the most difficult problems in testing is knowing when to
stop.

o It is impossible to test your own program.

" A necessary part of every test case is a description of the
expected results or output.

" Avoid nonreproducible or on-the-fly testing.

" Write test cases for invalid as well as valid input conditions.

" Thoroughly inspect the results of each test.

" As the number of detected errors in a piece of software increases,
the probability of the existence of more undetected errors also increases.

o Assign your most creative programmers to testing.

o Ensure that testability is a key objective in your software design.

o The design of a system should be such that each module is in-
tegrated into the system only once.

o Never alter the program to make testing easier.

o Testing must start with objectives.

-647-

TEST STRATEGIES

As was previously mentioned, this article considers four levels of
testing within the development effort -- module coding and debugging,
module Integration or functional area building, software system integr-
tion,and target system integration. Figure 1 depicts this graph-
ically. The module coding and debugging level is done mainly by the
programmer himself and is highly dependent upon static, syritaxical checks
and is highly "answer" oriented (where the exact result is anticipated).
The module integration level can be performed by programmer teams and/
or by test organizations both within and outside of the developing con-
tractor's organization. Here, the testing is much like module testing
plus the problem of module integration on a "local level." Some
dynamic testing is usually introduced at this level.

After individual modules and program segments (functional areas) have
been tested (debugged and validated), we are faced with two major cate-
gories of tests. The first of these is software system integration test-
ing where the various modules and/or functional areas are merged together
to form the entire computer program. Several possible approaches can be
used to combine the modules each with various impacts upon testing. Soft-
ware system integration testing is primarily used to validate proper
interface (data flow and control) among the modules that constitute the
computer program.

Once the software is integrated one then considers total system
testing. System testing is not a comprehensive function test where
each function described in the B level software specification is validated.
Most sofware systems are too complex to be subject to such exhaustive
testing after integration. Rather, system testing attempts to expose in-
consistencies between the system and its original system level require-
ments, while at the same time investigating suspected software weaknesses.
It also serves to validate "assumed" or simulated environments or inputs.

Integration Testing

The process of putting modules together to make functional areas and
putting functional areas together to make software systems is known as
integration. The testing here is directed at the interfaces and the
abilities of mutual coordination and tolerance among the code segments.

Classically, there are two types of integration testing: bottom-up
and top-down. However, more recently variations of these strategies
have emerged. These variations attempt to utilize the best features of
bottom-up and top-down approaches while minimizing the disadvantages.

o Bottom-up testing: As the name implies, this strategy puts unit
testing ahead of everything else. Modules that call or invoke no other

-648-

PHYSICAL SOFTWARE DEVELOPMENT
AND TESTING LEVELS

DIMENSIIN 11li)
MODULE CODING iii 1 l=1,1

I CONTINUE

M ODULE INTEGRATION
(B'I'11DING FUNCTIONAL AREAS)

SOFTWARE SYSTEM INTEGRATIONRA

TARGET SYSTEM
INTEGRATION

FIGURE 1.

-649-

modules are tested first, then the modules that call them are tested; and
so on up the hierarchy until the software system is completely treated
as an entity. However, to get the "calling" module to make the call under
interesting data conditions requires "drivers" to be written for each
module. There are available commercial tools to assist in doing this
for certain languages. One major advantage of bottom-up testing is that
it uses proven components in support of the test objective.

o Top-down testing: Although the name would imply an exact opposite
definition from bottom-up testing, top-down testing usually starts at the
top of the hierarchical structure, but first moves down through the levels
tracing the paths that get the system's input/output working first. This
is done so that the testing can then be driven by user or simulated sensor
inputs. The major drawback to top-down testing is that "stubs" or simula-
tions of missing or notE-yet-developed modules are required. In very complex
and/or real-time software these can represent a quite formidable and ex-
pensive undertaking.

System Testing

One obvious property that each "level" of testing should have is the
ability to provide intelligent feed-back to lower levels in case of problems.
This means that system level testing strategy must be more than mechanically
putting a system through its paces, even if the test design and instrumenta-
tion are well thought out relative to a system level spec. The system tester
must look at the system through the software' s "~eyes" as being a collection
of hardware to be controlled. He, therefore, cannot treat software as a
"black box." On the other hand, he does not have time to deal with the code-
level problems. He must do "gray box" testing. His test case selection
(which is usually limited by time and money) must include scenarios that
exercise high problem areas or areas where real world environment may be
quite different from the environment simulated in earlier tests. This means
that his monitorship of earlier activities is essential. Further if he is
to provide intelligent feed-back, instrumentation must be provided. This
will be discussed later. There may also be a requirement for a system level
driver. The system level tester should know this by comparing the system
performance requirements to his capability to produce inputs at the levels
required. When a driver is needed, it should be made known early enough in
the program to have it available in a timely fashion. Meyers (8) discusses
14 categories of system level testing that may be required. All of these
point to a general strategy of starting early, assuring that prerequisite
functions (requirements/specs validation, instrumentation, drivers, sim-
ulations, etc.) are done, and designing tests that not only verify system
requirements, but that also fully investigate problem areas.

TESTING METHODOLOGIES

The following discussions cover three of the more important test

methodologies; requirements, simulation, and instrumentation.

-650-

Software Requirements Analysis

For software, as veil as for other major components of complex systems,
one of the primary activities of the tester/evaluator is to determine
whether that major component meets requirements. Whereas the method-
ologies for this type of activity have been fairly well developed and
employed for hardware, the same is not true for software. One of the
basic problems with respect to software test and evaluation is the
determination of what the software requirements are. A second problem,
once the requirements have been identified, is whether they are testable.
Experience has shown that software requirements are very often incom-
pletely, vaguely, or qualitatively stated, and thus are not testable.
Two additional factors which greatly complicate the problems of develop-
ing software are: the attitude that software is not a critical item,
but is something to be "poured in" after the hardware is built; and the
tendency to change the software to adjust for deficiencies of another
system component.

A software requirements analysis involves assuring that software
requirements are identified and tested. Steps which can be followed
in such an analysis are: the identification of the requirements; the
tracing of these requirements, both back to the system requirements
and forward to the code; and the testing demonstrating that the require-
ments were met.

Requirements identification

The initial problem for the tester/evaluator is to determine what a
software requirement is. For most software-supported tactical and
weapon systems, a software or data processing system requirements
document exists. The problem is that in these documents the "require-
ments" are not clearly identified; further, information in these docu-
ments varies from a general discussion of a system requirement in some
cases to a detailed flowchart of how to code a routine (not a require-
ment) in other cases. This lack of understanding of what the real
software requirements are creates problems for the developer as well as
for the tester/evaluator - the developer has no more idea of what to
build than the tester/evaluator has of what to test and evaluate.

The first matter to be addressed is what constitutes a requirement
and how it is to be identified from the maze of documentation. To be
implementable and testable, a requirement does not stop with a general
statement of what is to be done; it must also contain descriptive infcr-
mation that states its performance attributes (e.g., accuracy, volume,

-651-

interfaces, etc.). Thus, the identification of requirements should include
not only the basic requirement statement, but the descriptors or attributes
of each requirement as well. Table 1 lists performance descriptors (PD)
that will provide the minimum information necessary to implement a require-
ment, along with summary definitions of each PD.

Also included in the identification of requirements is the assess-
ment of the adequacy with which the requirements are stated. This should
give an indication of the readiness of the developer to proceed with
implementation.* The presence or absence of PD information is indicative
of the degree to which the necessary attributes of requirements are stated.
This does not imply that the software requirements are responsive to the
system requirements or that they are complete; it is an indication of the
detail with which software requirements have been stated. Nor must every A
PD be specified for every requirement. However, the lower the level of
documentation which must be reached before open PDs are specified, the
more subject to interpretation (and therefore to error) the requirement
becomes.

Identifying the software requirements from documentation such as the
type A specification or data processing system requirements is only the
first step in the requirements analysis. Next, it is necessary to
determine the traceability of the requirements both from user requirements
to code and from code to user requirements. The former will be discussed
here. Both are equally important.

TABLE 1. PERFORMANCE DESCRIPTORS
FOR SOFTWARE REQUIREMENTS

1. Requirement: A general, but concise, statement of the system or
software requirement. The details of the requirement will be presented
in supporting columns. The requirements will be structured so that the
system level requirement needing software support will be stated first,
followed by the lower level software requirements. The software require-
ments L-ill be distinguished by placing a dot (0) before each requirement.
Additional levels of dots (00 or 000) can be used to designate breakdown
of requirements to even lower level statements.

2. Source Selection: Document from which each requirement was
extracted, followed by the section number (DPSR, FS, DS, MM -3.2.1).

3. Implementing Process: The software unit which is intended to
provide the logic needed to satisfy the requirement. For the system
requirement, the implementing process will be the major software
function(s) which provide overall control.

*The judgment of the adequacy of the requirements specification is
typically developer, not tester, responsibility. The tester's concern
with requirements testability is, however, apparent.

-652-

4. Input: The data (tables, files, or other form) which are necessary
to fulfill the requirement. The general guideline is to provide only that
information which is required external to the implementing process. Data
required in local processing should not be included.

5. Processing Condition: The statement of what conditions, events,
system status, etc. (i.e., the software environment), must be present
before the implementing process control is provided.

6. Output: Data (tables, files, or other form) provided at the
completion of the implementing process. See input for additional
information.

7. Constraints: Any rules, regulations, etc., which are imposed
on the software system as a whole, i.e., priority structure, etc. These
are generally determined through review of the supporting information for
the requirement.

8. Executing Sequence: The order in which the Implementing Process
is executed relative to other Implementing Processes can be stated in
boolean form; e.g., (A) (B) (C). Conditions under which control is
passed should be noted. No attempt should be made to force several or
all Implementing Processes into a sequence. Processes should be related
as specifically stated in the DPSR or as can be determined from related
information within the DPSR.

9. Error Response: A statement of what course should be followed
in case of an error, such as voids in data, hardware failures, overloads,
etc.

10. Processing Volume: The maximum level of processing per unit
of time which the system should be capable of, i.e., five tracks, four
missiles.

11. Accuracy: The accuracy to which processing should be carried;
i.e., tracking of a target within certain boundaries, range to I foot, etc.

12. Time: Any constraints on amount of time the implementing process
has to complete its function; e.g., time the process should be initiated
or time the process should be completed.

13. Sizing: Resource requirements needed in response to the stated
implementing process; i.e., memory, tape, I/0 channels, etc.

14. Cross Reference: Any reference to any other d3cument, section
of a document, or processing unit which will provide supporting information
or execution support.

-653-

15. Comments: Any additional information needed to fully describe

the subject being discussed.

Requirements Tracing

As previously stated, the implementation documentation will, in
many cases, provide details of the requirement itself in the form of
PDs which were not detailed in the requirements document. In this sense,
the implementation documentation not only describes how each require-
ment will be implemented but completes the description and defines
additional requirements.* Thus, a first result, or by-product, of this
trace is completion of the definition of software requirements. The
real products of this trace are information on:

(1) Software requirements which are satisfied, totally or partially,

by the implementation (including both program structure and function).

(2) Software requirements omitted in the implementation.

(3) Implemented structures or functions which are not necessary to
support the software requirements.

Restated, this downward trace provides information on the completeness
and adequacy of the implementation, including requirements which are
missing from the implementation, and the exposure of extraneous imple-
mentation. Such conditions could reflect a misinterpretation of require-
ments, an expansion or redefinition of the actual requirements, the
addition of unrequired "niceties", or a variety of other unauthorized
occurrences which would increase the cost and time of development and
decrease the quality of resultant software.

The requirements trace, then, is an analysis conducted early in
the development cycle to assess the responsiveness or conformity of
the software implementation to the system requirements. The alternative
is to rely on test results later in the development cycle, at a point
where the cost of detection and elimination of errors has substantially
increased. In addition, absolutely complete testing of software for
complex tactical and weapon systems is neither physically possible nor
cost effective. This does not mean that an acceptable (and in that
sense "complete) test program is unattainable; but it does seem to
place added emphasis on the necessity for requirements tracing. Software
requirements can be traced downward by comparing information from the

*This is stated here simply as a matter of fact. The common practice
of partial or Incomplete statement of PDs in requirements-level docu-
ments does not provide for a strong requirements baseline.

-654-

type A, type B5, and type C5 documents.

Testing to Requirements

The test design process is much more complex and involved than gen-
erally considered. It is not the specification of a few system-level
tests to be conducted toward or at the end of the development process;
it is a multileveled, multifaceted operation which must be considered
throughout the entire development cycle. It involves a detailed knowledge
and comprehension of the software and system requirements as well as the
design of scenarios to test these requirements. This is of particular
significance with large, complex software packages, where complete
testing is impossible. The test designer must, based on his knowledge
of the requirements, PDs, and implementation, identify a limited number
of cenarios or test cases on which to base his evaluation. It would
appear that the overall familiarity with requirements and the detailed
understanding of the above, equip the analyst for test design.

This leads to another important consideration in test design - that
of collecting data from each test. Clearly, the evaluation of any test
is dependent not just on the information produced by a test, but on
the information collected during that test. Typical of many software
controlled or supported military systems, some of which are still being
developed, is the iniadequacy of or even disregard for information and
data collection on software/computer system performance. Collection
and recording of data during the operation of a real-time software sys-
tem does present some problems, in particular the impact of the time
required for collection/recording on the real-time process. The seem-
ingly obvious solution lies in the philosophy that the capability for
collecting and recording, and the time required for this during real-time
operations should be designed into the software/computer system.

Methods or techniques for software testing are more expensive than
one might anticipate, and more diverse than a narrow definition of
testing might allow. They can be categorized as either static or
dynamic: static methods are those which do not involve the execution
of (i.e., passing of data through) the target software; dynamic methods
are those which do involve execution of the target software. Thus,
testing can include not only testing to design and functional require-
ments in the dynamic sense, but also in the static sense, such as docu-
mentation analysis and simulation. * In view of the impossibility of

*Design requirements are those which relate to the program structure or
architecture. Included are timing, sequencing, and management and con-
trol of the software/computer system. Many of the executive/operating
system requirements and the software control (threading) requirements
fall into this class. Functional requirements, on the other hand, are
those which relate to implementation of math/logic models, accuracies,
volumes, and management and control of hardware (e.g., radar, missile).
Most of the application software requirements fall into this category.
Often it is difficult to distinguish software functional requirements
from system functional requirements.

-655-

complete dynamic testing, these static methods become necessary forms of
testing. This report will not discuss each method and its application
to dynami- and/or functional requirements; however, it should be noted
that there is more than one way to approach the problems of comprehensive
software testing.

Role of the System Tester/Evaluator

The role of the tester/evaluator in requirements testing varies from
unit through integration and system level testing. Initially the role in
testing is one of passive involvement, shifting to a more and more active
involvement as the test program progresses. At the unit test level, the
tester should have a general understanding of the unit test program and
philosophy so he can advise the project manager of its adequacy. This
involvement by the tester, in keeping with the single integrated develop-
ment test policy, is necessary for two reasons:

(1) Because of the limited amount of system level testing that can
be performed, demonstrations of many of the functional requirements and
capabilities of the software which occur during unit testing cannot be
repeated in the higher level tests.

(2) Because of the criticality to the tester/evaluator of the data
collection and reduction capability during the higher level tests,
evidence of an adequate data collection and recording capability must
be demonstrated during unit testing.

At the integration test level, the tester/evaluator's involvement
becomes more active. Here many of the top level requirements relative
to software architecture and hardware-software interfaces will be dem-
onstrated. The tester/evaluator should assess the adequacy of the
integration test program, identify additional testing needs and assist
in the integration of them into the test program, participate in
establishing acceptance test criteria, and participate in the evaluation
of acceptance test results. At the system test level, the tester/eval-
uator is again very actively involved. Whereas integration level tests
are oriented more towards demonstrating that subsystem (software in this
case) level requirements were met, system level tests are oriented
toward demonstrating that the integrated subsystems meet system require-
ments. The tester/evaluator should assess the adequacy of the system
level test program, identify additional testing needs and assist in
the integration of them into the test program, participate in establish-
ing acceptance test criteria, and participate in the evaluation of
acceptance test results.

Again, it is not sufficient for the system tester/evaluator to become
involved only at system level testing. Many of the software/system re-
quirements are not demonstrated, or even demonstratable, at this level.

-656-

Furthermore, if deficiencies are noted (e.g., inadequate testing, insuf-
ficient data collection and recording, or even incomplete or inadequate
statement of requirements), it is too far into the development cycle to
have impact without severe or potentially severe repercussions in sched-
ules and costs.

Software/Computer System Simulation

The application of simulations in the test and evaluation of complex
systems and their subsystems is a well-established precedent in both
industry and government. Since any type of testing short of a full-up
field test involves some degree of simulation, this is not surprising.
All of the software testing during unit-and integration-level and probably
during most of the system-level testing would qualify as some f or of
simulation.

Most test and evaluation techniques are addressed to the functional
operations. It is of little tactical significance to have an ideal track-
ing filter coded into the software if the program units which contain
that filter cannot be enabled and provided with the processing resources
(e.g., CPU time, memory access) necessary to perform those operations;
i.e., if the design of the total software process cannot support the
functional operations. The system sensitivities to software design are
generally not observable under nonstressing conditions; however, under
stressing or high-load conditions, where processing resources are at a
premium, these sensitivities are observable. Simulation of the software
design provides a mechanism for testing and evaluating that design under
a variety of load conditions.

Two approaches to software/computer system simulation are the use of
a "package" simulator and the use of a "langu~age" simulator.

(1) A package simulator provides a generalized algorithmic model of
a software/computer system into which a user can put those parameters
which define his system. A primary purpose for using a package simulator
is that the model itself is prebuilt, and the period for coding, checkout,
and validation of the model is avoided.

(2) A language simulator, on the other hand, is actually a specialized
programming language tailored to the specification and simulation of
software/computer systems.

Conceptual Level Simulation

-657-

Conceptual level simulation is done at a very high'level, considering
each major software function (or operation) as a single job. This type
of modeling would be appropriate early in the software development process.
It should be done as soon as the basic software requirements, the type A
specifications, are identified, before the code is written Its basic
purpose would be to provide an interactive model of the software requf.re-
ments, in order to assess Initial process designs, and to provide initial
timing and sizing estimates. (The type of modeling and simulation
suggested at this level may well be pencil-and-paper studies not requir-
ing the use of automated or computerized simulation techniques.)

Task Level Simulation

Tadk level simulation breaks the software functions into their com-
ponent tasks. This breakout could be at any of several levels of detail,
depending on either information availability or the purpose of the Sim-
ulation, or both, and would be based on the type B5 computer program
development specifications and/or type C5 computer program product
specification.

Software/Computer System Instrumentation

One -3f the most vital prerequisite functions that must be performed
is the planning for and procuring of instrumentation and test tools.
Many automitted tools exist on the open market today. (In fact, one of
the most corwprehensive glossary of software tools and techniques is
provided in reference 9.) Probably the least understood of the instru-
mentation is th~e use of monitors for system level testin~g.

A variety of both hardware monitors and software monitors is avail-
able in commercial systems. Monitoring problems arise, however, with
respect to special-purpose software/computer systems such as those
generally associated with military tactical and/or weapon systems.

Software Monitoring

A software monitor is usually thought of as a special routine or pro-
gram incorporated into the executive software which will cause certain
data related to the processing which is occurring to be collected. Typi-
cal of the data collected are routine processing sequence and processing
history, routine start and stop times, executive route intervention,
missed deadlines, and processor idle time.

Although not a software monitor in the purest sense, another type
of data collection which is built into a software routine is the
collection of data related to the functional performance of that routine.

-658-

This type of collection is appropriate for applications programs and
includes target data, missile data, radar data, etc. Little analysis
can be performed without these types of data during maintenance, as
veil as during the development phase of software acquisition.

A critical feature of data collection is that it must be designed
into the software. This is particularly significant for real-time
systems operating on a strict data processing budget and for highly
interactive systems where the time and point of collection are critical.
Tactical and weapon systems qualify on both counts. In order to assure
efficiency and appropriate data collection, software monitoring capability
must be considered and included in the initial software design, and the
resources necessary to provide collection (CPU time, memory, etc.) must
be considered when the determining the system's data processing require-
ments. Data collection code added as an afterthought leaves a trail
of problems and has several major drawbacks: it affects the overall tim-
ing and interaction of the various software modules; it introduces untested
code into previously tested code, which now must itself be retested; and
it is often accompanied by the implicit assumption that it will be re-
moved as soon as the testing it supports is over. The removal of data
collection code is a very questionable practice, since modules which have
been successfully tested are now being modified by the deletion of this
code; this leaves serious doubt as to the validity of the residual code.
The axiom 'f ly what you test" has been demonstrated to be appropriate f or
both large and small software systems. However, it is not uncommon for a
developing contractor to include data collection capabilities in a soft-
ware package for his own testing, only to remove part or all of them
prior to delivery of that package (as part of a tactical/weapon system)
to the Government, thus delivering a substantially different set of code
than was proven through the test program. This results in greatly reduced
visibility into a softwaare package which must be operated and maintained.
The next step is obvious: pay "someone" to incorporate a data collection
capability into this just-delivered software package.

Hardware Monitoring

A hardware monitor is a probe which, when physically attached to some
element of a computer system, is capable of detecting when a signal passes
to or through that element. Several such monitors are commercially
available. Depending on the sophistication of the monitor, 100 or more
such probes can be in operation simultaneously, relying on a minicomputer
to process the signals for recording on a storage device (usually magnetic
tape). The number of signals to a particular probe can be counted, or in
some cases, the content of the signals can be decoded. Further, the
characteristics of these probes are such that they produce no distortion,
noise, interference, or other side effects which could either negate the
validity of the data collected by them or affect the performance of the
equipment to which they are attached. Typical measurements made via
hardware monitoring include: CPU active/wait time, channel activity

-659-

(channel busy - CPU active, channel busy - CPU wait), peripheral activity

(seek in process - CPU wait), and designated software job activity (number

of times enabled, length of time active).

SUW4IARY

This paper has attempted to emphasize and to some degree inform the

reader on software testing. It is written through the eyes of the system

tester, but not (it is hoped) to the detriment of the other testing levels.

There is much literature and general knowledge about the middle ground

of software testing: e.g., program structure design, module design, cod-

ing, module testing. However, for the very early aspects---requireseuts,

objectives, external specifications, system architecture ---and the very

late aspects ---external function testing, system testing ---very little

relative knowledge exists. Until such time as the body of knowledge is

filled in software testing, the project manager's best policy is to in-

clude and seek the input of all the test participants from the beginning.

-660-

REFERENCES

1. Information Processing/Data Automation Implications of Air Force
Command and Control Requirements in the 1980s (CCIP-85): Highlights,
Vol 1, SAMSO/SRS-71, April 1972.

2. Blown Balloons, Aviation Week, September 20, 1971, p. 17.

3. Liklider, J. C. R., Underestimates and Overexpectations, Computers
and Automation, Vol. 18, August 1969, pp. 48-52.

4. Methodology Investigation Report, Validation of TECOM/ARMTE
Software Methodology, August 1976, TECOM Project 7-CO-RDT-WSl-005.

5. Gates, Howard P., Jr., et al, Electronics-X: A Study of Military
Electronics with Particular Reference to Cost and Reliability, Institute
for Defense Analysis, August 1973.

6. Boehm, Barry, Software Engineering, IEEE Transactions on Computers,
Vol. C-25, No. 12, Dec 76, pp. 1226-1241.

7. Kossickoff, Alexander, Software Requirements Analysis Validation;
Part I: Rationale and General Approach. The Conference on Software
Management in Defense Systems and Other Federal Programs, 1976.

8. Meyers, Glenford J., Software Reliability Principles and Practices
John Wiley and Sons, Inc., 1976.

9. Reifer, Donald J. and Trattner, Stephen, A Glossary of Software Tools
and Techniques, Computer, July 1977.

-661-

7n

17

cat
ca

co
C.J*loom CM

6 62-

do b- -- A
= $-

&A an. m C
as & - m - WX
%"-: L -1 c

tolC- .- CA C-

E~Zw

cmu CI =o - -

CC-.

L'A.

= K-

doe-
Lai mS

-C D

amS

ammi -663-

r 7 7=

LCIO
C-2.

C= -5

CD LA.J L
=0 C-.

LmAJ 9-
;= :M: = o*

-O 6" LA _&

= I. -C I--
C=) Lh.J =

pm- 6-- C.02 u

= =

LA--

I A LAM
I I w

I I
1A 126

-664-

AUTOMATIC TEST & DIAGNOSTIC8

Mitton Tenzer~

CENTACS

AUTOMATIC TEST & DIAGNOSTICS

SESSION CHAIRPERSON: Milton Tenzer

SESSION SUMMARY

Software development for automatic test and diagnostics systems
generally involved a two-step procedure ,in which the user requirements
are first translated into a test specification and then this specification
is extended into a computer program. The first paper described the design
attributes and features of a modern higher order language (OPAL), which
has recently been developed specifically for test programming. The second
paper described the two-step automation of software development to test
and diagnose electronic circuit boards/modules. A closely related non-
operational procedure language (NOPAL) is used to analyze the requirements
and to generate the test specifications. The programming can be performed
in IEEE ATLAS or OPAL. The third paper examined certain technical issues
relating to built-in test techniques for the evaluation of integral fault
detection and isolation capabilities for modular programmable digital com-
puters and assess their built-in test performance versus cost trade-offs.

OPAL - A MODERN LANGUAGE FOR TEST PROGRAMMING
by H. Kaunzinger, CENTACS

NOPAL: AUTOMATIC TEST PROGRAM GENERATION by N. Prywes,
Professor of Computer Sciences, University of Pennsylvania

SOME ISSUES RELATED TO BUILT-IN TEST FOR COMPUTER SYSTEMS
by J. Clary and Atul R. Jai, Research Triangle Institute

-665-

OPAL - A Modern Language for Test Programming

Helmuth M. Kaunzinger

Software Engineering Division

CENTACS

OPAL stands for Operational Performance Analysis Language and
its development has been sponsored by the U.S. Army. Unlike the ATLAS

language, which has grown into a test specification and test procedure

description language in a large committee with little regard to program-
ming problems, OPAL has been designed as a modern language for all phases
of testing with emphasis on test programming. OPAL has many unique and
new features not yet found in ATLAS. The most important and most cost-
saving features are: modularity, the concept of ATE independence by
stipulation of virtual test resources allowing ATE independent test pro-
cedure documentations, the notion of allocation of virtual-to-existing

ATE resources, the unambiguous resource model in describing and program-
ming a test to replace the outdated signal model concept, and the choice
of flow control constructs for structured programming. All these features

were treated in detail.

-666-

OPAL - A Modern Language for Test Programming

HELMUTH M. KAUNZINGER
US Army Communications Research

and Development Command
Center for Tactical Computer Sciences

Software Engineering Division
Fort Monmouth, New Jersey

OPAL stands for OPERATIONAL PERFORMANCE ANALYSIS LANGUAGE, an
acronym created during the early development phases of this test
language originally called CTL (Computer Test Language). Its develop-
ment has been sponsored by the US Army when it was recognized thiat
there was no official standard for test languages, especially for the
programming aspect of it. The development started in the early 1970's
building on the collective test engineering experience embodied in the
early versions of the ATLAS language intended for ATE independent test
specifications and procedure description. ATLAS evolved in a loose
committee effort in an uncontrollable fashion.

Before going into language details, it is necessary to list the
Army quality criteria for a test language. They have been established
in view of the expected multimillion expenditures on test programs
and their maintenance problems. Only the best language option can
produce all possible cost savings the taxpayer is entitled to. These
quality criteria are shown in condeT3ed form in Table 1.

In the following, the items in Table 1 are considered from the
viewpoint of cost savings. Obviously, a changing language specification
leads to horrendous maintenance problems. The extra cost is directly
proportional to the number of non-compatible versions to be maintained.
Even compatible versions increase the maintenance cost beyond a
reasonable degree. The specification of the OPAL language is so designed
that functions common to all testing remain stable and are located in
the core of the definition. Yet on the periphery of the language defini-
tion, there is room for low level nouns-, modifier-, and unit-expansions
to keep the language flexible for expression of novel concepts evolving
with the rapidly growing test technology.

Tracking of program with procedure are the prerequisite for inter-
ATE-transferability. Expressed in terms of cost efficiency, this
transferability is the quotient of the ATE independent procedure state-
ments over the total program (being the sum of approximately 95% pro-
cedural statements and approximately 5% ATE dependent resource alloca-
tion statements). Inter-ATE-transferability of programs has been
neglected by many system planners, however, they should be reminded
that they may be forced to support a 20-year life-cycle system with a
five-year life-cycle ATE constructed with commercial grade components.
If a change in ATE support is needed, a 95% inter-ATE-transferability

may come in handy.

-667-

O~ 0 i
"0 4-0

4.) > c c

0 (A 4.)b

(U 04 0) 0

LV 0r ;.-) co0, > 4-J (A
Ch 4Jf CA

I 0 0cC

aU 4-. 0- 0 0~-) 5
I. S-. S- 5 C

0 U) C. U) o

to m CL ~ t
C0 S- c4. 4.Z = a

0 4.)4.) . U n S.. 4$

4' o -0 La, 4
4- 4-) V u-C V '
cw a,) #A- V4-) a .
4.) .C a, 0. 4J 0

- -3: '4- M 0 4-'
5-x 0 0 *.-a

4.D 4) CA +)>
4-) CA- Cm C. c 4JO u

4.) Ia > (f4
I.1 to V) 4-) L a

04.) * 4-) U 44 Qr aoj c
'-U C 4.I $.-V

S- .,)a a, 4CA i)55a
o ~ CL E C 0Ca 0 4-)

4-- 0) a, W 4--41
U- CL .uOL a

o ~~ uCa 0 c s a 0 4J
r_ 0 4) 4J 0 V) (4-

0- toC C.U

a, (D a, a,) U) ao IA
4. -'. 5- "-C a, r_ (C

4JU CL i CU a)

CL = 4v-. V #A 0,
(A a,3 C4. +C '1 .0 a,

4) U IM J 4J - #A 0

cm~ 0 I-U 4 S -C U) V
4.J4 4.4- ~ - CL C .- 4) 4J

'4n 4.) a, I U 0a > u
*.4 .- C. S- Ca0-~

ea U CC 0)(I

0 w. 4- 1-- '-0 5- V
+j 0 1- V .4 -Ca OL C. a

"r v- 0C. L SC. a,

> go L. S-)L.

CJ 4. '0-0 0) '-) i.a, 4
00 21 U) d) C R C U

.JC a, CL -a,-8-0

Modularity of test programs is the most cost saving attribute of
OPAL. When a module is successfully compiled and validated, it remains
available in mass storage for subsequent use with other modules de-
scribing other test actions. Although there are no current statistic
data on savings through test oriented program modules available, it is
estimated that modularity alone will result in approximately 20% cost
savings in terms of mass storage space savings and, above all, program
procurement and maintenance cost.

Readability saves substantial expenditures of training of all
personnel required for program and documentation reviews (not test
programmers) considering a reasonable personnel turnover in all phases
of the system life-cycle.

Modern flow control combined with an orderly hierarchy in language
constructs do not only save cost in programmer generated programs, they
also make OPAL a highly cost efficient target of automatic test program
generation software.

After several iterations in design and an extended maturing process
using the latest techniques on language design as well as on express-
ability of the growing testing technology, OPAL has finally attained
stability and the status of a cost-effective test language standard.
In the following sections it is attempted to give a very condensed
description of this language.

The document defining and specifying the OPAL language (MIL-STD-1462A,
31 Mar 78) has almost 500 pages. The syntax is described in Extended
Backus Naur Form (EBNF) and might fit on 100 pages. However, it was
the full intent of the language designers to inhibit liberal implementa-
tions in various compilers or interpreters. Such liberal interpretations
of the language would lead to an implied proliferation which is certainly
not intended by the Army. Therefore, the syntax has been supplemented
by highly detailed Semantics and Constraints (approximately 70% of the
text). Approximately 10% of the document has been devoted to examples.

For the frame of this presentation it was attempted to consolidate
all major features of OPAL on three figures containing syntax. It was
attempted in the three-figure language summary to preserve the EBNF
notation used in the governing specification MIL-STD-1462A to the largest
extent possible. However, space limitations forced an approach showing
branches graphically with arrows rather than in the usual separate
repetitious breakdown into increasingly detailed productions. Maintained
were the standard parentheses holding arguments or subordinate values,
the standard curly braces defining mandatory options, the standard
vertical bar showing alternate options, the standard square brackets
showing optional options, and the standard sequence of three dots meaning
a construct repetitious of zero to many times.

-669-

Lines ending either in arrow heads or in open double corner brackets
show the logical breakdown either into a lower level construct, or into
the begin of an explanation (the end of which is shown in closing double
corner brackets). After many trials to condense the essential language
parts into three pages, this approach appeared to be the most acceptable
solution.

Starting in Figure 1, a test program consists of one or several
separately compilable modules. Each module has an optional limit on
names usable outside its bounds in the DEFINES clause. When omitted,
all names global in this module are exportable to other modules. One
or more optional use statements permit invocation of existing modules
to become part of the executable code. This compiled code of several
modules is bound into a single execution module immediately before
execution by the binder software performing the usual tasks of a link
editor and specific tasks involving test resource and uut related
data matching at binding time. If there is only a single module without
invocation of other modules, it is directly executable.

The only mandatory elements of any module are a number of context
statements. Approximately 5% of these are environmental statements
governing the allocation of programmers defined virtual resources and
their connection parts to existing ATE resources and their corresponding
connection parts. The remaining bulk of 95% consists of descriptive
statements to specify the chosen test procedure.

The descriptive statements are subdivided into four very specific
compound definitions:

1) Require-statements describe the needed resources to perform
all tests in a given module. The details of the description cover one
of nine resource types, their name(s), their controllable features,
their capabilities, their limits, their tolerances and accuracies and
finally meaningful names of their connection parts. The following is
a description of an ac voltmeter.

REQUIRE DYM AS AC VOLTAGETRMS SENSOR WITH
CONTROL
VOLTAGETRMS-OV TO 250V WITHIN 1% PLUS 10MV

CAPABILITY
FREQ = 1Z TO 5 MHZ

PORTS
HI, LO, GND;

-670-

00 0 U C0
04 0 a (1

~dH Cd 4-) -P'SCa)

F4 40 Or4 -4

to04 Ca) E: I r-~ -PV4)
O Hri +3 * H a f

P ~ E- ~ u) C34-' QPt. Pz z~ -4H 0 -
H Ca EO m4- +) 0 *H 4-3~ 03P 0) 0 0 W - H H 4 :

a)~ 0 a) :E: P.0 -P

0Cd *H 1 0) rxj 04 T "$T~wc p Wr - o o0a C2e 0- m~ - O.

Cd HO 1 0 0 In
HO~~U 9) 'U. 'd.

0 r 0 0w dr-*
ejc Aw - IH

rq 4-'-o4- (

W ~ j I 4F Cd -H
CdbP I- - - - C 0 P. -P

P.~~m H Q)).- ~N 4
02Cr to a Q)H+) CO)z. P. HH a+30 P.a

Ca C*~~0 . 5 U
.H0 4 0 . § - I I I H

0V~Cd -P C4

T$ a 4H WH 40 a) 01 mE a)
m 4- .HdN co C - H~t1: 0 0 4: Pr 4:c
H CO
z 0 +Ca E- W

Ca :j C)0 r-4

M z- COP (1)P) *..) 0~ ED E9 i. Hmf
4-'C)~ 0f4: H: 4- H E-

I L H ~ 0- 0: O I

20 0 P 42 H

NPg 0 1H rol 0O

4:-
0 I 4-) .

0. 0 .I 4

9: 0 -Htod-

0~r mc to4: ~ .

P. f

4-')

-671-

2) The descriptive elements for the unit-under-test-are contained
in the uut-stmt-list consisting of an initial identify statement followed
by zero or several optional identify or specify statements. An identify
statement is confined to meaningful names for uut ports followed by an
optional description of the type of connections. The specify statement
may be used to state limiting physical quantities for one or any com-
bination of previously defined uut ports. The following example shows
both statements.

IDENTIFY X, Y, Z AS UUT STIMULUS CONNECTION;
SPECIFY FOR X, I REFERENCED TO Z

LIMITATION ON DC VOLTAGE RANGE --2V TO 4V;

3) Another essential descriptive statement is the define-stmt.
It permits the full description procedures such as (main) subroutine,
function and (fatal) interrupts in terms of a head containing naming,
list of parameters and their declarations and in terms of a body leading
to local declarations and action statements.

4) The last descriptive statement is the declarative statement list
consisting of at least one declare statement followed by zero to several
optional declare statements or position statement.

The asterisks shown with environmental statement, require statement,
uut statement list, define statement and declarative statement list
indicate the global naming scope of these statements. Only the define
statement (exception: main subroutine or fatal interrupt) and the
declarative statement list can be vested into subordinate procedure
definitions.

Details on the declare and partition statements are contained in
Fig. 2. It is necessary to elaborate on these two statements as the
declare statement definition shows all the available data types in OPAL
as well as installation of variable or constant scalars or arrays.
(Existing test programming languages with data structures limited to
real and bitstring types have turned out to be wasteful in core utiliza-
tion and processing speed.) The declaration of separate names for
bitstring fields or character fields is a powerful tool for manipulation
of test patterns.

The partition statement, also shown in detail in Fig. 2 shows a
novel feature in OPAL permitting declared integer or real variables to
be partitioned into full (-infinity to + infinity) or into mixed ranges.
The chosen range names need only be unique for each one of the variables
partitioned. The following example shows a declaration and a partition

of two temperature variables:

DECLARE TEMPIN, TEMPOUT REAL IN DEGF;
PARTITION TEMPIN, TEMPOUT AS COLD<- 50.0<COOL<-

65.0<WAPM< 80.1<-ROT;

-672-

Cd

cc Q~) C~j
Ur-I1 0 Q W H

H~c. *ri 4~

I~~1 r-4~H ~ *-

'0) (1) C4-

-'4 10 10 0 0

0 C0)
A 0D

Q)2 0 E- 0) 0i
0Q r. W 0 4- V r

0d 00L

Ui) bCH-40
N ~~-P 4 ri

r. 0 4z

0 0 0 H r. rS
ri Hl 0$.4-P' 4-3

4- +3-- 0 V H) p.sa

0 0 a)
4 ~ r_~ (' H tlz P 4P ;f 0) (' 44 .) 0

0) 003 0) 4-CO

0)~r 0 P4O W___ 00')
0~~~L 0) >I I+, -4 q0.H

H H (I) 04+' 0''

* ~ ~ a1 H0~,0

0.00.0 0H -

4-3 13-I-

0- r U) > ;L,0H

07 *r *H0) 4)
+'i- >00d~- +: 3'~ *HO I--

=~*H 0clS0- dor-) r-4 l
W ,1.0nj9 -P H4 *rO C w

001 _H

H (a) H-ri~

H a) to P4-Pr
E- cii dMW 0 -dr 0 $:4~r

N0 I +:, -,I H . H-).
ou cm -P II NPP -P N i2

I-O H V f o>

0 0)
*di 4' V 01)) J0).-H -HI

4-3 Hd *i b)O'd C

P4 0 Cdt P
0 H: a) ;bO 0) m m a) Z0I

I to) 0 0 wP- Co-

bF-ho . 0 rti~~r H'4iiQ 0

o 0 0
0

-673-

lip- .- ,---wp

When range names are used in conjunction with their variables, simple
boolean expressions result and can be easily resolved in decision branches
with minimal programming.

Figure 3 is also a continuation of Figure 1 and picks up the defini-
tion of "'stmt" meaning any executable statement. The four major categories
are control statement, input-output statement, single action test state-
ment and multiple action test statement.

The control statements have been carefully chosen from a number of
modern languages for programming scientific and data processing computers.
They are, except for the assignment statement and table statement, proven
flow control statements. In the context of a test programming language
they provide the programmer with optimally structured progranming facilities.

The table statement provides the decision table capability favored
by the automotive testing community for direct decisions in single state-
ments or indirect decisions calling on actions defined within the compound
table statement structure.

The assignment statement essentially the same as in FORTRAN, ALGOL,
PL/I or PASCAL and provides OPAL with an ample capability of data
manipulation including an ample set of internal functions.

The input-output-statement group has been somewhat neglected in
Fig. 3. It Is noteworthy, however, that the OPAL programer defines
virtual resources for input-statements and output statements. Normal
actions associated with real peripherals such as input or output mode
of a teletype console, paging of a printer, rewinding of a tape, finding
a subdirectory on a disk, etc are automatically addressed in the novel
syntax of the open input/output statement and close-input/output state-
ment addressing ATE peripheral independent actions in so specified virtual
devices.

The most relevant statement category is the single action test state-
ment group as it provides specific action verbs for each major test action:

a) Setting a resource is controlled by the first three verbs SETUP,
RESET or CHANCE.

b) Defining the connection path is controlled by two verbs CONNECT

and DISCONNECT.

c) Activating a resource is controlled by the verbs CLOSE and OPEN.

d) Timing of a resource (such as initiation of triggering) is
controlled by the verbs START, STOP and WAIT.

e) Sensing a physical quantity by a resource and storing its value
into a memory location is controlled by the SENSE verb.

-674-

4 -) '0 0* x1\C cc 4- 0 -P31 5

4-3 r 0 - 0 10~ U)) - I0~I -0

H ; AH -I 44 H
-P -Pf,- +3 p-

4-) 45 rI-PQ . I C-- 0) P4 Cd 0 $4

0 co -. ' 00 4-bL 0D$ 0 00 OW)P
.-- "

3
1-- 0 0 00 0 0\P-ri 0 ,40 +30a)-4 00U+) -PV C. W) W0z 0)6 co) t0) rH *

0) 2VV 0) v
4

0dm41) v -

P-P 't'. -ob

03 +;P4+- - 4.3 + + U) QH+3 cd- to +) a)' A.P+ co -P rd- U4F -P-U)I ri r-~ to) U 01 0-PQ+3 4I . 00) -P0 +3- .9- z) + I 0) 4- W *H0) ~ ~ t 110 00 U)) IW 41' -0-
H)) -b 0)0L a)1 P 0) co -PH 10) w2- a)
4)W 00) r-0- 4- CH- +J 0)0 0143-i -I$

0)0).M -Hr HC- 02) () oj 4-5
U)) F- 009)W-O 0 4

m A A A E z4- 1

I 9 0 I2 0 A0 I (oEn I1 3 3P. -: - 1 -P H- Q) 1 4~- aP LN 4-7 ri -) U) -i F
0 02 + HH 0z; 0 4-3 a) 30 a) U) U)0 -HO 0)(
0 Cx *H 4-) U) :: 0 . W - 0-H 0 0 0 0 tou)--

7 '3 + gP +) 0) H~ ~
F-Iit -f f- f±H tPt

!.i-0 0
4- 0 0- r-4 4.:.

A U) a a -H-H-H -P

0 0 0o 4- -H0 H 4- -P 0L HH- a) -V Hw M0) m CH co 0 -P -P 0)w- 0 l0 f H A 00 0 - $ to- U)- 0 0- W 'n

U) -P -P 4- -+

-q U) I I +3 U) 4-) H 0) 0)H I1rl I n FU) r, Cd a) 0U I) .C,.) 0 IL- 0 r- VI H -1 0 00-H I H - WP "' 0- H F: IW U
0 0 (S) H +H U)A 0 -1 14 0 00 004+)4343 .;- 0A)4: O) r d :

03 -i a 4 r -) c) () a -r_ 43 E0 : H 0 Q + - - -4

.,j) L 0 4 C) + +:)4§ r-675- -

f) The SWITCH verb controls only a SWITCH resource. Any test action,
analog from dc to many Gigahurtz, or digital with inputs, outputs
and word rate limited only to target ATE families is expressable
in these single action test statements. Unlike the ATLAS
language complex, there is no need in OPAL to use special purpose
constructs for digital testing. This is extremely beneficial
for automatic program generation.

As in ATLAS, there are multiple action test statements shown as the
rightmost category in Fig. 3. The PREPARE, APPLY, READ and REMOVE verbs
are semantically equivalent to the single action verbs shown in Fig. 3.

The MEASURE verb is semantically equivalent to PREPARE, READ and REMOVE

while the MONITOR verb is even more complex. Its semantics are shown in
Fig. 3.

Single or multiple test action statements have a much similar and
often repetitive structure. Consider the example:

MEASURE AC VOLTAGE IN V INTO VB
USING DVM AT HI=P2, LO'P3;

This statement starts with an action verb, "MEASURE", followed by a
noun "AC" and a modifier "VOLTAGE". The optional units "IN V" precede
the storage variable "INTO VB". The next line covers the programmer-
named virtual resource "USING DXM" followed by the connections between
the SENSOR resource and the UUT in terms of "HI=P2, LO-P3". This multiple
action test statement could have been expressed in the following single
action test statements:

SETUP DVM WITH VOLTAGE =15 V;

CONNECT DVM AT HI=P2, LOOP3;

CLOSE DVM;

START DVM;

WAIT FOR DVM;

SENSE AC VOLTAGE IN V INTO VB USING DVM;

REMOVE DVM;

An important function performed by a correctly implemented OPAL compiler
is to check the states of all used test resources. These states are shown
in Fig. 4 in conjunction with single-action test statements, and in Fig. 5
in conjunction with multiple action test statements. Errors will occur
when the prior and subsequent states of an action-verb do not match with
these tables.

-676-

LU

o z
I-- LU
in UI)

ui 0-I- _L

V), L 0<

0 V/))I V,)
LU

C)

C.) LUJ

C,, -- -L /

-LUJ LU CA-
C) CL. C:)

0.LL F LLI

LU

LU L I- I-

= . 0 F- Z F--
U LI0 U) .J 9- CD w ') 0U

U) <) = U)

= 0 -

AI- 9- - I

C.) C)-677-

LU LULL LU

LU LU CoJLL

LU

C)

LUJ
--J

LU -JJ

LULU CL _U
- CO LU 0- - -

LLLJ

LLU

LU C)

LU LU 0- LU

LUJ

-678-

Within the frame of this highly condensed description of the OPAL
language, an oversimplified example of a test case with the corresponding
test program is given in Fig. 6.

In the concluding section of this presentation, it is shown that
OPAL fills all the needs of the chronological interaction between systems
related support requirements and the corresponding ATE software support.
The initial three life cycle phases: design specification, testability
study, and system development, need only prudent planning and continued
coordination of many aspects of the subsequent coding in the test language.

The next phase, the test specification, Is the first system require-
ment expressable in OPAL statements. The US Air Force and the NATO
Nations (to avoid ambiguities resulting from interpretation of natural
languages) already insist on the use of a test language. Based on prior
use. they specify ATLAS. If either OPAL or ATLAS is used, translation

into subsequent test-procedure descriptions cannot be avoided.

The next phase, the selected test procedure, is well documentable
in OPAL. With the concept of naming and specifying ATE independent
virtual test resources, this test procedure documentation in OPAL is
transferable to any &kTE having the described capability. With initial
consideration of the intersection of all resources on several ta'-2et
ATE, a truly transferable test procedure will be the end product.

For the test resource allocation phase, few statements governing the
allocation of the virtual resources to existing ATE resources are needed
(in comparison to the number of statements for test procedure documenta-
tion) to link the ATE independent test procedure with a particular ATE
architecture. The latest concept is to generate these statements
automatically by resource data table matching.

The next phase, the OPAL test program is the sum of the procedural
and environmental (allocation) statements of the procedure documentation
and resource allocation phases of the test program development process.
Although the current planning is generally based on manual programming
efforts, automatic generation of test procedures and even test programs
has been demonstrated in many successful pilot efforts in analog tests,
and particularly in digital tests and fault analyses. However, the
demands on the structural. quality of a language imposed by cost-effective
automatic program generation is much higher than those imposed by prograsmmers.

A life cycle phase common to all supported systems, the OPAL language
implementation, is currently scheduled for several ATE architectures now
in the Army inventory (such as AN/USI4-41O (EQUATE) and MATE 19). The
resulting processing speed and ATE software maintainability depends
largely on the quality of these compiler and run-time software development
efforts.

-67 9-

0 Lr E-4 ZZ

ox 0r H Z

3: -4 >Z O -4 ~ :

: -4 >: .ccc

* w > Z > O U-)
"40 > V 00 z -*Lf) F4 -4 0

Z '0c V/) 0 HC'J .Z *

t440~14 Cu w >>0

H-4 H H-- uCm B >txI W xi

0> VO 0 > >4"
<O-40 >~ <0 E-4 E-~L HJ 4E-

H IE-4 00 < w
11 IZ~z W Hl1 E- - ZO -0 -O-

00 04P4 u ct> '-Z :: - = t (H E
03 a - *4 O H 0 EH AZ Ul)

0 m1- &-4 0 Lz4 > 0

Hn CtO- 0 u~~ u < :D T- ~> 14(t moC
E-4 U) H 01 >44- 0z U)n- -4 w: Lz01

>- H - >- E-4 PW Q-H> H~0

> >> z FZq-
E- H H< H4 H w w/ r- '-:4 W/ 1=- C4

44I-Q) ::)U) " 0 H< C4 E- W~ W >E-

Z 4-4 0 I4 F-4 ZX OH4 -4
> 0 -400 - WP

0 LL

9:11

0~

04 H -3l

0o > -4
v 0 .1 of +4u~~i

-680-

The next phase for a specific system, the validation of test programs,
as well as the common validation of the ATE system software, may
be concurrent (which usually is an oversimplification). The same comments
hold for Unit-Under-Test (UUT) and ATE software maintenance.

The advances in test technology and their expressability in a stable
high-order test language standard is a prime concern regarding future
activities. OPAL has all the quality criteria required for such activities
is also the best candidate for the subsequent integration of the newly
expressable concepts from this technology evolution.

-681-

Automatic Generation of Test Programs in ATLAS*

Noah S. Prywes
Professor of Computer Science

University of Pennsylvania

Software development is generally characterized as a two-step
design procedure whereby first a user' s requirement statement is evolved
into a specification of what is needed, and then the specification is
further expanded into a computer program that satisfies the requirement.
Performing this two-step procedure automatically, in addition to saving
cost and development time, also provides direct interaction with the user
while the automatic system verifies the consistency, completeness and
non-ambiguity of the requirement and/or the specification.

The paper discussed in particular the automation of software
development for computer-controlled automatic test equipment to test and
diagnose the operability of electronic circuit boards. The NOPAL system
that automates this software development process illustrates automation
of software development in other areas as well.

Two major components of the system, referred to as the Top-Part
and the Bottom-Part, correspond to the above two steps. The analysis of
the requirement, the interaction with the user and the specification of
needed tests, are performed by the Top-Part. The user's requirements
statement must consist of a description of the circuit board that needs
to be tested and the objectives of testing (whether just to determine
operability or also to diagnose cause of failure). The Top-Part produces
a specification of needed tests and a variety of documentation. The pro-
gram design and optimization are performed by the Bottom-Part and a program
in the RCA EQUATE ATLAS test language is produced.

The paper concluded with a discussion of the facilities in NOPAL
to obtain wide use of it, in the automatic testing area where there is a
lack of standardization of test hardware and software.

*Work performed with support from Automatic Test Systems
Support, U.S. Army, Fort Monmouth, N.J.

AIJT(IATIC GEN~ERATION OF TEST PROGRAMS IN ATLAS

N. S. PRYWES

Department of Computer and Information Science

The Moore School of Electrical Engineering

University of Pennsylvania

Philadelphia, Pennsylvania 19174

1. Introduction

The subject of the paper is the automation of development of
software for computer controlled automatic test equipment to test and
diagnose the operability of electronic circuit boards. The paper also
contains a report on the NOPAL System that automates this process.

Software development is generally characterized as a three phase
procedure consisting of (1) development of requirements, (2) development
of a specification for each program unit, and finally (3) development
of each program in a high level language. A similar approach is generally

used in automatic generation of computer programs. The NOPAL System
consists of two parts: (1) a top-part which accepts as input a state-
ment of problem requirements and produces as an output a program speci-
fication, and (2) a bottom-part which accepts as input the program
specification and produces a program in the ATLAS Test Language.

Figure 1 illustrates these two parts in the context of the role of
testing in the life cycle of a device or an assembly referred to in
the following as a unit-under test (UUT). The UUT life cycle (on the
left of Fig. 1) consists of three phases: design, fabrication and
maintenance.

Information consisting of circuit diagrams, circuit layout and
testing objectives is evaluated in the design phase. Changes in the
design are required when testing does not satisfy the requirements. If
the design is satisfactory, the top-part of the system, on the right of
Fig. 1, determines a complete set of functional and fault isolation
tests to be employed in fabrication and maintenance. The bottom-part
produces a corresponding ATLAS program that would be utilized in computer
controlled automatic test equipment (ATE), which will test the UUT and
produce appropriate diagnoses. Failure statistics derived from tests
are used to evaluate the UUT and modify it's design, fabrication and
maintenance. Each of these parts is independent of the other and
could be usefully employed by itself. The interface between the top
and bottom parts is a specification of tests expressed in a language
named NOPAL. Unlike ATLAS, NOPAL is not a programming language. It is
non-procedural in the sense that it does not have facilities for stating
commands or for sequencing the execution of tests. Tests can also be
specified in NOPAL manually.

-683-

< I-LLIWI

0~~ jL0t

o-c DZ Q .ZC

</* -L - zwr Z
LL- w 0 i:0

z - L. I. w c
0 W L LI 0:UCD a. U. 0

0::4

U)

us z
w 1-4

LLA 00

=3 U)ab

a.... LAg _ 0 4
< -4

LL. 0%

za
CD) E2

ww

-684-

NN-

The name NOPAL was selected f or the system as it is the name of
a cactaceous plant which illustrates in its growth of stems the
incremental growth of tests during the life cycle of a UUT.

The plan for this article is to briefly describe the top and
bottom parts in sections 2 and 3 respectively. The reader may refer
to (Tinaztepe, 1977) for further description of the top-part, and to
(Yung, 1977) for further description of the bottom-part.

The wide use of the NOPAL System is currently limited due to
persistent software and hardware standardization problems which perplex
the automatic testing field. Section 4 discusses approaches for
resolving these problems.

2. Design of Testing: The Top-Part of NOPAL

The objective of this part of the system is to find a small and
effective set of tests f or a UUT, and express it in the NOPAL language.
The process is illustrated in Fig. 2. The input required of the user
shown on the left of Fig. 2 is described in Section 2.1. The methodology
and process shown at the center of Fig. 2 are described in Section 2.2.
The output reports, shown on the right of Fig. 2 are described in
Section 2.3. The NOPAL language, in which the tests are specified, is
described in Section 2.4.

2.1 Input to the Top Part of NOPAL

There are five input sections: (1) circuit description, (2) accessi-
ble test terminals, (3) UUT failure definitions, (4) fault-isolation
testing-objectives and (5) measurement accuracy and initial conditions.
The first is mandatory and the remaining are optional. They are all
important to understanding the test design process.

Circuit Description of UUT: The test design is based on modelling
and simulation of the UUT under nominal and malfunctioning conditions,
to determine the symptoms of component failures. The modelling is
based on the equivalent circuit drawing of the IJUT provided by the
designer. The equivalent circuit may consist of resistors, capacitors,
inductors, mutual-inductances, voltage and current sources, bipolar and
FET devices. Accurate modelling of the last two components may be an
involved task, however sufficient published data is available for popular
types. Each circuit component is given a unique name, where first
letter identifies the component type. The value of any element may be
defined by a numerical constant, table, or mathematical expression.
Component tolerances must be specified by stating the maximum percentage
deviation from the nominal value. Each circuit node is given a name.
Current flow direction and source polarities are also indicated. The
status of mechanical switches or potentiometers are treated as different

-685-

U TOP PART OF OUTPUT FILES
USER INPUT NOPAL PROGRAMS AND REPORTS

I ~ CIRCUIT,

D ESCRIPTXXW OF

U UT PREPARE FAILURE FAILURE
DICTIONARY ICTIONARY

AVA I LABLE
TEST

I TEUERA1
SAMDUSIMULATE CANA

FAALURE DFINIMON EST- USIM OUTPUT
CANA PRO6RA10

ISELECTION LOeiC I \ FAILURE.. TAL ,
EXCESSIVE,

EAUEETAMIUPA Y EVIMUATE

AC:HIEVIED

AMBIGUITY LEVEL

CREATE AETIOSMEASUREMEN

IIU

FAULT IOLATIO

AWRITE THE TEST NOPAL

SPECIFICATION IN ILTEST
NOPAL

F l 11PE 2 i:1Z')ItQ LR'i OF 11 JE "OP PA.'rT t)1. ,OPAI.

-686-

initial conditions of the system. The description of an equivalent
circuit follows conventions used in Computer Aided Circuit Analysis
(CANA) programs. We use the NAP 2 CANA programs and follow its conven-
tions. CRubner-Peterson 1973).

Availability of Test Terminals: Any of the circuit nodes may be
used for attaching test devices. However, the user may restrict the
class of terminals available for testing.

Failure Definition: The objective of testing is to discover
components of the UUT that have failed in a manner defined by the user.
Since failure is a relative concept, any deviation from a component's
nominal value may be declared by the user to be a failure. Failure
definitions include topological changes, such as the removal or addition
of a component. Typically catastrophic failures (open and short circuit)
and out of tolerance are most common. To ease the tasks of input
preparation, catastrophic failure modes are included automatically and
the user has to declare only additional failure definitions. The number
of tests that are required is related to the number of failures and
testing may be extremely time consuming and expensive. The user can
compromise between cost and quality by restricting the test objectives
to discover only the more likely or most harmful failures.

Fault Isolation Test Objectives: To reduce the number of tests and
lower testing costs the user may wish to accept tests which will some-
times not locate a failure in a specific component, butin one of the
components belonging to a small group. The failure isolation requirement
is expressed in statements denoting that Pk7 of the total number of
possible failures may be located in ambiguous classes consisting of k or
less components. P's are cumulative percentages therefore Pki < k
kl k2--kn. For example, the user may require unique fault Isolati~on

(kl=l) of no less than 50% (Pl=50) of the failures, and fault isolation
to groups of no more than 4 components (k2=4) in no less than 80%

(P2=80) of the failures.

Measurement Accuracy and Initial Conditions: Three types of accuracy
may be specified: (1) minimum measurment threshold, (2) percentage
accuracy of the measurement, (3) number of significant digits of the
measured value. The default values are 0.1% measurement scale accuracy
and four significant digits in the meter readings. All units are in MKS.
The final optional input section specifies also the initial conditions
of the UUT to speed the computer solution.

2.2 Methodology and Process of Test Design

As shown in Fig. 2, the first component of the process creates a
failure dictionary data base for the UUT, based on the UUT circuit and
failure descriptions supplied in the input.

-687-

Next, stimuli and measurements for tests are selected using the
three strategies described bdlow, one at a time. First, small voltage
stimuli are simulated as connected to connecting - points of the UUT,
with the objective of measuring impedances at the connection points.
This is referred to as the cold-circuit strategy. Next, the UUT is
simulated as powered with the nominally specified d.c. power sources, and
voltage and current measurements are conducted at nodes. This strategy
is referred to as a d.c. - nominal. Finally, the circuit is simulated
with a.c. signal at the input connecting-points and a.c. measurements
at the outputs of the circuit. This strategy is referred to as a.c. -

signal. The system design process provides for addition of more test
strategies in the future. These strategies are all employed one at a
time in the above order.

The circuit is simulated with the above stimuli, with the components
having nominal values, and with the components having failure conditions
enumerated in the failure dictionary, one at a time. The sensitivity
of the circuit response due to tolerances is, also determined for each
case. A CANA program, NAP 2 is used to perform the simulation. It has
been selected based on considerations of economy of computer usage costs.
The simulation produces for each test regions of values of physical
entities, at each connecting point, corresponding to the variation in
components within the allowed tolerance limits.

Based on this information, it is possible in the 4th component of
Fig. 2 to verify if the tests formulated so far meet the test objectives
set forth in the input. If testing objectives are still not met, the
next strategy is employed, new tests are examined and the circuit is
simulated until the above criteria is met, or until all three test
strategies have been exhuasted.

When it is determined that the fault isolation test objectives are
satisfied, the 5th component (see Fig. 2) is initiated. Its objective
is to reduce the number of tests. It is necessary then to generate
respective diagnoses. Next the effect of conjunctions and disjunctions
of passing and failing tests is analyzed to improve fault isolation
and reduce the number of tests. Redundant tests are then deleted.

The last component in Fig. 2 (6th component) produces the test
specification in the NOPAL form, which is acceptable to the bottom-part
of NOPAL.

2.3 Outputs From Test Design Process

There are three outputs produced by the top-part of NOPAL. The
first output is an ambiguity report. The second is the test and diagnosis
logic in tabular form. Finally, a test specification in NOPAL is produced.

-688-

Ambiguity Report: The ambiguity report consists of percentages Pk%
and number of members - k for each class (see Test Objectives in Section
2.1). It also identifies the actual failure members in each class.

Test and Diagnoses: This report aids human review of the tests and
the selected diagnoses.

NOPAL Test Specification Report: This report consists of a listing
of the test moduler, which is one of the components of the specifications.
The other components, the ATE and UUT specifications, must be completed
manually and used as input to the bottom part of the NOPAL system. (See
discussion below of the NOPAL language).

2.4 The NOPAL Language

NOPAL statements can appear in any order due to the nature of non-
proceduralness. Yet for organization purposes, each test specification
is divided into the UUT, ATE and Test-Module Sections.

UUT Specification: The UUT-oriented information is grouped into
two sections: (1) UUT connecting points which identify the connecting
pins for the testing and (2) component failures which optionally specify
potential faulty components with failure modes (i.e., types of failures).
Protective limits can be specified to protect the connecting point from
inadvertent damage caused by excessive stimuli power. A failure index
is used to grade the components by their likelihood of failure. This
information is used to increase the execution efficiency by first testing
the components which are more likely to fail.

ATE Specification: ATE related information which is needed to verify
the test modules and UUT specifications is organized in two sections:
(1) ATE connecting points, which are connected to the matching UUT
connectors, and (2) ATE functions, which specify the stimuli devices,
and the types of component failures. Purely computational functions
may also be used and listed here.

Test Module Specification: This section includes a collection of
test modules and the definitions of the diagnoses and messages which are
referenced in any test module. The test modules specification is the
core of the NOPAL specification. Each test module is specified indepen-
dently of the others. Thereby individual test modules can be modified,
deleted, or added without affecting the rest of the test modules. The
subparts of a test module (in addition to the test module label) are:
(1) the stimuli that need to be applied to the UUT at test time, (2) the
measurements that n-ed to be made with the comparisons that will determine
the results, and (3) the logic that selects diagnoses based on the results.

-689-

3. Automatic Program Production: The Bottom Part of NOPAI

Fig. 3 illustrates the components of the automatic program production
system. The inputs are test specifications written in NOPAL.

The first component in Fig. 3 performs syntax analysis of the test
specification. Also, the test specification is encoded and stored in
a simulated associative memory to facilitate later processing. Syntacti-
cal errors and documentation consisting of a specification listing and
several cross reference reports, formatted for easy readability, are
produced.

The second component incorporates an engineering knowledge-base
needed to determine and optimize the sequence of execution. In the
course of analysis, the system produces various additional reports
including error/warnings of detected inconsistencies, fault locating
summary, and a flowchart showing the test execution sequence.

The third component generates a test program in EQUATE ATLAS
acceptable to an RCA AN/USM-410 series ATE. The object program will
be compiled by the EQUATE ATLAS compiler, and then be ready to test
the given class of UUT's.

The automatic sequencing and optimization process is further
discussed below because of its importance and novelty. The NOPAL system
automatically optimizes intra-test and inter-test execution sequences
and generates control logic for dynamically evaluating the conditions
that determine the progress of the testing and selecting the next test
during execution. In the process of sequencing, the test modules and
their subcomponents are considered each as an integral unit that may
be represented by a node in a directed graph. The specification is
analyzed to determine precedence relationships between test modules or
their subcomponents. These precedence relationships can be represented
by directed edges in the directed graph. In all these precedence
relationships, the former node must precede the latter at execution
time of the object test program and is said to be a predecessor 'of the
latter, while the latter is said to be successor of the former. The
six major relationships are briefly explained in the following.

(1) Data determinacy incorporates the principle that data must be
generated before it can be used. The generation of data by a predecessor
test module is recognized by the declaration of a TARGET variable. A
successor test module references the same variable, declared as SOURCE.

(2) Interactiveness relationships are dictated by the need to exchange
messages interactively with the ATE operator. Its predecessor is a
diagnosis, and successor a test module.

-690-

MANUALLY GENERATED BY
PREPARED FAULT SIMULATION

TEST MODULES:
1. STIMULI
2. MEASUREMENTS
3. LOGIC
4. DIAGNOSE

SOURCE PROGRAM IN NOPAL

SYNTAX ANALYSIS TEST LISTING
SYMBOL TABLES
SYNTAX ERRORS

TEST SEQUENCING SPEC. CONSISTENCY
FAULT LOCATING SUM.
PRECEDENCE MATRIX

PROGRAM LISTING IN
OBJECT HIGH LEVEL

TEST PROGRAM ENCODING goTEST LANGUAGE

OBJECT ATE
PROGRAM

FIGURE 3 COMPONENT OF AUTOMATIC PROGRAM
GENERATING SYSTEM

-691-

(3) Component protection is based on the concept that non-destructive
testing can be achieved if a critical component is tested before other
components which depend on it for their normal operation. Hence, the
failure of such a critical component will prohibit further testing for
those dependent components.

(4) Fault isolation strategy schedules tests in a top-down fashion
using component subset relationships. The more generic fault isolation
tests are performed first. The lower level, more specific tests are
then executed or skipped, depending upon whether the failure is detected
at the top level.

(5) Stimuli application is concerned with efficient application of
waveform stimuli. It is based on the assumption that application of
stimuli is most time consuming, hence it is advisable to conduct all
the possible tests once a stimulus is applied.

(6) Failure likelihood uses the idea that efficiency is obtained
by first testing those components which are more likely to fail. Inf or-
mation is extracted from the failure index field in the UUT Component
Failures specification.

Based on the graph, the consistency, completeness, ambiguity, and
feasibility of the test specifications may be checked. Possible cycles
in the directed graph imply errors. They are detected and reported to
the user. Finally, all nodes are ordered in proper execution sequence
making up a flowchart of the program.

4. Impact of Lack of Test Software and Hardware Standards on the
NOPAL System

As noted previously, the present use of the NOPAL System is limited
to the RCA EQUATE AN/USM-410 automatic test equipment and the EQUATE
ATLAS compiler that is associated with the equipment. This limitation
is due to lack of hardware and software standardization in the field
of automatic testing. There are two main aspects to this problem.

First, there is lack of a common high level test programming
language that can be used with different types and models of automatic
test equipment. Although the names of the languages used, such as
BASIC, FORTRAN, and ATLAS, are common, in fact the compilers produced
by various manufacturers of automatic test equipment vary greatly, even
for the same named languages. For instance, the RCA EQUATE ATLAS
language, in which the NOPAL system produces programs, differs greatly
from the llewlitt Packard ATLAS language. The great efforts that have
been made to develop software standardization in the field of automatic
testing are partly responsible for the chaos in this area. The ATLAS
and the IEEE standards committees published an ATLAS standard in 1977.
But the newly proclaimed standard is admittedly not a programming
language for which a compiler may be constructed. More recently a

-692-

subcommittee of the ATLAS committee has been considering issuing a new
standard, named ATLAS-go, for which it would be feasible to construct
a compiler. However, the prospect of a usable and proven compiler for
a standard test programming language appears still far off. The US
Army, cognizant of this problem, has developed a proposed standard
test programming language named OPAL. Although OPAL has a potential
for greatly improved effectiveness for test programming, and a compiler
has not yet been constructed for it.

The second aspect of the problem is the lack of standardization in
the stimuli and measuring devices utilized in the various automatic
test equipment. This means that a programmer must know intimately the
test devices and a test program composed in a high level language must
be oriented to a specific set of stimuli and measuring devices. Namely,
even if there was a common high level test language, the programs would
still not be portable from one type or model of automatic test equipment
to another. This restriction would hold even where another model of
automatic test equipment contains simnilar or equivalent stimuli and
measuring devices. The OPAL language has facilities to specify the
parameters of stimuli and measuring devices that are utilized in a
program. It is envisaged that OPAL compilers for respective models of
automatic test equipment would be able to assign the available devices
that correspond to those specified in the program.

Because of this situation, it waE necessary to incorporate in NOPAL
various facilities that would facilitate its wider use. There is a
need for two types of capabilities; first, to produce test programs
in a variety of high level test languages, and second, to incorporate
in the produced programs use of stimuli and measuring devices that are
available in the automatic test equipment to which the produced programs
are oriented. The facilities to attain these two capabilities in NOPAL
are as follows:

(1) All except one of the NOPAL system components are independent
of the object high level test language in which the program are to be
produced. The only component of the system that is dependent on the
test programming language is the Code Generation component shown at
the bottom of Fig. 3. Furthermore, this component incorporates tables
which translate the entries in the flowchart (produced by the Test
Sequencing component shown in Fig. 3) into respective test programming
language statements. To produce programs in a language different than
the EQUATE ATLAS, it would be necessary only to modify the code generation
component of the system. It is hoped that the modifications would not
be difficult due to the tabular structure of this component.

(2) As already noted in the discussion of the NOPAL language, the
NOPAL specification has an ATE section where stimuli and measuring
devices that are to be utili7ed may be described. The NOPAL system

-693-

includes a library of routines, in the object test programming language,
which correspond to the devices specified in the ATE section of the

NOPAL specification. Thus, use of additional or different devices may
be incorporated in the program by entering in the library of the NOPAL
system routines that employ these devices. This feature also allows
the use in the NOPAL specification of very high level and complex
devices, which in fact require a number of lower level real devices to

perform the equivalent function. This capability allows the use of

higher level statements, thereby saving much labor by the user.

References

T. Rubner-Pieterson, "Network Analysis Program NAP 2",Technical University
of Denmark, Lyngby, Deamark, March 1973.

C. Tinaztepe, "Automatic Test Design", Ph.D. Dissertation in Computer
and Information Science, University of Pennsylvania, 1977. Also,
Research and Development Report ECOM-75-0650-F2, US Army Electronics
Command, June 1978.

Y. Chang, "Automatic Test Program Generation", Ph.D. Dissertation in
Computer and Information Science, University of Pennsylvania, 1977.
Also, Research and Development Report ECOM-75-0650-F-I, US Army
Electronics Command, March 1978.

"IEEE/ARINC Standard ATLAS Test Language 416-1976", IEEE Inc., 1972.

"Military Standard, Operational Performance Analysis Language (OPAL)",

MIL-STD-1462A, US Army Research and Development Command, March 1978.

-694-

Some Issues Related to Computer System Built-in Test

J. B. Clary
A. R. Jai

Research Triangle Institute

As system complexity has increased, attention has focused on the
need for military electronic systems which are easier to maintain. Modular
systems which have an integral fault detection and isolation capability,
referred to as built-in test (BIT), have been explored in the past as a
means of reducing repair costs while providing continuous system performance
monitoring. However, as circuits have become more highly integrated and
system complexity increased, the ability of system users to verify per-
formance and to rapidly locate faulty modules has been severely affected.
This has been particularly apparent in programmable digital systems.

This paper addressed some of the important issues related to the
design of built-in tests in programmable modular digital computers such as
the Military Computer Family. These issues included: (1) identification
of system on-line performance monitoring requirements, (2) identification
of relevant fault communication to the appropriate level within the system
hierarchy, and (3), identification and application of BIT effectiveness
measures to quantiatively assess the candidate test strategies.

-695-

SOME ISSUES RELATED TO COMPUTER SYSTEM BUILT-IN-TEST

J. B. Clary
A. R. Jai

Research Triangle Institute
Research Triangle Park, N. C. 27703

1. BACKGROUND

As system complexity has increased, attention has focused on the
need for military electronic systems which are easier to maintain.
Modular systems have evolved as a way of meeting this need by offering
system users a means by which complex electronic systems may be rapidly
repaired if the faulty modules can be identified [1], [2]. However, as
circuits have become more highly integrated and system complexities
have increased, the ability of system users to verify system perform-
ance and to rapidly locate faulty modules has been severely affected
[3], [4], £5]. The need, therefore, presently exists for improved ap-
proaches to modular system fault determination and resolution.

One approach which has received some attention in recent years is
the use of built-in-test (BIT) for on-line performance monitoring [6].
In the case of modular system structures, this concept requires the in-
corporation of fault monitoring as an integral part of basic module de-
signs. Implicit in the fundamental idea of BIT is the need for design-
ers to take some action to ensure that new systems have essential fault
detection capabilities. This need, in turn, requires that designers
understand technically sound BIT techniques as well as reliable analyt-
ical methods which may be used to assess alternative BIT approaches.

Unfortunately, there are few places in the realm of modern system
design and development where ad hoc approaches are more apparent than
in the present day fault detection, isolation and repair area. More
often than not, decisions concerning the kinds of fault monitoring
which should be implemented are left entirely up to individual circuit
and software designers. These designers frequently lack the detailed
technical knowledge as well as the motivation for doing a thorough Job
of incorporating adequate performance monitoring at all system levels.
Obviously, ad hoc approaches to built-in-test are counter to the nature
of otherwise orderly modern system design processes.

This work was supported in part by Contract NUU039-77-C-U363 from the
Naval Electronics System Command and Contract DAAG29-76-D-0199, D. 0.
No. 0781 from the Army Communications Research and Development
Command.

-696-

The need for an orderly approach to integral fault detection and
reporting is even more apparent in software programifiable digital sys-
tems. There are a number of reasons why this is true, the most apparent
of which are:

1. The additional flexibility made possible by machine program-
mability requires more versatile fault detection approaches,

2. The same programmable structure may be used in real-time as
well as non-real-time operational environments which may pre-
clude off-line software-only test schemes,

3. The presence of an internal machine hardware/software inter-
face which does not exist in non-programmable hardware,

4. The opportunities which exist in many applications of program-
mable digital systems for sophisticated error recovery schemes.

The existence of the need for more orderly approaches to integral fault
detection, reporting and error handling reflects the way modern comput-
ers have evolved. Programmable digital machines have evolved in such a
way that areas of technical specialization have tended to center about
either digital hardware or software. As a consequence, digital systems
specialists ofteni view problems from either a hardware standpoint or a
software standpoint. Communication between the two schools, in many
instances, hias been minimal.

Another important consideration is that while commercial minicom-
puter functional capabilities often may be adequate to meet the needs
of the military, there can be differences in on-line performance moni-
toring and fault localization philosophies. Special attention must be
given to the military emphasis on minimizing total system life cycle
cost (LCC) as opposed to emphasizing the minimization of purchase price.

The Army, through the Center for Tactical Computer Systems
(CENTACS), Office of the Communications Research and Development Com-
mand (CORADCOM), is working cooperatively with the Navy and the Air
Force on a new approach to developing and acquiring computers for the
military [7 - 10]. The effort is known as the Military Computer Family
(MCF) Program. The Military Computer Family Program goal is to provide
defense system developers with a software-compatible family of stand-
ard, modular computers. The MCF program stresses software compatibil-
ity between prior generation computers at the level a programmer needs
to know to write time-independent machine language programs. At the
same time, the MCF concept calls for hardware module compatibility
through standardized Form, Fit and Function (F0) specifications.

A consequence of being able to use existing software and state-of-
the-art modular hardware is the potential reduction i n total computer
system life cycle cost. An important aspect of the proposed MCF pro-
curement procedure with potential LCC savings is the concept of hard-
ware vendor warranties. The MCF hardware warranty concept is viewed as
a means of reducing logistic support costs through improved reliability.
Implicit in this approach is the necessity of 1) knowing with a high

-697-

degree of confidence that a module is not performing properly, 2) iden-
tifying which module is faulty, and 3) effecting repair through module
replacement. To meet this need, an effective and efficient means of
detecting and locating hardware faults is necessary.

The following discussion considers some important issues relevant
to detecting and reporting faults in programmable modular digital com-
puters such as the Military Computer Family.

II. RELEVANT BUILT-IN-TEST ISSUES

The on-line performance monitoring problem is characterized by the
need to achieve effective observ 'ability without interfering with the
functional processes under observation. Implicit in this requirement
is the need to add redundancy in some form to the system. This redun-
dancy may take the form of additional hardware, firmware, software or
combinations of all of these. It is essential to be able to observe
appropriate parameters, make decisions concerning these observations
and report the findings to an appropriate level within the system
hierarchy. To do so effectively implies the introduction of test per-
formance and cost metrics based upon system objectives and knowledge of
the system fault population. Based upon an understanding of these re-
quirements, intelligent decisions can be made concerning the allocation
of built-in-test resources within the functional hardware and software
structure.

To summarize, the incorporation of built-in-test involves the
following issues.

1. Identification of system on-line performance monitoring
requirements,

2. Identification of the fault population,
3. The determination of a strategy for allocating the built-in-

test resources including fault communication to the appropr-
iate level within the system hierarchy,

4. The identification and application of built-in-test effective-
ness measures to quantitatively assess candidate test
strategies.

The following discussion considers each of these issues in further
detail. In order to be specific, the Military Computer Family is used
as an example of the incorporation of built-in-test in programmable
computers.

On-Line Performance Monitoring Requirements

The Military Computer Family program addresses the need within DOD
f or new generation digital hardware while maintaining software compat-
ibility with prior generation machines. In addition, the MCF concept
goes beyond the transportability of software from old machines to new.

-698-

Under the MCF program, a whole new procurement process is made possi-
ble through modular hardware computer structures. In particular, the
modular hardware structure of MCF allows components to be procured
simultaneously from multiple sources.

In order to insure the success of this competitive procurement
process and to motivate vendors to produce reliable form, fit and
function compatible designs, MCF components will be procured with
vendor-backed warranties. The MCF warranty concept provides incentives
for vendors to produce reliable components. At the same time, how-
ever, it places the burden of identifying faulty modules with a very
high degree of confidence on the government in order for warranties to
be exercised. It is, therefore, essential that available means be
provided for identifying and locating faulty MCF components. An addi-
tional aspect of the MCF warranty concept is the necessity of measur-
ing component on-time if the components are to be warrantied for a
pre-determined number of hours. In addition to being important for
warranty validation, the elapsed time data may be useful in fault pre-
diction and localization.

Finally, it is vital for MCF users to know system operating cap-
abilities and limitations at all times. On-line performance monitor-
ing is of utmost importance to field commanders and others who rely on
computer systems to provide them with combat-critical information. It
is, therefore, a primary objective of BIT for MCF to meet this re-
quirement through timely fault detection and alerting.

In summary, the objectives of BIT for MCF are:

1. To provide continuous system monitoring and indication of
system mal function,

2. To diagnose the cause of system malfunction to a module level
with a low probability of a false module pull, and

3. To measure and record module elapsed power-on time.

Fault Population

Hardware faults in digital computer systems can be classified in
two basic categories: the stuck-at (solid or permanent) faults and
the intermittent (transient) faults. The stuck-at faults occur when a
logic signal remains permanently in either a one or a zero state.
Such failures are consistent and the failure symptoms are reproduc-
ible. This facilitates the isolation of stuck-at faults through well
defined diagnostic test procedures.

The intermittent faults on the other hand are defined as random
failures that prevent the proper operation of a unit for a short peri-
od implying that the duration of the failures is not long enough for
the application of a test procedure designed for permanent faults [111.
The intermittent faults occur due to environmental as well as non-
environmental reasons. Environmental conditions such as temperature,
humidity, vibration, electrical and electromagnetic interferences,

-699-

etc., induce intermittent faults. More important, however, are the
non-environmental intermittent faults which are caused by loose
connections, resistance variations, deteriorating or aging components,
etc.

Recent studies in fault diagnosis [11], [12], [13] indicate that a
major portion of digital system malfunctions are caused by intermittent
faults. In some systems, 80 to 90 percent of the faults are estimated
to be intermittent [11]. Furthermore, these faults have been found to
account for more than 90 percent of the total maintenance expense
because they are difficult to detect and isolate.

Built-In-Test Resource Allocation

In view of the built-in-test objectives and the Form. Fit, and
Function (F0) specifications for the MCF computers, a top-down ap-
proach to the allocation of BIT resources has been recommended. In the
MCF computers, the following three hierarchical levels are easily
identifiable.

1. MCF Member Level (System Level)
2. Chassis Level
3. Module Level

Built-In-Test techniques may be incorporated at any one or combi-
nations of the above mentioned hierarchical levels. The basic approach
used in this study is to identify a set of BIT techniques at each level
and then select candidate BIT techniques based on certain performance
versus cost criteria. The BIT effectiveness criteria for performance
and cost are discussed later.

Each hierarchical level affords a certain level of fault detection
and a degree of fault isolation capability because of the observability
and controllability problems. In order to enhance the performance/cost
figure of the candidate BIT techniques, it is necessary to study the
fault detection requirements and the BIT resources available at each
hierarchical level. Furthermore, the fault communication and hardware!
software interfaces between the various constituent BIT elements at
each hierarchical level need to be investigated.

In sunmmary, fault detection and identification at the various
levels may be performed using continuous monitoring, sampled monitor-
ing, idle time monitoring or other off-line techniques. Approaches
should be emphasized which provide continuous monitoring with minimum
impact on system performance.

Built-In-Test Fault Communication

An important consideration in designing programmable computers
with built-In-test is the communication of the fault information within
the system. The fault information generated by the on-line monitoring

-700-

hardware passes through several levels of hardware and software ulti-
mately to the user. A systematic means of communicating the fault in-
formation is essential to facilitate the handling of errors in an
orderly fashion.

In modular computers, such as the MCF computers, the hardware is
functionally partitioned into modules which communicate with each other
via common bus structures. A collection of modules which complement
each other functionally form a hardware subsystem. The complete system
consists of a number of subsystems. This type of partitioned hardware
structure lends itself to a similar partitioning in the implementation
of the built-in-tests for on-line fault monitoring. In this case, some
fault detection circuitry would reside on each module and monitor the
operation of that module.

The faults when detected must be reported from the module level to
the subsystem level and ultimately to the system level. The fault com-
munication may occur over existing system bus or may be done via sepa-
rate fault monitoring bus. In either case, it is necessary to preserve
the identify of the fault source, the type of error, and the state of
the machine at the time of the occurrence of the faults. This may be
done in hardware by using status bits or register(s) associated with
every module or subsystem.

In addition, the occurrence of the fault condition must be re-
ported to the next higher level at the earliest moment so that quick
response for error recovery is possible and the effect of fault on the
rest of the system can be restricted. Error recovery may be attempted
in the hardware at the level at which the fault is detected or at suc-
ceedingly higher levels by retrying partially or completely the in-
struction cycle in which the fault was detected. Instruction retry
presumes that the state of the hardware at the beginning of the cycle
is preserved.

If the hardware recovery is either not possible or the attempts at
recovery fail due to the existence of a permanent fault at any hardware
levels, the fault information should be communicated to user via the
software.

The hardware/ sof twa re interaction in the above context of fault
communication and error handling is important because it addresses the
fundamental issue of fault observability in programmable computers from
the user standpoint. Before discussing the BIT hardware/software
interface, it is important to understand the process of fault reporting
in software.

The functional software controls the functional hardware by a se-
quence of instructions to the hardware. In most hierarchically struc-
tured software systems there are several levels of software. The
highest level is the application software which is closest to the user.
The lower levels consist of specific task oriented routines which are

-701-

called fromi the application software. There are two methods available
for reporting faults to higher levels. These are discussed below.

The first method delegates to each level the responsibility of
acquiring fault information and reporting it to the next higher level.
This involves the use of error termination code at all levels. Each
called program has at least one returned error parameter. This indi-
cates, after the termination of the program whether an error has occur-
red during the execution of the program. This may be accomplished by
checking the appropriate hardware error status registers during the
execution of the program.

This approach is generally used for reporting errors which are
non-critical to the operation of the system, such as 1/0 errors. An
advantage here is that it permits the handling of errors at the proper
level which has enough information to take appropriate action. There
are several drawbacks in this approach. Firstly, it makes the programs
more complex; secondly, it makes the separation of functional program
and error handling routines more difficult. Furthermore, there is a
delay of at least several instruction cycles between the time fault is
detected and the time it is reported to a level where corrective action
can be taken. *

An alternative approach is to use interrupt or trap mechanism to
report faults. Here the normal execution of the current instruction
sequence is terminated and control is transferred to a predetermined
location at the occurrence of the fault. Flexibility may be provided
by making the trap vectors user specifiable. Also, a specific trap
location may be associated with a fault or a group of related faults
which preserves their identity in the reporting mechanism. Thus, sepa-
rate trap handling routines may be provided at each trap location to
specifically handle that type or class of faults. Trap handling rou-
tines can, if possible, begin immediate error recovery otherwise notify
the user directly of the error condition. Trap mechanism is generally
used for reporting critical faults such as those in the memory or CPU
which demand immediate attention.

The above discussion leads to a possible conceptual BIT hardware!
software interface. The BIT hardware/ software interface consists of a
hardware module, the BIT-status hardware module (BHM) and a software
(or firmware) module, the BIT-status software module (BSM). These two
modules, acting in concert, maintain the fault status of the computer
hardware and provide the ability to invoke appropriate handlers for
hardware faults as they occur. Figure 1 depicts the overall framework
in which these modules reside [143.

The function of the BHM is to receive the Pass/Fail (P/F) indic-
ators generated by the BIT circuitry associated with the functional
hardware modules. Should a fail condition be indicated, the BHM module
will register this failure according to the module indicating the fault
and will, at the same time, generate an (high-priority) interrupt to
the functional hardware. Recognition of the interrupt by the funct-
ional hardware will cause control to be transferred to the BSM, the
first in a chain of software routines which will handle the fault.

-702-

IF

C4-4

~~-.J

4(14 a)Hv H

III I =
tII cI

SI H
m -

goo

00

1--4

E-4

-703-

It is envisioned that the BSM will be a general-purpose system
routine, adapted to the computer and its general application, and not
to specific users of the computer. The BSM, therefore, will not (in
general) be part of the user-supplied application software and may ap-
pear in the form of firmware.

Built-In-Test Effectiveness Criteria for Performance and Cost

The effectiveness of any built-in-test approach may be measured in
terms of the ratio of its performance to the cost of implementing it.
In quantifying the performance/cost ratio there are a significant num-
ber of parameters or sets of parameters which can be considered.

In view of the broad objectives of the built-in-tests for the MCF
computer systems, a set of general parameters has been chosen. Since
the main objective of the BIT for the MCF is to detect and isolate
faults with a low probability of false module pull, the performance
parameters should be able to measure the probabilities of detecting and
localizing faults as well as the probabilities of false alarms.
Furthermore, since the mean time to repair is also an essential consid-
eration in the maintenance of MCF computer systems, the performance
parameters should include the time required to detect and isolate
faults. This forms a set of five performance measurement parameters
which are defined below.

PSFD - Probability of System Fault Detection

PLFE - Probability of Localizing to Faulty Element
PFA - Probability that suspected Faulty Element is not

Faulty. (False Alarm)
TSFD - Time to System Fault Detection
TLFE - Time to Localize to Faulty Element

The cost of implementing a BIT approach can be broadly categorized
into hardware and software costs. The hardware costs mainly involve
space, power, and failure rate. The hardware cost can be measured in
terms of the percent increase in the space, power, and failure rate due
to the additional BIT circuitry.

The software costs on the other hand are more difficult to assess.
The software is impacted at three levels: 1) operating system soft-
ware, 2) applications software, and 3) diagnostic software. Additional
BIT functions typically increases the operating system responsibilities
because it must provide - the user/BIT interface and may have to per-
form error handlir: ,sl, The BIT functions are generally transparent
to the user. Howe -, . .pplication software will be impacted if the
user is to be proviled with the option to control some of the BIT func-
tions. The diagnostic software can generally be simplified by addition-
al BIT hardware.

-704-

L..

III. CONCLUSIONS

The preceding sections have briefly discussed several issues re-
levant to the incorporation of built-in-test resources in programmable
digital computers. These issues included I) identification of per-
formance monitoring requirements, 2) identification of the relevant
fault population, 3) the determination of a strategy for allocating
built-in-test resources within the system hierarchy, 4) the identi-
fication and application of built-in-test effectiveness measures upon
which to quantitatively assess candidate test strategies. One of the
important aspects of any BIT approach in programmable digital systems
is the communication of fault information between hardware and soft-
ware. Primary elements of the interface between BIT hardware and error
handling software have been identified and ways to do task allocation
between hardware and software have been considered.

-705-

REFERENCES

1. "Military Standard Design Requirements for Standard Hardware Pro-
gram Electronic Modules," MIL-STD-1389 (Navy), March 14, 1973.

2. "The Navy Standard Hardware Program," NAVELEX 0202-O5Aa, November
1973.

3. "Electronics-X: A Study of Military Electronics With Particular
Reference to Cost and Reliability." Volume 2. Final Report for
Defense Advanced Research Projects Agency. Prepared by Institute
for Defense Analysis, Arlington, Virginia, 1974.

4. "Report on Navy Issues Concerning Automatic Test, Monitoring and
Diagnostics System and Equipment." Prepared for the Assistant Sec-
retary of the Navy (R&D). 13 February 1976.

5. "Electronics Technology Exploratory Development (ED) Strategy,"
Submitted to Director of Navy Technology, 28 September 1976.

6. Clary, J. B., Gault, J. W., Weikel, S. J., Whisnant, R. A.,
Alberts, R. D., "A Study of a Standard BIT Circuit," Final Report,
Contract N000163-76-C-0231, Naval Avionics Facility, Indianapolis
(NAFI), Prepared by Research Triangle Institute, Research Triangle
Park, N.C., February 1977.

7. Coleman, A. H. and W. R. Smith, "The Military Computer Family: A
New Joint-Service Approach to Military Computer Acquisition," Com-
puter, Vol. 10, No. 10, October, 1977.

8. Barbacci, M. R. and D. P. Siewiorek, "Evaluation of CFA Test Pro-
grams via Formal Computer Descriptions," Computer, Vol. 10, No. 10,
October, 1977.

9. Burr, W. E. and R. Gordon, "Selecting a Military Computer Architec-
ture," Computer, Vol. 10, No. 10, October, 1977.

10. Fuller, S. M. and W. E. Burr, "Measurement and Evaluation of Alter-
native Architectures," Computer, Vol. 10, No. 10, October, 1977.

11. Tasar, 0. and V. Tasar, "A Study of Intermittent Faults in Digital
Computers," Proceeding of National Computer Conference, 1977.

12. Maestri, G. H., "The Retryable Processor," Proceedings of Fall
Joint Computer Conference, 1972.

13. Ball, M. and F. Hardie, "Effect of Detection of Intermittent Fail-
ure in Digital Systems," Proceeding of Fall Joint Conference, 1969.

14. Clary, J. B., Haidt, J. G., Parnas, 0. L., "Basic Research in Sup-
port of Concurrent Fault Monitoring in Modular Digital Systems,"
Section 3.1 of Interim Technical Report, Contract NOU039-77-C-0363,
Naval Electronics Command, Code 304, Washington, D.C., Prepared by
Research Triangle Institute, Research Triangle Park, N.C., January,
1978.

-706-

LfCl

0

LI

+ ±

00

ILJ

w
F-
u

+0 w

(suno 9 0 31V 311iivw

o77

FAILURE RATE OF POP-11/70 at 250C

Percentage of

Number of Failure Rate Total Failure

Subsystem P.C. Boards C/10 6 Hr. Rate (%)

Central Processing Unit 9 152 25

Floating Point Processor 4 89 15

Cache Memory (1K by 16 bits) 4 66 11

Main Memory (64K by 16 bits) 4 296 49

Total 25 603 100

FAILURE RAIE OF PDP-11/70 at 850C

Number of Failur Rate Percentage of
Subsystem P.C. Boards /109 Hr.) Total Failure

Rate (%)

Central Processing Unit 9 383 4

Floating Point Processor 4 263 2

Cache Memory (1K by 16 bits) 4 199 2

Main Memory (64K by 16 bits) 4 9910 92

Total 25 10755 100

-708-

SUMMARY OF PERFORMANCE/COST ESTIMATES
FOR THE MODULE, CHASSIS AND SYSTEM LEVEL
BITS FOR A SINGLE PROCESSOR COMPUTER SYSTEM

Module Chassis System
Level Level Level

Parameters BIT BIT BIT

PSFO 65.4% 81.4% [1] 90% 1]

TSFO 1-2 psec 4.2 sec 2.44 msec

PFA 0% 5.4% 0.15%

PLFE 100% 100% 100%

TLFE 1-2 Psec 4.2 sec 2.44 msec

A 21.5% 10.5% [2]

P 16.9% 6.1% []

FR -13.3% [3] 5.4% [2]

OS [4] N.A. N.A. 100

AS N.A. N.A. N.A.

DS [4] N.A. 783 1150

Notes:

[I] PSFD at chassis and system level include the fault detection
capability of the Module Level BIT.

[2] Cost of microdiagnostic hardware is included in the Module
Level BIT for the CPU3 module.

[3] Negative failure rate increase is due to the use of error
correcting code in tne memory subsystem.

r i Number indicate rumber of additional assembly language level
instructions.

-709-

COMPUTER ARCHITECTURE/STANDARDIZATION/

COMMONALITY

Frank E. Ward

CENTACS

COMPUTER ARCHITECTURE/STANDARDIZATION/COMMONALITY

SESSION CHAIRPERSON: Frank E. Ward

CENTACS

SESSION SUMMARY

This session included three papers:

The first paper, by Harold Stone, U. of Mass., and A. H. Coleman
of CENTACS, was on the subject: "Life Cycle Cost Study of the Effects of
Standardization of Military Computer Architecture". This paper analyzed
the relative life cycle cost of 78 Army/Navy Military Computer-based systems
as a function of alternative instruction-set architecture scenarios.

The second paper, by William Burr of CENTACS, discussed the topic
"A Bus System for the Military Computer Family". This paper discussed the
results of a study to determine the requirements for military computer
system buses or standard interfaces to permit meaningful life cycle compe-
tition and graceful technology insertion. Four buses were proposed:
(1) an internal or I-bus interconnecting modules within a chassis, (2) an
external or E-bus interconnecting chasis, (3) a low-speed peripheral bus
and (4) a high-speed peripheral bus.

The third paper by William Dietz of Carnegie Mellon University was
on the topic "Evaluation of Alternative Computer Architectures". In this
paper a comparative evaluation of six alternative computer instruction-set
architectures was made. A discussion of the methodology for evaluating
instruction-set architectures was also presented.

-710-

Life-Cycle Cost Analysis
of

Instruction-Set Architecture Standardization
for

Military Computer-Based Systems

Harold S. Stone
University of Massachusetts

and

Aaron Coleman
U.S. Army CORADCOM

This life-cycle cost model reported here measured the effects
of standardization of computer instruction-set architectures on military
computer-based systems. The study considered six different scenarios,
one of which assumes that standardization is not done, but only four
different computer architectures are used across all systems. The remain-
ing five scenarios considered the effects of standardizing on each of the
architectures UYK-7, UYK-19, UYK-20, GYK-12, and UYK-41 (PDP-11).

Standardization impacts life-cycle costs in several ways. There
is an inherent difference in the value and utility of the existing support
software bases for the several architectures. The commercially supported
architectures generate investment to augment and maintain a substantial
portion of the software base free of government expenditure. Finally,
some architectures are more efficient than others, and result in lower
hardware costs if used as a standard.

The cost model attempts to incorporate these factors in a meaning-

ful way to judge the relative importance of these factors and other factors
on total life-cycle cost. The results of the model show that the CYK-41
results in the least life-cycle cost of any scenario over a broad range of
annual rates of investment in support software. These conclusions are
attributed to the fact that the CYK-41 ranks best or near best in each
aspect that impacts total life-cycle cost.

-711-

I. Introduction

The objective of the study reported here is to measure the economic ef-

fects of standardization of computer instruction-set architectures on military

computer-based systems. For the purposes of this study, the term architecture

refers to the characteristics of a computer defined by its instruction reper-

toire. Two computers are said to have the same architecture if any assembly

language program for one computer runs on the other and conversely. Two such

computers may be vastly different in implementation and have radically differ-

ent costs and performances. The commercial computer world has demonstrated that

a family of implementations of a single architecture is feasible and desirable.

Military computer systems are starting to take on characteristics of com-

mercial families in that prior-generation computers are being reimplemented

with new hardware to take advantage of the technological improvements in cost

and performance. At issue is the question of whether to standardize on a fam-

ily of implementations of a single architecture or to use a mix of many archi-

tectures, each used in an environment best suited to it. If standardization ap-

pears to be attractive, then a further question is which computer architecture

should be used as a standard. Standardization can realize potential savings by

eliminating duplicate efforts, but on the other hand it can incur additional

costs if a standard is used in an environment for which it is not well-suited.

The question then becomes one of determining which standard is the best overall

standard.

The method used in this study to suggest a best course of action is to

compute the relative life-cycle cost for seventy-eight representative Army/Navy

computer-based systems which are acquired and deployed over a twenty-two year

interval. The systems are acquired in lots of twenty-six for each of three

-712-

different time periods--1980, 1985, and 1990--with each lot deployed for ten

years. R&D costs prior to each acquisition are included in the cost model.

Thus the cost model serves to identify how a standard computer architecture can

impact real life-cycle costs in terms of estimates of costs to be incurred, and

gives some indication of the potential benefits and costs of the possible de-

cisions. Any model of this type is subject to errors in estimates, so that

the absolute dollar figures computed must be viewed as indicative of possible

results rather than as predictions of the future. The model does identify the

important factors, and estimates their relative importance if in fact the model

does not predict dollar costs with absolute accuracy.

To isolate the key variable, computer architecture, from different hard-

ware implementations, all computer systems are presumed to use the same family

of modules and chassis in their implementation. These "ndules are presumed to

be Military Computer Family (MCF) modules as specified by ITEK Corporation un-

der contract to the U.S. Army.1 The modules use a common collection of memory

modules, input/output modules, and bus interfaces, with different CPU modules

available to implement different instruction-set architectures. We presume

that these modules can implement any of the instruction sets for the UYK-7,

UYK-19, UYK-20, GYK-12, and UYK-41 (PDP-ll) computers. The most likely method-

ology for realizing the collection of instruction sets from a common set of mo-

dules is to use CPU modules specific to each architecture that interface to

the memory and input/output modules over a general bus.

The six scenarios studied are indicated in Table I.

The cost model identifies costs arising from the principal sources:

a. common costs, which are costs incurred to mount an architecture in the

field apart from costs for hardware and applications software associated

with each system that uses the architecture,

-713-

Table I

Scenario I Multi-architecture scenario. Field each computer system with the
architecture most similar to its actual architecture. Select
from choice of UYK-7, UYK-19, UYK-20, and GYK-12.

Scenario 2 UYK-7 Computer Family Architecture (CFA). Field each system with
a UYK-7 architecture using a family member whose performance most
nearly matches the requirements for that system.

Scenario 3 UYK-19 CFA. Similar to Scenario 2, but with a UYK-19.

Scenario 4 UYK-20 CFA. Similar to Scenario 2, but with a UYK-20.

Scenario 5 GYK-12 CFA. Similar to Scenario 2, but with a GYK-12.

Scenario 6 LYI.-L CFA. Similar to Scenario 2, but with a GYK-41.

b. hardware life-cycle costs, which include acquisition, logistics, and main-

tenance costs, and

c. software life-cycle costs, which include initial ac'uisition and operations

and maintenance costs.

In this model, R&D costs are grouped with common costs, as are the costs for de-

veloping and maintaining software tools for an architecture.

Since the UYK-41 is solely a commercial development, there are dollars

being expended on this architecture that do not have to be spent by the govern-

ment if it is selected as a standard. To a lesser extent this is also true of

the UYK-19 since it is based closely on the Data General NOVA computer. The

other architectures considered are all military architectures essentially de-

veloped and owned by the government for which there exists little or no possi-

bility of capturing commercial investment in the architecture. The model esti-

mates the effects of capture of past and anticipated commercial investment in

the life-cycle costs. These effects are incorporated into the common cost

area.

-714-

Hardware life-cycle costs are impacted by architectural efficiency. Good

computer architecture designs should tend to be efficient in the size of memory

required to store programs and in the number of processor and memory cycles re-

quired to execute a program. An inefficient architecture may require more

memory or a higher performance family member (or both) than an efficient ar-

chitecture to do equivalent tasks. This study relies on estimates of architec-

tural efficiency produced from statistical measurements made at Carnegie-Mellon

University. 2 From the efficiency data, it is possible to construct computer

configurations for each application and for each architecture where the confi-

gurations reflect the relative efficiency or inefficiency of the specific ar-

chitecture. From the configuration data, we obtain the hardware costs for each

scenario.

Software life-cycle costs as a function of archit-cture are most strongly

impacted by the base of support software tools available for each architecture.

Separate studies have surveyed the tools available 3and estimated the effect of

the different size bases on application software costs.4 Together these studies

provide a means for estimating software life-cycle costs in this report.

When all of the costs are considered together for the several scenarios,

the .Y -'.i architecture used as a family architecture results in the least life-

cycle cost in our cost model. There are three primary contributing factors to

this result. The model shows that architecture can impact life-cycle costs

through

a. commercial investment in the architecture that can be captured by the gov-

ernme nt,

b. architectural efficiencies that result in reduced hardware costs, and

-715-

c. an extensive software tool base that leads to reduced applications software

costs.

In each of these three categories, the UYK-41 is in the most favorable position,

or very close to the most favorable. Our model shows that these three factors

contribute to a cost savings of $1.5 billion (22 percent) of the cost of a UYK-19

CFA and about $5.1 billion (49%) of the cost of either a GYK-12 or UYK-7 CFA

when the annual level of investment is held to $2 million. Regardless how the

effects of architecture are modeled, because the UYK-41 is as good or better

than the other architectures in each of the three key areas, the selection of a

GYK-41 as a Computer Family Architecture should result in a reduction in the

life-cycle costs when compared to the other alternatives treated here.

Section II of this report treats the details of the model. Section III

contains the results of a sensitivity analysis that shows the results to be

relatively insensitive to assumptions made here. The final section raises

some points concerning weaknesses in the model and contains suggestions for fu-

ture work to sharpen the model and to obtain more accurate estimates of true

life-cycle costs.

II. The Life-Cycle Cost Model

There are six scenarios described in this report as cited in the introduc-

tion. Scenario 1, the Multi-Architectural Scenario, is intended to represent

the state of affairs if no single standard architecture were selected and the

Defense repartment took reasonable steps to prevent further proliferation of

Instruction-set architectures for military applications. Thus all systems pro-

cured use one or more of the four prevalent military computer architectures

UYK-7, UYK-19, UYK-20, and GYK-12, with each application using the actual

-716-

architecture or nearest equivalent to the actual architecture. The remaining

five scenarios treat the cases for which there is a single computer family ar-

chitecture (CFA) adopted as a standard, and the architecture varies from

scenario to scenario across the four military architectures and the UYK-41. To

use a single architecture across a wide range of applications we assume that

there exist at least three different implementations of an architecture in

edch family, namely, a microprocessor version, a minicomputer version, and a

high-performance midi or maxi version.

For purposes of comparison, costs are measured as the life-cycle costs to

acquire and deploy exemplary Army/Navy systems. The examples are shown in

Table 2 according to the characteristics of configurations assumed to be fielded

today. They are selected to be similar to actual systems deployed and in de-

velopment today, and cover a wide variety of functions 4ncluding airborne, naval

surface, naval undersea, army tactical, and army command and control applica-

tions. The twenty-six systems listed in Table 2 is a sufficiently large cross

section to be judged representative of the mix of systems to be procured in

the next decade.

We recognize that the list of systems is incomplete, and does not repre-

sent systems as yet unconceived that may be developed during the time frame of

the cost model. To account for the missing systems, we simply assume that addi-

tional systems similar to the ones in the table will be procured at later times,

and that technological advances should be accounted in the cost of the hardware

and increased programmer productivity. Thus, as part of the cost model we make

the following assumptions:

a. the model accounts for the life-cycle cost of twenty-six systems with R&D

beginning in 1978, hardware acquisition in 1980, programmer productivity

averaged at 1983 levels, and the systems operated from 1980 until 1990.

-717-

ujij

o3 4-j) 14
Lii

14 to V

LL c)'uC~0 ' cvi .O0l M en en0 0 m (1

IJ -41

41~e 4141 41 4

LL^
W. 04 Q, . aoC NJC41l NJCJ Cj Ci I o- jCj 11 l

-. ka M% M. -40 l10 r%-7 1 1 (1 e 1-C

(j) .

-4 4.- - 01 -1 -4 -r C4 - ~ C

C) CZ C (c :
Lii C C'J ~0 01i C C J C\JC% '.O '.C\ r"'.0(1 " c\ % ~0C\i ' r%. JC\J r P

(' 14 1 1 1 ~I 1 1 (1 1 - 1' 1' .4C) (1 (1 1 1- 1' 1' C 1 1 '

>- C"J >-41 > - >-f >- ;: - .-. t > - 0 %A U

-4 .o Lm

718

6Lk-

b. to which is added the life-cycle costs of an identical set of systems pro-

cured in a batch five years later, and

c. to which is added the life-cycle costs of yet another identical batch of

systems procured ten years after the first batch.

This brings the number of systems to a total of seventy-eight with twenty-six

acquired in each of the years 1980, 1985, and 1990 and run for ten years. With

R&D for the first batch beginning in 1978 dtid the last batch being retired in

the year 2000, the model covers a time span of twenty-two years.

The cost equations for the model are summarized below.

The life-cycle cost for the acquisition of the computer systems in Scenario

i is designated as C.i and is composed of three major components.

C. CC.i + Y, i H.' + JASWi'

where

cc. = common costs attributable to supporting the architecture(s) in
1 Scenario i,

n. =the number of copies of system j, j=l, 2, 3, ... , 26 to be ac-
quired,

H.~ = th~e hardware life-cycle cost of one computer system j,
1)3j=l, 2, 3 26 as configured for Scenario i, and

ASW. i. the life cycle cost of applications software for computer system
13 j in Scenario i.

To compute total life cycle costs for each scenario, we sum the individual

costs for common, hardware, and software costs. However, for both the hardware

and software costs, we purchase each system three times, once in 1980, then

again in 1985 and 1990. Details of the contributions to the individual terms

appear in the remainder of this section. Results appear in the following sec-

tion.

-71 9-

Common costs, Ci, are composed of three major components, and represent

the costs incurred simply to have a fieldable computer architecture even before

the first system is acquired and dep'oyed. These costs include such things as

R&D costs, product planning, and software tools. So we write CCi, the common

costs for scenario i, as

CCi = PPi + HRDi + SSWi

where

PPi = the product planning costs for scenario i

HRDi = the costs for hardware tesearch and development for scenario i,
and

SSWi = the costs associated with the support software research, develop-
ment and support for scenario i.

Product planning costs, PP., cover architecture, hardware, and software

expenditures that are incurred as part of the planning phase for the introduc-

tion of a new computer family. These cover such items as standardization and

control of the specifications of the several aspects of the computer systems,

and the identification of the functional characteristics for the low, middle,

and high end of the family. The cost equation for product planning costs for

Scenario i breaks down as

PP. = PPAi + PPHi + PPSi

where:

PPAi = costs for product planning for architecture in Scenario i

PPH i = costs for product planning for hardware in Scenario i, and

PPS i = costs for product planning for support software in Scenario i.

Hardware R&D costs, HRD, cover expenditures for the R&D hardware expen-

ditures required prior to fielding a system. For the scenarios considered,

these costs are incurred as common costs and not tied to particular systems.

-720-

p - - r_ .. . -.- r .. . "" I.. .. . '' . .. r L
L

_

Support software costs, SSW i, account for expenditures for software tools

of general use to the computer community. Such tools as a DOD-I computer are

included in these costs. SSW. includes not only the initial acquisition of the1

software tools but maintenance and enhancement expenses as well. For tools in

this category we assume that the annual maintenance and enhancement expenses

are 0.3 times the acquisition costs.

It is crucial in the model to capture the effects of different sizes of

software tool bases and the effects of commercial investment on costs incurred

by the government in maintaining and acquiring tools. We also model the pro-

ductivity of applications software programmers as a function of the tools avail-

able. Consequently we model the changing software tool base and the cost for

maintaining the tools in the following manner.

We assume a ixed annual investment INV for SSW i., nd examine life-cycle

costs as a function of this expenditure rate. Part of INV is used to maintain

the existing base and the remainder is used to purchase new tools. As tools are

added each year, the funds available for new purchases diminish as more and

more of the funds are used to maintain existing software. We express the main-

tenance and logistics costs in year yr as SSMi(yr) given by the formula

SSMi(yr) = .3 GSBi(yr)

where GSBi(yr) is the value of the government supported software base in year

yr for scenario i.

To obtain the size of the software base in yr+l given an annual investment

of INV we have

GSBi(yr + 1) = GSBi(yr) + (INV - .3 GSBi(yr))

= 0.7 GSBi(yr) + INV

The term INV - 0.3 GSBi(yr) is the amount left over for new investment after

-721-

A.6A004 2582 INTERNATIONiAL BUSINESS SERVICES INC WASHINGON DC F/B 9/2
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMSBURG. YIRGINI A--YC (U)
1978 S m TAYLOR OAAK7-75-0-0030

UNCLASSIFIED M

paying for operations and maintenance of the existing base. This formula is a

well-known recursion for financial transactions, and can be solved to express

GSB i for any year in the future. Its solution is

GSB i(yr + n) = .7n GSBi(yr) + INV (1 - (.7)n)/.3

The total software base at any time in the future is the sum of the commercially

supported base and the government supported base. Here we assume that the com-

mercial base is fixed in time, and does not change, but the cost of the support

of that base is borne totally by industry. Actually, the base will improve in

time at no cost to the government. However, the government may have to pay li-

cense fees for the use of the software tools at software development centers

that are ignored here, because they are likely to be negligible. The assump-

tions generally err in the favor of military architectures. The total software

base in year yr + n is then described by the function:

TSBi(yr + n) = .7n GSBi(yr) + INV (I - (.7)n)/. 3 + CSB i

where CSBi is the value of commercially supported software base in Scenario i.

For the cost model, we have separately made a determination of the value

of CSBi and GSBi (1978) for each scenario. These values and an assumed rate of

investment INV yields TSB i as a function of year during the time of the field-

ing of the software. The values of TSBi(1983), TSBi(1988), and TSBi(1993) are

used to predict the cost of applications software.

Hardware life-cycle costs Hi j for system j in Scenario i break down into

separate costs according to the equation

Hi'j = HAi1j + HLij

-722-

where

HAi, j = acquisition costs for one copy of system j in Scenario i, and

HLi j = logistics costs for one copy of system j in Scenario i.

Separately we have determined that HLi~ j average about 12% of HA j1 j per year

over a ten-year period, although expenditures are not actually uniform during

that time. Thus for a ten-year life cycle, HLi1 j = 1.2 HAi j , and

Hi . = 2.2HA i j

To model the effects of improvement in hardware costs over time, we assume

that hardware costs decrease by 20% per year on a declining balance basis. Thus

if HAi (yr) is the hardware cost for system j in year yr, then

HAij(yr + n) = HAij(yr)(.8n).

The 20% decrease per year has been the historical observation over the last de-

cade for digital electronics as a whole, and is due largely to the very large

number of units produced and the effects of product improvements and learning

from the volume production methods.

For this study our procurement activities are staged in 1980, 1985, and

1990. We use the hardware costs

HA. j(1980) = .82 HA. j(1978)= .64 HA. (1978)

HA. (1985) = .8 HAij(1978) = .21 HA. j(1978)

HA. .(1990) = .812 HAij(1978) = .069 HA. j(1978)

Applications software life-cycle costs, ASW i j , like hardware life-cycle

costs, break down into two terms

ASW ij = ASWA i j + ASWLi1j

-723-

where

ASWAi, j = applications software acquisition costs for system j in
Scenario i, and

ASWLi j = applications software logistics costs for system j in Scenario i.

Again we estimate logistics costs to be proportional to acquisition costs. The

estimate here is that ASWL.. is about .45 ASWA.. on an annual basis, or about

4.5 ASWAi j for a ten year life-cycle. This coefficient is slightly higher

than the .3 annual cost used for support software. Studies of actual data show

this figure varies widely from system to system, and it is difficult to ascer-

tain exactly what this figure should be. The factor 4.5 appears to be the

right order of magnitude and may err in being too large rather than too small.

Using 4.5 as the proportionality constant we obtain

ASWi' j = ASWA i j + 4.5 ASWA i j = 5.5 ASWAi j .

There remains to relate the size of the support software base to the cost of

acquisition of applications software.

To get at this last cost we make use of data developed by W. Svirsky,
5

T. Giles, and A. Irwin of System Development Corporation. Figure I shows a

set of curves of programmer productivity as a function of software tools avail-

able. The X-axis shows increasing tools as a fraction of an idealized full

software base. The Y-axis shows the cost per machine language instruction.

Intuitively, as more tools are brought into play the cost per line of code

diminishes. The sources of this data were SDC project managers for five large-

scale command and control software systems. Raw data included the number of

instructions generated, the expected percentage increase in project cost that

would result if each of thirteen software tools available to them had not been

used, and the expected decrease in project cost that would result if an ideal

-724-

990-0 = I f(J) HI1VA 38IVMIAOS .INOddflS

%DJ co CD0~ C~j cr %.0 co C0 e'4D 0~
%' '0 (" 0D 00 Ln 04J 01 %0 q~ .- 40D 00 C%

ml C4, 4l 4~ CJ (%; CI 4 4" 0 D 0C0

ClC)

~~CI

W Z .0 m

> > W w

0. x x o

w m fU)z -4 to0 W
0 (Y* Ml

1: + _.j+'
W W - U3 '.0 '.

wC z 40m >

F- > - -4 L1 -4

W~L 0 0; -

C) LI-0

go u 0 0

/ wjr- I 0
0-

cli w

CY) 0..

I-'1 -4
r-% n (l, -4

(i() NOIJ.3l:UI-SN I 39vfl9NV1l 3NIHDVW/SiV-11OU

-725-

software tool base were available. The median curve represents the best guess

as to the actual cost function but the guess is largely judgmental. We have

found that the upper curve is more representative of actual costs incurred in

1978, so we use it for this study. Again there is some caution to be observed

in using this data because true productivity depends on many factors besides

tools available. The costs per line of code are computed as follows. Let

si = (TSBi/IDEAL) x 100

where TSBi is the total software base value, and IDEAL is the value of the

ideal base. Then

PROD1 1.4196 + 47.731 exp(-si/46.6171)

where PRODi is the cost per line of code in Scenario i. Finally,

ASWA i1 = m.Prod i

where m. is the total number of lines of code for system j. Since software is

procured at three different times in this model, the value of TSBi is the value

of the base at the time of the procurement.

Summary of variables and equations

C1 = life-cycle cost for scenario i.

CCi = common costs for scenario i.

H i,j = hardware life cycle costs for system j in scenario i.

nfj = the number of copies of system j acquired

ASW ,= the applications software life-cycle cost for system j in scenario i

PPi = product planning costs for scenario i.

PPA i = product planning costs for architecture in scenario i.

PPH i = product planning costs for hardware in scenario i.

PPSi = product planning costs for software in scenario i.

-726-

HRD. hardware R&D costs for scenario i1

SSW. = support software costs for scenario i

INV annual rate of investment in support software

GSBi(yr) = government supported software base in year yr in scenario i

TSBi(yr) = total software base in year yr of scenario i

CSBi = commercially supported software base in scenario i
HAi = hardware acquisition costs for system j in scenario i
HLi. j = hardware logistics costs for system j in scenario i

ASWAi, j = applications software acquisition costs for system j in scenario i

ASWLi, j = applications software logistics costs for system j in scenario i

IDEAL = value of ideal software base

si = percentage value of total software base with respect to ideal base
in scenario i

m. = number of machine language instructions for system j

PROD. = cost per line of machine language instruction in scenario i

Ci = CC. + Yn. H.. + JASW.

CCi .PP + HRD. + SSW

PP. = PPA. + PPH. + PPS.

SSW i = 22 • INV

GSBi(yr + n) = .7n GSBi(yr) + INV (1 (.7)n)/.3

TSBi(yr) = GSBi(yr) + CSB i

H = HAi + HL i,j = 2.2 HA ,j = 2.2(HAi (1980) + HA. .(1985) + HA. .(1990))

HA. .(yr + n) = (.8) n HA i,j(ye)

-727-,

ASW. . = ASWA. + ASWL. . = 5.5 ASWAi j = 5.5 (ASWAij (1983) + ASWA. .(1988) +
ASWAi (1993))

si(yr) TSBi(yr)/IDEAL

PRODi(yr) = 1.4196 + 47.731 exp(-si(yr)/46.6171)

ASWA i j (yr) = mj PROD i(yr)

Ill. Summary of independent input data and results of computations

The life-cycle costs as a function of annual investment in support soft-

ware tools is given in Fig. 2. Observe that the multiarchitecture scenario is

considerably greater than the other scenarios in life-cycle cost because it ac-

counts for maintaining common costs at a much higher level than the scenarios

with a standard computer architecture while achieving poorer results on improv-

ing productivity of applications programmers since tools development is spread

over four architectures. Actually, the situation is probably much worse today

than is modeled by the multi-architecture scenario since many more than four

architectures are fielded as of today.

The UYK-41 life-cycle cost lies below the curves for all levels of in-

vestment shown. At higher levels of investment, the curves tend to turn upward

as the cost of new tools is not returned by increased programmer productivity.

Consequently, it is doubtful that the investment dollars will be maintained at

that level. The independent data inputs that account for the shape of the curves

appear in the remainder of this section.

Common cost data are summarized in tables 3 and 4 for product planning and

R&D costs, respectively. Briefly the assumptions of a level of effort are

based on the level required for a single standard as estimated by the effort now

expended by commercial and military organizations for similar functions. This

comes to five man-years per year for each of the architecture, hardware, and

software product planning efforts. For the commercial architectures UYK-19 and
-728-

12 FIGURE 2

TOTAL LIFE CYCLE COSTS VS ANNUAL SUPPORT SOFTWARE

EXPENDITURES
i 11.

ALL PARAMETERS AT NOMINAL VALUES

* 10
01

9

8_

7-

6- MULTI-ARCHITECTURE

5_

UYK-
7

4-G YK-i
UYK-

20

rn UYK- 4 1 UYK1 9

UJ 5 10 15 20 25

ANNUAY SUPPORT SOFTWARE EXPENDITURES (SM/YEAR)

-729-

101

Wc. r* u-s r- Lr) s~ ik- C14 -W-oe'.C C Cj.0 r-. % Ocl n fl% UC14

SS

AS

13

2 n kc to C co ('i ko - CV .0C j k C~i 0 k %0J %0.- -0 :

P4 O..- x

-D C) CN - %0 - 00AM -- : O -q rt0 c -

a- olJ q70.ci fr QC~ Dt0 C "C4kOq7 % 1 C

U

(a 4-1
%0 kc-OC4 CJ 4t . I 4C C t . -

%0 kc 0.i ko (G1CI en CI) -M -- cl kc10(1 04

~~~-~0 a) -L(~

>0

4--

0 ~ ~ ~ ' if 444 C '~-ed- .4 CIz - .-4 (.J :)- N.: i4 4.4 CJ le- -

-7-0



S-- E x

S- U) CA C). C) C) 0)
m> m' -.

0 CD

- s

OJ LO LA

1-.0 CD LA (V) LA LA N

co
LA

CD~ LA C ) LA LAL

4- S- ea

+j 4> CD LA LA LA LA LA
u 0 CD

w, >t 4--C) 4-c
.0 I LJ. P,

go w J

+- 4- 1

CC

0o C6L toL n

9- 4E

004
I-

V Lj > - LL- >- >. 0o

0) (, A LA- LA -L t

1-.0C7 CD LA e) A LA

4- 4=Dt

cli m q U-) t

~Now



UYK-41, some of the architecture and software costs for the government are re-

duced because of the ability to capture commercial investment. For hardware

product planning no commercial investment is captured since military hardware

is a good deal different from commercial hardware. The multi-architecture

scenario is charged a small multiple of the costs for mounting a single archi-

tecture because of the required duplication of effort.

The last term in the common cost equation is SSWi. the support software

investment. This we set as an independent variable equal to 22 times the annual

rate of investment INV in creating the curves in Fig. 2. An estimate of realis-

tic values of INV based on present and past experience is that INV is likely

to fall into the $2 million to $4 million per year region, and unlikely to

reach $10 million levels unless the funding methodology for such programs is

changed considerably by DOD. Our models suggest that even at $10 million per

year investment there is a positive return on the investment dollars. However,

the dollar values are not discounted annually. With discounting taken into

account, return is somewhat lower than indicated here.

Hardware costs are developed from reasonably accurate estimates of MCF

module costs based on the cost of similar modules today. The basic costs ap-

pear in Table 5. Note that commercial architectures are charged a 2% royalty

on the processor modules to account for royalties that may well have to be

paid. Each of the twenty-six systems was configured from MCF modules, and the

details of the configurations appear in the full cost-model report. 6The

configurations take into account architectural efficiency as measured separately

at Carnegie-Mellon University. 2The raw efficiency measures used in this study

appear in Table 6a. These however are interim results of the meas6'ement pro-

cess. Final data from the measurements appear in Table 6b, but were computed

-732-



TABLE 9; MCF MODULE PRODJCTION COSTS (1977 $)_

Module A,Descriotion Cost
CPU-I tj'':,-.l CPU, LSI-11 equivalent 3.GK
CPU-2 OYK-41 2PU, POP-il/3, equivalent 10.2K*
CPU-3 LvKtal CPU, POP-I1/70 equivalent 25.5K*
CPU-6 UYK-7 CPU, equivalent to current model 30 K
CPU-6S UYK-7 CPU, slow-soeed version 20 K
CPU-6M UYK-7 CPU, microprocessor version 6 K
CPU-7 GYK-12 CU, equivalent to current model 25 K
CPU-iS GYK-12 CPU, slow-speed version 10 K
CPU-7M GYK-12 CPU, microorocessor version 6 K
CPU-8 UYK-19 CPU, equivalent to current model 10.2K*
CPU-8F UYK-19 CPU, high-speed version 25.5K*
CPU-8M UYK-19 CPU, microorocessor version 3.6K-
CPU-9 UYK-20 CPU, equivalent to current model 10 K
CPU-gF UYK-20 CPU, high-speed version 25 K
CPU-9M UYK-20 CPU, microorocessor version 3.5K

NRAM16 Memory, nonvolatile, 16K x 16 bit 8 K
NRAM32 Memory, nonvolatile, 32K x 16 bit 10 K
NRAI?64 Memory, nonvolatile, 61K x 16 bit 13 K
PROM32 Memory, read-only, 32K x 16 bit 10 K

MCM-1 Memory controller 5 K
MCM-2 Memory controller 5 K
MCM -3 Memory controller 5 K

IOP-I I/O Processor, UYK-20 Systems 5 K
IOP-2 I/0 Processor, GYK-12 Systems 10 K
IOP-3 I/O Processor, UYK-7 Systems 15 K
lOX I/O Exchange, 8-way, GYK-12 Systems 5 K

BEM-I Bus extender module 5 K

NIM FAST NTDS FAST interface 2.5K
NIM SLOW, NTDS SLOW interface 2.5K
RIM RS-232 interface 2.5K
DIM Discrete interface 2.5K

DMAC Direct memory-access controller 5 K

PCM-l Power converter 10 K
PCM-2 Power converter, extra 5V capacity 12 K

FULL ATR ATR Chassis, includes $2K for assembly/ 12 K
checkout

SHORT ATR ATR Chassis, includes S2K for asmbly/ck 11 K
HALF ATR ATR Chassis, includes $2K for asmnbly/ck 9 K

Systems inte.ration for multiple chassis 2 K

*Includes estimated 2% royalty for CPU modules

-733-



TABLE . ARCHITECTURE COMPARISONS

A. ARCHITECTURE EFFICIENCY MEASUREMENTS, INTERIM DATA

ARCHITECTURE S-MEASURE M-MEASURE

UYK-7 1.24 1.38

UYK-19 92 1.18

UYK-20 89 .73

GYK-12 1.12 .96

GYO-21 .82 .88

B. ARCHITECTURE EFFICIENCY MEASUREMENTS, FINAL DATA

HITECTURE S-MEASURE M-MEASURE R-MEASURE

UYK-7 1.30 1.38 1.12

UYK-19 .93 1.18 1.17

UYK-20 .89 .73 .77

GYK-12 1.14 .96 .96

GYQ-21 .82 .88 1.03

Storage Utilization Efficiency
Memory Activity Efficiency
Processor Activity Efficiency

-734-L



too late to be used in the configurations from which the cost model was com-

puted.

The S-measure is a measure of the storage utilization efficiency for pro-

grams. If Architecture A has a storage efficiency measure say 20% higher than

Architecture B, then A requires approximately 20% more storage to hold programs

than A does. Configurations used a number of memory modules to contain the

system data plus a number computed to be sufficient to hold the program for

each application. The latter number varied from architecture to architecture

according to the S-Measure.

The M-measure is a measure of storage reference efficiency. If Architec-

ture A has an N-measure say 20% higher than Architecture B, then it must go to

storage about 20% more frequently than Architecture B to do the equivalent

task. This is reflected in the configurations by the selection of family mem-

ber for each system. Inefficient architectures tend to require higher per-

formance family members than efficient architectures. The substitution chart

for family members is shown in Table 7.

The R-measure is a measure of processor cycle efficiency. Here, one ar-

chitecture may require a faster internal clock than another to do an equivalent

task. This was developed too late to be used in the configurations but the ef-

fects of the R-measure are rather small when compared to total life-cycle costs.

Hardware acquisitions costs by system appear in Table 8, and total life-

cycle costs for hardware appear in Table 9.

This brings us to applications software life-cycle costs. A survey of

the available software for the several architectures was conducted during the

course of this study and for a prior study. 3, The survey investigated the

availability of roughly thirty individual software tools from such sources as

-735-



TABLE- 7 RELATIVE PEFOR?-ANCE DATA

A. EOUIVALENT GYq-21 PFQFnPmAfiCE

Architecture Est. KOPS Normalization Factor Adjusted KOPS

GYQ-21 (2) 500 1 x .88 / .88 500
GYQ-21 (3) 800 1 x .88 / .88 800
UYK-7 500 2 x .88 / 1.38 640
UYK-19 500 1 x .88 / 1.18 375
UYK-20 400 1 x .88 / .73 480
GYK-12 400 2 x .88 / .96 736

B. PROC.SSOR REPLACEMENT CHART

REPLACE SPECIFIED CPU WITH:

Architecture Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

• Sified .Yv,-, CFA UYK-19 CFA UYK-20 CFA GYK-12 CFA GYQ-21 CFA

UYK-7 CPU-6 CPU-8F CPU-gF CPU-7 CPU-3
UYK-7 (micro) CPU-6M CPU-8M CPU-9M CPU-7M CPU-I

UYK-19 CPU-6S CPU-8 CPU-9 CPU--7S CPU-2
UYK-19(micro) CPU-6M CPU-8M CPU-9M CPU-7M CPU-i

UYK-20 CPU-6 CPU-8F CPU-9 CPU-7S CPU-2
UYK-20(micro) CPU-6M CPU-8M CPU-9M CPU-7M CPU-i

GYK-12, CPU-6 CPU-8F CPU-9F CPU-7 CPU-3
GYK-12(micro) CPU-6M CPU-8M CPU-9M CPU-7M CPU-i

-736-



-- Cr~- (Z: -9 1 )C n -3Z) n

-7 -l Z-:---O

CN C k u~') -c-

cLA

-'I Ln-j~ - j

-1 01 C r--r- L

,-- 
-t 4-lL

C

CC

C.

Ci cl _n

Ln -t.. - -- j m = -

I~~ -l -l"

Ln -- n - r zr

f)g

2!J
ez0-737



S--

4) m

< 0 C\

U-

- '3 m
L~j .:r %a q7 qu ,

kn 0.4 C14h

C) e C C%

C-) a .

Lu

-I -:, 04-- c

ea en C.)-

t" co OD

M M3 C,, C~
C C4 -4 '

cz co cl ~

ON fl a CN a% C)

CN 0' CN 0
Li r C -

- a a

C~-738-



the industrial manufacturer of the architecture, the government, or private

sources that offer the software as a product. The value of the software bases

for this study and percentage of the ideal software base value of $24 million

appears in Table 10, together with an estimate of the initial cost per machine

language instruction for application programs using each architecture in 1978

on typical military computer systems. Table 11 shows how the software costs

vary across the twenty-six systems in 1978. The functions that show how

productivity changes as the software changes were used to compute product-

ivity in 1983, 1988, and 1993 in each scenario.

IV. Sensitivity analysis

The model presented contains a number of assumptions and mathematical mo-

dels for which there is insufficient empirical data to be sure of the correct-

ness of the assumptions. To test the results produced by the model it is essen-

tial to see if the results are sensitive to perturbations in the assumptions.

Among the major areas in question are

1. the coefficient .45 that represents annual applications software logistics
costs as a fraction of procurement costs,

2. The coefficient .3 that represents annual support software logistics costs
as a fraction of procurement costs

3. a 20% per year annual decrease in hardware costs

4. productivity increases dependent on the software tool base, and

5. reduced government investment expenditures for the commercial architectures.

Figures 3, 4, and 5 show the results of perturbing the model in different

ways. Figure 3 shows the effects of software costs doubling from the modeled

value, where the doubled costs might be due to a change in any assumption or

combination of assumptions that impact software cost. These curves generally

-739-



TABLE 10 PROGRPPIMER PRODUCTIVITY

1978 BASE

Available 10 of Est. Cost

Architecture Base Reg'd. Base Per Instr.

UYK-7 13,325M 55.8 $23.34

UYK-19 9,665M 40.4 $31.32

UYK-20 5,105M 21.4 $45.31

GYK-12 4,445M 18.6 $47.87

GYQ-21 14,865M 61.6 $20.90

-740-



TABLE- 11 SCENARIO 1

APPLICATIONS SOFTWARE ACOUISITInN COSTS, 1978

ASWA ASW
System Architecture Instruction Count Acouisition Cost 5.5 x AS'A

I UYK-19 26.7K .8M 4.6M
2 UYK-20 13.3K .6M 3.3M
3 UYK-19 14.7K .5M 2.5M
4 UYK-7 142 K 3.3M 18.2M
5 UYK-19 .3K .01M .05M
6 GYK-12 91.OK 4.4M 24.OM
7 UYK-19 16.0K .5m 2.8M
8

UYK-7 100 K 2.3M 12.8M
UYK-20 85.3K 3.9M 21.3M

9 UYK-19 .7K .02M .M
10 GYK-12 485 K 23.2M 127.7M
11 GYK-12 32 K 1.5M 8.4M
12 GYK-12 85.3K 4.1M 22.5M
13 UYK-19 32.OK I.OM 5.5M
14

UYK-20 42.7K 1.9M 10.6M
UYK-7 25.3K .6M 3.2M

15 UYK-20 21.9K 1.OM 5.5M
16 UYK-19 34.7K 1.1M 6.0M
17 UYK-7 42.7K 1.OM 5.5M
18 UYK-20 344 K 15.6M 85.7M
19 GYK-12 273 K 12.4M 68.GM
20 UYK-7 171 K 4.OM 22.0M
21 UYK-7 341 K 8.0M 43.8M
22

UYK-20 170 K 7.7M 42.4M
.UYK-7.. 2,048 ._K.. 47.8M_ 262.9M__

23
UYK-20 153 K 6.9M 38.1M
UYK-7 410 K 9.6M 52.6M

24 UYK-7 2,047 K 47.8M 262.3M
25

UYK-20 64 K 2.9M 15.9M
UYK-7 1,894 K 44.2M 2A3.!M

26 UYK-7 1,640 K 38.3M 210.5M

Totals 10,847 K $297.5M $I,636.3M

-741-



-V--...... --.. - -- -__

8

8"21 FIGURE 3

20 TOTAL LIFE-CYCLE COSTS VS ANNUAL SUPPORT SOFT-

WARE EXPENDITURES
19-

18 APPLICATIONS SOFTWARE COSTS AT 2 X NUMINAL VALUE

17

16

15

14

13

12

11-

10

9
MULTI-ARCHITECTURE

8.

7-

6-

UYK- 7

GYK- 1 2

4_ UYK_41UYK 9

5 0 15 20 25

cANNUAL SUPPORT SOFTWARE EXPENDITURES (SM/YEAR)

-742-

Now.=--



Pr I

FIGURE 4

TOTAL LIFE-CYCLE COSTS VS ANNUAL SUPPORT SOFTWARE

EXPEND I TURES

7-
APPLICATIONS SOFTWARE COSTS AT .5 X NOMINAL VALUE

6.

5.
MULTI-ARCHITECTURE

UYK-
7

GYK- 12

UYK- 20

UYK-1 9

n UYK- 4 1

m
-2

C'1'

en 5 10 15 20 25

ANNUAL SUPPORT SOFTWARE EXPENDITURES (SM/YEAR)

-743-



8

8 12 FIGURE5

TOTAL LIFE-CYCLE COSTS VS ANNUAL SUPPORT SOFTWARE0

EXPENDITURES

ANNUAL SUPPORT SOFTWARE LOGISTICS EXPENSES = 10% OF SOFT-
WARE BASE VALUE

(REDUCED FROM 30 PERCENT OF SOFTWARE BASE VALUE)
10

co

9-

8_

7-

6_

5-

SMULTI-ARCHITECTURE

S 4- GY-12n ~UYK- 20

~UYK-41 UYK-I19

r Al5 10 15 20

SPANNUAL SUPPORT SOFTWARE EXPENDITURES (SM/YEAR)

-744-



1211 Fiuro u TOTAL LIFE-CYCLE COSTS VS ANNUAL SUPPORT SOFTWARE EXPENDITURES

Annual Support Software Logistics Expenses = 10 percent of Software
Base Value

(Reduced from 30 percent of Software Base Value)

9-

83

Y,. -7
, U~'Y:(-7

S-Y.K -2

5 ~ 1 i3 '

-745-



C CD C) C D C

CD Ln 11 LI Ln tn

-U LI4.E:

LLLL

C-,i

C-,j

>-1

~~C -:I U-%C~ L~ C LO~

6L-U



show that the UYK-7, GYK-12, and UYK-20 scenarios lead to approximately equal

life cycle costs, with the UYK-19 and UYK-41 benefiting from commercial invest-

ment in support software. For sufficiently high levels of investment the UYK-20

results in lower costs than both the GYK-12 and UYK-7 as the effects of its

greater hardware efficiency become evident.

Figure 4 shows the effects of much greater productivity in the software

area than at the nominal value of the model. With software costs much lower,

the differences are accounted principally from differences in hardware effi-

ciency and commercial investment. Now for sufficiently high levels of invest-

ment in software, the UYK-7 advantage of a large software tool base becomes less

important and it yields a higher life-cycle cost as a standard architecutre

than the other candidates for a standard architecture. The UYK-41 and UYK-19

still benefit from commercial investment in the support software, and it is only

at very high levels of government investment that the architectural efficiency

of the UYK-20 brings its life-cycle costs to those of the UYK-19. Figure 5

shows the effects of a lower logistics cost for support software than the

nominal value. When logistics costs are lower, a greater fraction of invest-

ment dollars can be used to purchase new tools. This perturbation of the

nominal values tends to diminish the effects of present size of software base

on life-cycle costs, and tends to emphasize architectural efficiency. Here the

UYK-20 catches up to the UYK-19 at a much lower level of investment. Again

the UYK-41 and UYK-19 ar favored at lower levels of government investment be-

cause of the assumed commercial expenditures for the maintenance of part of

the software base.

-747-



V. Summary and conclusions

The model and data presented here provide for a very strong case for

standardization of some kind in military computer systems. The model indicates

that maintaining multiple architecture results in billions of dollars of extra

expenditures over the twenty-two year life cycle studied here. Whatever gains

might be attributed to local optimization by selecting the "best" architecture

for each system are lost on a global level when one considers the costs re-

quired to maintain and develop sufficient tools for each architecture to have

high progranmer productivity for applications software.

In looking into the question of which standard architecture to select

given that there is a single standard architecture, the model suggests that the

UYK-41 will result in the least life-cycle cost, and there will be a substan-

tial savings in this choice over some of the possible choices. In terms of

software tools, the UYK-7 and the UYK-41 have roughly comparable bases as

measured by the idealized set required for these applications. However, the

UYK-7 showed up poorly in the study of architectural efficiency so that it is

easteful of hardware to some degree as compared to the UYK-41. The UYK-20

comes out very well on the hardware efficiency measures and is competitive

in this respect with the UYK-41, but it lacks both The software tool base and

the commercial investment to support part of the tool base. The UYK-41 enjoys

both of these advantages. The UYK-19 has a lesser degree of commercial in-

vestment than the UYK-41, and has a somewhat smaller tool base, but it

generally shows up very well because it has relatively good marks for both tools

available and architectural efficiency.

The model's results unequivocally point to the UYK-41 as the architecture

that leads to the least life-cycle cost. In second positon it generally

-748-

..........



favors the UYK-19, but here the results are somewhat sensitive to assumptions,

and perturbations could result in the UYK-20 being the second least costly

standard. Both the GYK-12 and UYK-7 computers are less desirable as standard

architectures than the other choices.

The assumptions of the model are delineated here and described in some-

what greater detail in the full report. 6The assumptions can be tested and

the source data can be scrutinized for accuracy to determine if the model is

incorrect or misleading. Presently, a number of aspects of the model are being

subjected to further study and refinement. These include:

1. architectural efficiency tests are being repeated with new data points,
and should decide whether or not the efficiency measurements are repeat-
able, and

2. the effects of support software tools on pr'ogrammer productivity are be-
ing reevaluated through the collection nf data from a broad range of
sources.

We anticipate that some details of the model will indeed change in time. The

major conclusion that the UYK-41 leads to the least life-cycle cost is unlikely

to change unless new major factors are identified that raise UYK-41 costs sig-

nificantly more than the other architectures. No such factors are in evidence

at present.

-74 9-



References

1. ITEK Corporation, "Preliminary MCF System Configuration Manual," dated
15 June 1977, under US Army Electronics Command Contract DAAB07-C-76-0392.

2. Dietz, William et al., companion paper, this issue of computer.

3. Stone, H. and J. Wagner, "A comparison of existing software bases of the
AN/GYK-21 and current military architectures," ECOM Preliminary Technical
Memorandum, May 1977.

4. Cornyn, J. J., W. R. Smith, et al., "Life-cycle cost models for comparing
computer family architectures," AFIPS Conference Proceedings, Vol. 46,
AFIPS Press, Montvale, NY, pp. 185-199, 1977.

5. Svirsky, W., T. Giles, and A. Irwin, "Life-cycle cost analysis uf computer
family architecture (CFA) finalists within Army embedded computer sys-
tems," System Development Corporation, unpublished manuscript generated
for CFA Selection Committee, August 1976.

6. Stone, H., "Life-cycle cost analysis of instruction-set architecture
standardization for military computer-based systems," under contract to
U.S. Army Research Office, Contract DAAG29-76-D-OlO0, January 1978.

7. Wagner, J. et al., "Evaluation of the software bases of the candidate ar-
chitectures for the military computer family," AFIPS Conference Proceed-
ings, Vol. 46, AFIPS Press, Montvale, NY, pp. 175-183, 1977.

-750-



A Proposed System of Buses for the Military Computer Family

William E. Burr

Communications Research & Development Command

U.S. Army

The Army has over one hundred tactical computer based systems
under development; however, a few of them have yet been fielded. The
cost of developing these systems is proving to be high, and the introduc-
tion into the Field Army of many different types of military computers,
each with its unique maintenance procedures and spare parts requirments,
promises to place a heavy burden upon the Field Army. In addition, the
Army has been roundly criticized for failing to achieve competition in
military computer procurements, and for buying and deploying computers
which are obsolete. The Military Computer Family (MCF) program proposes
to standardize on a small set of instruction-set architectures for Army
systems, and to develop a strong set of support software (compilers,
editors and the like) for these systems as a partial solution to increas-
ing software costs, and to standardize on a set of "modules" from which
a wide range of computer systems may be assembled, as a solution to the
logistical and maintenance problems of the Field Army. Moreover, these
modules are to be specified and procured on a form, fit, and function
basis, permiting full competition throughout the MCF life-cycle, and the
graceful insertion of improved technology, by the replacement of obsolete
modules.

The standardization upon modules, in turn, requires that standard
interfaces by developed to connect the modules. These interfaces take the
form of a system of standard computer buses. This paper described the
general interconnection or bus strategy proposed for the MCF, which is
similar in many respects to that used by several successful manufacturers
of "mini" or "midicomputers", that is a single, unified system or backplane
bus, which ties together various modules and the peripheral buses which
link peripheral devices to the system bus. This approach is modified
slightly, by the inclusion of a special interchassis bus which ties together
the system buses of two separate chassis. This is done because of the
necessity to package military computers in small chassis, and to operate
in very noisy environments.

-751-



A PROPOSED SYSTEM OF BUSES FOR THE MILITARY COMPUTER FAMILY

William E. Burr
US Army Communications Research and Development Command

Ft. Monmouth, N. J. 07703
15 September 1978

-752-

-Nelson



INTRODUCTION.
The Army has over one hundred tactical computer based systems under

development, however few of them have yet been fielded. The cost of
developing these systems is proving to be high, and the introduction into
the Field Army of many different types of military computers, each with
its unique maintenance proceedures and spare parts requirements, promises
to place a heavy burden upon the Field Army. In addition, thc Army has
been roundly criticized for failing to acchieve competition in military
computer procurements, and for buying and deploying computers which are
obselete. The Military Computer Family (MCF) program proposes to
standardize on a small set of instruction-set architectures for Army

systems, and to develop a strong set of support software (compilers,
editors and the like) for these systems as a partial solution to
increasing software costs, and to standardize on a set of "modules" from
which a wide range of computer systems may be assembled, as a solution to
the logistical and maintenance problems of the Field Army. Moreover,
these modules are to be specified and procured on a form, fit, and
function basis, permiting full competition throughout the MCF life-cycle,

and the graceful insertion of improved technology, by the replacement of
obselete modules.

The standardization upon modules, in turn, requires that standard
interfaces be developed to connect the modules. These interfaces take the
form of a system of standard computer buses. This paper describes the
general interconnection or bus strategy proposed for the MCF, which is
similar in many respects to that used by several successful manufacturers
of "mini" or "midicomputers," that is a single, unified system or
backplane bus, which ties together various modules and the peripheral
buses which link peripheral devices to the system bus. This approach is
modified slightly, by the inclusion of a special interchassis bus which

ties together the system buses of two separate chassis. This is done
because of the necessity to package military computers in small chassis,
and to operate in very noisy environments.

THE MILITARY COMPUTER FAMILY.

The first premise of the Military Computer Family was that the Army
should standardize upon a single instruction-set architecture, or as small
a set of instruction-set architectures as possible, for tactical computer
applications and then implement a family of militarized computers which
execute that instruction-set with various levels of performance. Expected
benifits included:

.Software Transfer. Wide transferability of fielded software (eg real

time operating systems, utility routines, I/0 interfaces,
communication control software, etc.), including machine oriented or
assembly level code.

.Support Software Base. The ability to create a single, extensive

support software base (eg. compilers, editors, debuggers, etc.) to
support cost effective software development.

A joint Army/Navy Architecture Selection Committee considered a number
of alternative instruction-set architectures, and, in August of 1976,

chose the Digital Equipment Corp's PDP-I1* instruction-set architecture,

-753-



which for the purposes of the MCF has been given the military nomenclature
A14/UYK-41Cv), as the best choice for the Military Computer Family CBURR77).

A second major consideration in the MCF was the need to support a few
existing military instruction-set architectures in the Military Computer
Family, probably via some form of emulation. The reasons for this are
very similar to IBM's reasons for supporting emulations of their second
generation machines on their S/360 family; the Army has invested large
sums in the development and testing of applications software, much of it
in assembly language, for these instruction-set architectures, and, even
though few of these systems have yet been fielded, is understandably
reluctant to abandon this investment.

A third major consideration in the Military Computer Family program is
that intensive competition is desired between multiple suppliers
throughout the MCF life-cycle. Past military computer developments have
generally been competitive only in the development phase; production
contracts are nearly always awarded to the winner of the development
effort.

In theory, competition can be acchieved by a "build to print"
approach. The original designer is paid to produce engineering drawings,
masks, and other appropriate documentation, and then other companies are
asked to manufacture copies of the original design. This approach
minimizes the spare parts problem, since every card and component is
identical, whomever the manufacturer may be, but it has rarely been
successful with military computers, because building to print involves
close cooperation between compeeting suppliers, and often requires the
sharing of proprietary manufacturing processes. The strongest
disadvantage to this approach, however, is that it completely stifles
technical innovation and is in direct conflict to another major MCF goal,
the ability to gracefully inset new technology in existing MCF computer
systems.

The fourth major consideration has been technology insertion. The
long development cycle and life cycle of typical military computer based
systems, in combination with the very rapid pace of component technology
development, has meant that military computer hardware frequently is
obselete before it is fielded, and systems which have been the field a few
years often are almost museum pieces. The repair parts for these systems
often become virtually unobtainable at any cost. The Navy, for example,
has a large number of computers, in critical fleet applications, which
still use germanium transistors. The MCF appraoch provides for the simple
graceful and piecemeal insertion of new technology in existing systems by
breaking the computer systems down into a set of standard modules,
connected by a system of standard buses; as new technology permits each
module can be independently replaced by a new improved module.

The fifth major MCF goal is to develop a maintenance approach which
the Field Army can live with. The volunteer Army simply does not attract
any large number of very intelligent enlisted men, who can be expected to
diagnose and repair a wide range of highly integrated computer hardware by
reading complex maintenance manuals and using general purpose test
instruments. Also, the need to stock large numbers of different repair

-754-



parts in forward areas can create an intolerable logistical burden. No
computer system is of much value to the Field Army unless it can be
maintained by more or less ordinary soldiers, and has an acceptable spare
parts burden.

The MCF solution to the dilemma presented by the need to provide for

competition throughout the MCF life-cycle, to allow the insertion of new
technology throughout the MCF life-cycle, and to simplify the maintenance
and logistical burden presented to the Field Army, is to develop form, fit
and function specifications for a modular system of elemental,
interchangable, MCF parts, which may be procured on a competative basis.
These interchangable MCF parts are called "MCF Modules" and they will be
connected together by a system of standard MCF buses, which provide a
uniform interface for intermodule communication. Precisely what an MCF
module is will be further explained in the following section.
Manufacturers will be free to use any technology they wish to implement
MCF Modules, as long as they meet the module form, fit, and functional
requirements. Although there may be several manufacturers for a
particular MCF module, they will be interchangable, thus reducing the
spare parts burden. Moreover, the modules are carefully partioned to
permit the configuration of a wide range of systems from a relatively few
module types, to allow self-diagnosis of the MCF computer system to a
faulty module, and to permit a reasonable cost for spare modules
(typically $lk to $10k).

THE PROPER BLACK BOX.
A form, fit and function specification views the items it specifies as

a "black box," whose external functional characteristics, interfaces,
dimensions and so on are known, but whose internals are left up to the

vendor. Such form, fit and function specifications have been highly
successfully applied to commercial avionics equipment (BOER74, SMIT76, and
GRAH75). An "MCF Module" then is such a black box. Suci specifications
may be drawn at different levels, and just what level at which they are
drawn is an issue of considerable importance. For example, the standard
buses needed for the interconnection of modules are largely determined by

the size of the black box and the type of packaging chosen. Figure 1
shows a hierarchy of levels, starting at the top with the Army's planned
Integrated Battlefield Network, and proceeding down through seven levels
to the individual ,tes on IC's. Standardization is potentially possible
at any level betw .tn Integrated Circuits and Single Mission Systems. For
the Army the strongest considerations probably have to do with logistics
and maintenance. It is fairly obvious that the module form, fit and
function specifications should be drawn to the level of the Least
Replacable Unit (LRU), otherwise each module would have its own separate
maintenance requirements and spare parts float. With this in mind the
following considerations apply:

.Number of Module Types. The choice of modules should minimize the

number of different types. In general the lower the level, the fewer
LRU's which are theoretically required. For example if the module

were an Intergrated Circuit, then any posible logical function could
be implemented from one Nand or Nor circuit type. Obviously the effect on

density would be severe. Morover, the effect on technology would be
stifling.

-755-



.Technology Limitation. The larger the module, the less the limitation
on technology, and the greater the freedom of vendors to exercise
their ingenuity to design better units. Also, thejlarger the module,
the fewer the standard interfaces (buses) required.

.Cost. The larger the module, the more expensive and less reliable it
(16uVnot the overall system) will be. Consider, for example, an
entire memory chassis with 512K bytes of memory. With present
technology such a spare part would cost on the order of $50R. The
storage capacity would be excessive for many systems. Several
different performance levels might be needed, and there would be
requirements for both semiconductor (for speed and maximum density)
and magnetic core (for nonvolatile memory) versions. Yet it is easy
to partition the chassis into a memory controller or bus interface, a
chassis, a power supply, and several types of "memory modules" of 64
to 128k byte capacity. The power supply might well be shared across
several different chassis types. The individual memory modules will
be considerably less expensive and more reliable than the entire
chassis. Moreover, they can also be shared with chassis which include
both a CPU and memory, which will also be needed. The failure of a
single chip in the chassis will not force replacement of an entire
$50K chassis, and it may even be economic to throw away defective
modules.

.Number of Interfaces. An important consideration is the number of
interfaces required to support the partitioning into modules on a
form, fit, and function basis. For reasons of configuration control,
simplicity, flexibility, and interoperability it is very desirable to
minimize the number of different interfaces for modules. These
interfaces can be reduced by the use of as few standard buses as
possible for the interconnection of all modules.

The solution chosen by the MCF is a compromise: it is to draw the line
at well defined functional entities which can easily plug into a single
processor-memory bus. This is very similar to the approach taken by a
number of manufacturers of minicomputers and microprocessors, who offer
bus oriented product lines. For example, the DEC UNIBUS* is used in the
PDP-11 line to accommodate a number of different CPU's and interconnect
them with memory, a wide variety peripheral devices, DMA controllers and
the like. The INTEL Multibus provides a standard framework for the
interconnection of various microprocessors, memory, and various support
chips(INTE76). The Honeywell MEGABUS** uses an ingenious "split-cycle"
protocol to increase bus bandwidth, to reduce the effects of memory
latencies on system performance, to permit very flexible interconnections
of system elements, and to accommodate a wide range of processor power on
a single "unified" bus structure (C0NW77, and CASS76). The S-100 bus,
despite a lack of a definite standard (a standard has been proposed,
MORR78), and several serious shortcomings, has become a very widely
accepted standard for "personal" and small business systems; as of the
summer of 1978 more than 30 manufacturers offer complete computer systems
using this bus and over 130 manufacturers offer products, such as memory
cards, floppy disk controllers, and the like for the S-100 bus (ISAA78 and
0GD178). Other semiconductor manufacturers have also introduced more or
less standard component level buses for microprocessors (FORC78).

-756-



The MCF modules, then, are form, fit and function black boxes, such as
a CPU, a DMA controller, a Bus Extender, or a Memory Module, which can be
effectively connected by a standard processor-memory bus and interface. A
"module" is not synomous with a "card", rather it is an assembly of one or
more cards, which is connected to the standard bus(es) and which is
treated in the field as a LRU. The planned MCF Modules are summarized in
Table 1. Any lower level of standardization would dramatically constrain

technology (imagine, for example, the effect of partitioning CPU's into
"standard" ALU, control sequencer, and microstore cards), but higher
levels would introduce unacceptably large, expensive, and complex LRU's,
and probably require more unique kinds of LRU's. This level of

partitioning has become fairly conventional, is well understood, and is
amenable to effective interconnection by a conventional processor-memory
bus. It easily accommodates increased levels of integration over time, by
either increasing the capacity or performance of the modules, by reducing
their size, or by combining their functions. Moreover, the cost of
equivalent modules will undoubtedly come down in the future, so many of
these modules may soon become "throw away" items in the future, which will
further reduce the logistical burden in the field. Finally, this
relatively "coarse" partitioning of LRU's greatly simplifies fault
isolation in the field; it is much easier to determine, for example, that
the CPU is not functioning properly, than it is to determine what
particular part of the CPU is bad.

There are many prices paid for this sort of standardization. The
uniform bus interface and structure itself necessarily limits performance
and constrains technology somewhat. The desire to have a minimum set of
Least Replacable Units makes those units less than optimal for specific
applications. On the other hand, any system which cannot be maintained
where it counts, by soldiers on a battlefield, is worse than useless, it
is a burden which detracts from the Army's ability to fight.

PACKAGING.
The MCF has settled on ATR type packaging for several reasons:

.Existing Standard. ATR cases, which measure approximately 6" by 9" in
cross section and have various lengths from 12" to 20", are already a
widely accepted packaging standard for many electronic systems,
including commercial and military avionics equipment, and both ground
and airborne military computers (ARIN74).

.Size. The ATR case is a convienient size suitable for many avionics

applications, and its relatively small size also makes ATR cases a one
or two man load for ground applications.

.Card Size. The 6"by 9" cross section makes a convenient card size,
which is big enough to hold quite a bit of logic, with military

packaging techniques, and small enough to be mechanically tractable.
It is possible to package modest performance CPU's on a single ATR
size card today, and higher performance CPU's on two to twelve such

cards. In the relatively near future it will be possible to put a medium
performance computer and some local memory on a single ATR size card.

-757-



However, the ATR case does carry with it two serious penalties.
First, it is too small, for the next few years or so, for optimal
implementation of high performance large memory systems. Therefore, it is
necessary to break such systems up into a number of separate chassis, and
this partioning inevitably causes performance penalties. Secondly, all
external bus connections must be made through a 6" by 9" front panel,
which makes realestate for interconnection very limited indeed.

PERFORMANCE RANGE.
The performance range to be supported is, of course, a major factor in

the design of a bus system. Current MCF plans call for CPU's in three
performance ranges:

.low 150-250 KOPS

.medium 250-400 KOPS

.high 400-1000 KOPS

In addition, we also wish in the future to be able to implement CPU's in
the 1 to 3 MIP range. It is recognized that, in order to effectively
utilize such high performance CPU's, a larger than ATR size chassis may be
required, and it may be necessary to employ either some cache memory, or
parallel processor-memory buses.

In short, the MCF plans in the near term to implement CPU's with a
performance range of about 1:6, and in the long term of 1:10 or more.
This is an ambitious range; using the UNIBUS Digital Equipment Corp.
implements, at the low end, the PDP-ll/04, and at the high end the
PDP-l1/60. The performance of the 11/04 is on the order of 250 KOPs, and
that of the 11/60 is on the order of 630 KOPs, a range of roughly 1:2.5
(SNOW78). To acchieve this performance the 11/60 resorts to a cache
memory system (SNOW78 and MUDG77).

The use of CPU's with cache memories poses several concerns, in
addition to the stale data problem. The loads presented to the bus system
by two CPU's of nominally equivalent performance, one with, and one
without, a cache memory, may be very different. Cache performance
deteriorates when there are very frequent context changes. Cache memories
cannot, in general, be relied upon to enhance performance when responding
to interrupts with very time critical latencies, because the cache memory
probably will not be well conditioned when the interrupt is recieved.
Nevertheless, cache memories and/or multiple processor-memory buses may be
required at the high performance end. Although cache memories present a
number of problems, their advantages in unloading the bus system and in
reducing the performance effects of long access latiencies, are too much
to be ignored, particularly in systems, like the MCF, which are
partitioned into relatively small boxes.

CONFIGURATIONS.
Just as the MCF must support a wide range of performance, it must also

support a wide range of configurations. The simplest configuration is a
single chassis computer, with a low or medium performance CPU, 64 to 256K
bytes of main memory, and one or two I/O buses, all housed in a short ATR
chassis. Early requirements have also been identified for a uniprocesor
system with a medium to high performance CPU and 64 to 256 Kbytes of main

-758-



memory connected to one or more memory expansion chassis (each containing
up to 512 Kbytes of memory) and to an 1/O expansion chassis. Figure 2
illustrates this configuration. The most complex configuration, for which
an immediate need has been identified, is a dual processor configuration
shown in Figure 3. In this system there are two computer chassis
connected to two private memory expansion chassis, a private 1/0 expansion
chassis, and a shared memory expansion chassis. In normal operation one
CPU functions as a message processor, while the other functions as a data
base manager. if either system fails, then the other performs both
functions at a reduced rate.

This is not the full intended range of configurations. Although
specific programs have not yet been identified for such configurations,
multiprocessor arrays of various kinds will undoubtedly be desired for
future Army systems. An example would be a system where a number of
general purpose CPU's, possibly with integral cache memories, may be
housed in the same chassis, and connected to a common main memory. The
design of general purpose operating systems for such systems remains
something of a research issue, but if it can be solved satisfactorily, the
abliity to enhance performance by adding CPU's, and the ability to survive
CPU failures would both be attractive properties. Most contemporary
computer bus architectures are organized around a single relatively high
performance processor, but the dramatic reduction in the cost of
processors will surely lead to other organizations.

In fact, the development of powerful but inexpensive microprocessor
chips offers the attractive possiblity of connecting large arrays of small
inexpensive processors together to form very powerful configurations. As
an example, a typical military command and control system can be broken
into some sort of communications control function, an overall system
management function, one or more applications functions, and a data base
management function. Figure 4 illustrates how a set of dedicated
microprocessor based modules, each with an integral program ROM, and
scratchpad RAM, might be coupled together to create such a system. The
idea of modules with a dedicated function appears to be in conflict with
the desire to minimise the number of unique module types, however, many
such modules could serve many different battlefield systems. Potentially,
such a system could be highly redundant, and therefore resistant to module
failures. and be expandable in a modular fashio'n. It is uncertain which
kind of interconnection architecture is most advantageous for such
systems, or how tightly processors should be coupled in such systems, but
a bus standard for future military systems should make some explicit
provision for the interconnection of relatively large arrays of processors.

BUS TAXONOMY.

A functional taxonomy for MCF buses is given in Table 2, and Figure 5
shows a simple multichassis system using these buses to connect some of
the modules listed in Table 1, peripheral devices, and chassis. Four
kinds of buses are defined:

.Internal Bus (I-bus). The I-bus is essentially a backplane bus which
is the standard interface "seen" by all MCF modules. The I-bus never
extends outside a chassis.

-759-



External Bus (E-bus). The E-bus joins the I-buses of different
chassis. The major difference between the E-bus and the I-bus is the
type of circuits employed; the E-bus requires differential circuits to
reduce common mode noise problems.

.High Speed I/O Bus. This is a high bandwidth block transfer oriented
1/0 bus.

.Low Speed I/O Bus. This is a moderate bandwidth, word at a time
oriented I/O bus, intended for relatively low speed word or character
oriented devices.

Many other taxonomies are possible. It is certainly possible to

combine the functions of several of the buses. For example, the UNIBUS
functions as both a processor-memory and a low speed I/0 bus in commercial
PDP-ll's. The E-bus and I-bus might also be combined at the price of
forcing every module to use relatively high powered differential drivers
(overall bus length would likely limit performance if this were done).
Similarly, the processor-memory bus might be split in a number of ways;

separate buses might be used for operand and data acesses, for I/O control
functions, and for interprocessor synchronization and signaling
(interrupts). This would improve bandwidth at the expense of complicating
the interconnection and interfacing of modules, and of increasing the
number of required wires and interconnection points. Changing the size of
the black box would also change the bus taxonomy. For example, if the
black box were an entire chassis, rather than a module, then there would
be no need for an I-bus standard. Similarly, if the black box were the
entire computer system, then only peripheral bus standards would be
required.

BUS EVALUATION.
Rather than devise a new bus structure for the MCF, an attempt was

made to find a existing buses to satisfy the MCF needs. This had been the
MCF approach to selecting an instruction-set architecture, and this
approach had been apparently successful for that purpose. Due to its use
in separate Army and Navy major computer development efforts, a selection
was made, for planning purposes, of the bus used in the CDC 480 family of
military microprogrammable processors. This selection was strongiy
criticized by industry as being inappropriate and anticompetative
(ROBE77). In response to this criticism an MCF Computer Bus Architecture

Evaluation Committee was formed, and a number of buses, including the 480
bus, were examined for their suitability as each of the four bus types

shown in Table 2. In making this evaluation, it was assumed that military
versions of the various candidate buses could be produced; that is the
buses would be modified to meet military requirements. For example it was
assumed that signals might be converted, where necessary, to differential
form, and that address and data lines could be extended in width as
necessary.

In the end this effort was not successful because:

.Availability of Data. The data avaliable on the various buses

examined varied greatly in its quality, form, and completeness. Often

-760-



it was necessary to "read between the lines" when attempting to
identify bus characteristics. Moreover it was not posible to obtain
data on some recent, interesting buses, which are proprietary. There
was no assurance that the rights to most of the buses considered could
be obtained.

.Modification. The assumption that a bus could be modified to suit
military environments is questionable. For example, some buses which
use wire-ored open collector signals sometimes allow transitional
states where one driver may be attempting to drive a line high while
another driver may be driving it low. This causes no problem with
open collector circuits, but would with tristate or differential
drivers.

Cohesion. Attempting to independently select different buses for each
function defined in Table 2 simply did not result in any cohesive -as
system.

Multiprocessor Support. Few of the buses examined, including the 480
bus, made any explicit provision for supporting multiprocessor or
distributed processor configurations, yet there is great interest in
3uch systems for future military systems. Clearly, a bus system for
future military applications should provide an explicit framework for
connecting multiple or distributed processors.

As a result, the Bus Selection Committee reccommended that, rather

than attempting to use existing buses, a new cohesive bus structure should
be developed for the MCF.

MCF BUS SYSTEM REQUIREMENTS.
Since the Bus Selection Committee was unable to select a suitable set

of existing buses, the solution chosen has been to develop functional
requirements specifications for each of the four types of buses shown in
Table 2, and to ask bidders for the initial MCF systems implementation
contract to propose specific bus structures for the MCF. Design

considerations and requirements for each of these buses are summarized in
the following paragraphs.

I-BUS.
The I-bus will be the primary interconnection interface between MCF

modules. Since there will be an I-bus interface in every MCF module
(except power supplies), it is vital that the interface either be simple
to implement in a modest number of SSI, MSI or standard programmable LSI
circuits (PLA's, ROM's, RAM's, PMUX's, etc.), or that an appropriate

custom LSI interface be developed to support this interface.

Although the I-bus corresponds functionally, in many respects, to a

conventional computer backplane, unlike the usual backplane it is a very
regular, general purpose communication path, and must be functionally

independent of the particular processor, module, or memory mix. Some sort
of programming function will probably be required to define bus
configurations and module addresses, however special system specific point
to point wiring changes on the backplane are not allowed. The I-bus need

-761- _

AMA=-



not support physical lengths greater than IM; this is sufficient to allow
for expansion beyond the ATR case size.

The I-bus may be either sysncronous or asyncronous, however devices of
various latencies must be accommodated. The bus should support high
bandwidths and short latencies for transactions which take place entirely
within a single chassis. To improve bandwidth the 1-bus could be broken
into two or three independent buses, for example an I/O control bus, an
event (interrupt) bus, and a data bus, however this would complicate
interconnections, and increase the number of required connector pins and
bus signal lines, and probably would not dramatically improve
performance. There are at least two "unified" processor memory buses in
use today which approach or acchieve the desired level of performance, the
Honeywell MEGABUS, used in the Level-6 computer family, and the System
Backplane Interconnect (SBI*) bus used in DEC's new PDP-11 32-bit virtual
address extension/enhancement, the VAX-11/780 (DEC77). The MEGABUS is a
an asysncronous bus which supports a 24-bit address space, and a 10-bit
processor address space. It uses a proprietary distributed bus mastership
algorithm. The SBI bus is a sysncronous bus with a 200ns cycle time and a
length limited to 2M, which has a 32-bit multiplexed address/data path and
ordinarily transfers 8-bytes of data on 2 consecutive bus cycles. It
acchieves an overall transfer bandwidth of 13.33 million bytes per second
(the UNIBUS nominally acchieves 1.5 Mbytes/sec.). Interestingly, both the
MEGABUS, which is asynchronous, and the SBI bus, which is sysncronous,
employ a "split read" cycle, which requires two separate bus cycles to
accomplish a read, and frees the bus during access latencies. This has
two advantages and two disadvantages: it increases overall bus bandwidth,
and makes bus bandwidth essentially independent of memory latencies; on
the other hand it makes for a more complex interface and tends to increase
best case access latencies somewhat. Both bus 's also employ a distributed

mastership scheame. Unfortunately both DEC and 11oneywell were
understandably unwilling to release the details on these very recent and
interesting buses to the bus selection committee, so they were not
included in the MCF bus evaluation.

A split cycle appears to be desirable, but not essential, if 1-bus
bandwidth requirements are satisfied. A split cycle does seem
particularly advantageous for multiprocessor configurations, since several
processors can interleve simultaneous bus transactions. MCF performance
requirements probably will force a 32-bit data path, and the desire to be
able to accommodate very large future memories indicates that a 32-bit
address space should be provided for as well. Although it is not
necessary on the I-bus, since connectors with large numbers of pins can be
accommodated with ATR size modules, it may be most satisfactory if address
and data are multiplexed. This would add a little logic to each
interface, but would reduce connector pins. Moreover, it costs bandwidth
only on write operations, and the SBI bus demonstrates that high
bandwidths are attainable with a multiplexed bus.

A simple linear topology is desired for the I-bus, but it is necessary
that it be possible to remove or power down functionally noncritical
modules from the bus without affecting bus operation. Either a
distributed bus mastership scheame, or a redundant bus arbiter is
desirable to insure that the failure of one master arbiter does not bring
down the entire bus. An incidental advantage of a distributed mastership

-762-



scheame is that mastership signals need only propigate in one direction,

no reply is required from an arbiter, so mastership latencies can be
reduced.

E-BUS.
The E-bus probably represents the most difficult design problem of any

of the MCF buses. It runs between chassis and connects their I-buses.
Modules in separate chassis must be able to communicate with each other as
if they were in the same chassis. Each signal on the I-bus requires only
one wire, but noise rejection requirements will probably force the use of
two wires per signal and differential circuits on the E-bus. Connector
space on the 6" by 9' front pannel is very limited, and shielded military

cables are both bulky and very expensive. Moreover the same logistical
requirements which limit the number of module types, also argue strongly

in favor of just a very few standard cable lengths and types. It is
unacceptable for each different Army system to requi-e a special cable

set. Signal conversions are required at either end of the bus, causing
timing delays, and the bus may be as long as 5 Meters. A linear
interconnection approach is desired with two connectors on the front of
each chassis and a "T" connection with a simple conduction path between

the two connectors. It must be possible to connect at least five chassis
to one E-bus. Such a bus is effectively a transmission line and there are
impedance matr-hing and reflection problems to overcome. Signals could be

regenerated in each chassis, this would permit the interconnection of more
chassis, but would introduce additional propagation delays and the failure
of any chassis would break the bus. An alternative might be some sort of

star connection; this would reduce overall bus length, but require signal
regeneration for communication where neither of the chassis is the central

node, and would have to find a way around the limited front pannel
connector space. Moreover, the central node would be a point of
vulnerability; its failure would bring down the whole system.

Limitations on connector and cable size will probably force

multiplexing of address and data signals. Moreover, conversion and
propigation delays will also limit bandwidth. The E-bus is likely to be

the performance bottleneck in MCF systems. The use of a split cycle read
protocol might considerably reduce this problem. To allow for effective
use of multiprocessors the Bus Interface Modules (BIM's), which connect
E-buses and I-buses might buffer transactions and independently arbitrate

E-bus and I-bus transactions. This would permit a number of I-bus
transactions to go on within separate chassis, in parallel with an
interchassis transaction on the E-bus, but would introduce possible
deadlock problems. Also, when building uniprocessor systems with several
memory chassis, the need to rearbitrate E-buses and I-buses may introduce
long latencies. A possible solution might be to introduce two different

BEM's, one which buffers transactions and one which does not, for
different types of systems. This, of course, is in conflict with the

desire to minimize the number of different module types. It would also be
possible to implement a split read cycle on the E-bus, where bandwidth is
critical, but use a single read cycle on the I-bus, where bandwidth is not
so hard to get. It would also be desirable to allow some sort of short

block transfer or extended word transfer mode on the E-ous to increase its
bandwidth. If this were done, it might also be advantageous to build some

sort of buffer or cache memory into the BEMs as well, as an optional
feature.

-763-



The design of the E-bus is probably the most difficult issue for MCF
bidders. The one saving factor may simply be that only BEM's interface to
the E-bus, and it is therefore possible to introduce several protocols at
the expense of one new module type per protocol, or to provide performance
enhancements, like a cache memory integral to the BEM, by the introduction
of a different -nodule type, without affecting the interfaces of other
modules. This might ultimately allow a graceful transition to some sort
of fiber optic E-bus, when that technology matures.

PERIPHERAL BUSES.
One obvious approach to the selection of peripheral buses for the

Military Computer Family would be to use the existing peripheral buses of
each of the instruction-set architectures to be implemented by the MCF.

Current MCF plans call for the development of CPU modules for three
different instruction-set architectures: the AN/GYK-12, which is used in

several major army systems including TACFIRE, the AN/UYK-19, which is used
i~n a number of planned Army systems and which is an extension of the Data
General NOVA instruction-set architecture, and the AN/UYK-41, which is the
instruction-set architectire chosen by the Computer Family Architecture

Selection Committee, that is the PDP-1l/70. Between them these three
machines use four different peripheral buses. Such a system would mean
that each MCF peripheral device would need to interface to at least three
different buses, and at four different cable sets would probably be
required. This i~s unacceptable, moreover eacla of these buses is a
relatively old design, and only the AN/CYK-12's Peripheral Bus was

originally designed for military environments.

Rather than use different peripheral buses for each instruction-set

architecture, the decision was made to use two standard peripheral buses
for all MCF systems. One peripheral bus, the High-Speed Peripheral Bus is
designed for high bandwidth block oriented peripherals, such as disk
drives. The other peripheral bus, the Low-Speed Peripheral Bus, is
oriented to lower bandwidth "word at a time" peripherals, such as
terminals or printers. This approach will eliminate the need for three
separate device interfaces for each peripheral device, and will reduce the
number of required cable types, but it will mean that earlier peripheral
devices will not interface to MCF systems. Moreover, it may still be
necessary to use three different architecture specific peripheral Bus
Interface Modules (BIM's) to account for differences in the 1/O structures
and semantics of the three instruction-set architectures. Finally, iL is
not likely that the same peripheral device can simultaneously interface to
the I/O protocols of three different instruction sets, and still preserve
the same software interface as some earlier peripheral device. This means
that low level device driver software for existing systems will have to be
modified if those systems are transported to MCF hardware.

The basic requirements for the two peripheral buses are fairly

similar. Minimizing the number of signal lines for each bus is vital, and
there is probably a strong case to be made for serial buses using either
coaxial cable or twisted pairs, as required, or even fiber optic cables.
Both buses should operate over relatively long distances (at least 30 M
and more would be desirable). The low-speed bus should be able to

-764-



concurrently multiplex transfers from a minimum of 31 devices at a rate of
19.2 baud each, while the high-speed bus should be able to address at
least seven peripheral devices, with an unmultiplexed block transfer rate
of 10 Mbytes per second or more. If any peripheral device on either bus
is turned off or removed from the bus it should not affect communications
between other devices. It is desirable that bus priorities for both buses
be independent of position on the bus. It may be possible, and if so it
would certainly be desirable, to combine the two peripheral buses into a
single bus type. Even if performance (that is maximum bandwidth) suffers
somewhat when this is done, systems with modest I/O requirements could use
a single bus while systems with heavy I/O requirements could use two or
more peripheral buses.

CONCLUSION.
Any proposed standardization program is likely to be controversial,

and the MCF is no exception. In the case of the MCF, the desire to have
intensive competition and technology insertion throughout the life-cycle
of MCF systems have forced an approach to standardization in terms of
modules whose form, fit, and function are specified, but whose internal
design is not. The size of modules is a function of the desired
packaging, and the desire to have a simple, effecitve maintenance
approach, which can be implemented on a battlefield with ordinary
soldiers, and with a small spare parts inventory. A set of standard buses
is needed to provide standard interfaces between the modules. There are
no "free lunches" and various prices are paid for each of these
decisions. Nevertheless, however, except for the use of a special
interchassis bus, the E-bus, which is necessitated by military noise and
packaging requirements, the approach chosen to busing is really quite
conventional. Such a "grand bus" approach, where a standard interconnect
bus (in the case of the MCF the I-bus and its extension, the E-bus) ties
the computer together, is now quite a conventional technique in the mini
and midi-computer industry, and the DEC PDP-11 and VAX-ll/780, the Data
General NOVA, the Honeywell Level 6 computer families all provide a wide
product line organized around a common interconnect bus.

The conceptual framework for the MCF bus system has four buses: an
internal chassis interconnection bus (the I-bus), a bus which ties the
1-buses of separate chassis together (the E-bus), and two Peripheral
buses, one for high speed block transfers and one for lower speed word
oriented peripherals. The eventual winner of the MCF System Producability
Integration Contract will have considerable latitude in the detailed
design of these buses, and may choose to combine some of them. With a
little luck and a lot of good engineering, MCF bus standards can be
acchieved, so that the Field Army can obtain the same advantages of

modular interchangability, interoperability, competition, and a large
choice of system components that the RS-232 standard brings to data
terminals, the IEE-488 standard instrument bus brings to intrumentation,
the S-100 bus brings to small business and hobby computers, and buses like
the UNIBUS already bring to many users of commercial minicomputers.

* VAX, SBI, PDP, and UNIBUS are all registered trademarks of Digital

Equipment Corp.
**MEGABUS is a registered trademark of Honeywell Information Systems, Inc.

-765-



TABLE I. MCF MODULES.

MCF MODULE TYPE DESCRIPTION

CPU MDDULES Several CPU modules are planned,
implementing 3 instruction-set architectures
(AN/GYK-12, AN/UYK-19, and AN/UYK-41(V))

over a performance range from 200 to 1000
KOPS.

POWER SUPPLY MODULES Two general purpose power converter modules
are planned.

RAM MODULES Both semiconductor and core random access

memory modules are planned in 32 by 32K or
64K bit sizes.

BUS EXTENDER MODULE This module is required to convert the basic
system backplane bus (I-bus) to a form
suitable for communication between chassis
(E-bus). Signals will probably be converted
from TTL levels on the I-bus to balanced
differential signals on the E-bus.

BUS INTERFACE MODULES These modules connect peripheral buses to

the main system bus (I-bus). There may be a
different BIM for each instruction-set

architecture to accommodate the differing
I/O functionality of each instruction-set.

SPECIAL PURPOSE I/O MODULES These modules provide special purpose
interfaces between peripherals and the main

system bus. An example would be a Key
Generator interface.

SPECIAL PROCESSOR MODULES No such modules have yet been defined,

however obvious possibilities include signal
processor modules, data base manager

modules, communication line controller
modules, and the like.

-766-



TABLE 2. MCF BUS SYSTEM TAXONOMY.

NAME FUNCTION CHARACTERISTICS

Internal Bus Standard interface .Probably TTL signals.

(I-bus) for all modules. Must .Physically short ( <IM).
include processor- .High bandwidth.
memory data, control, .Short latency.

and event (interrupt),
signal paths. this bus
roughly corresponds to
a cenvntional backplane

External Bus Extension of the I-bus, .Differential signals.

(E-bus) ties together the .Moderate length ( < 5M)
I-buses of two or more .Nigh bandwidth.
chassis, .Moderate latency.

.Strongly pin limited.

.Expensive shielded cables.

Low Speed I/O Bus A multiplexed, word .Differential signals.
at a time bus for low .Moderate bandwidth.
bandwidth peripherals. .Possibly a serial bus.

.Longer lengths (>30M).

.Strongly pin limited.

High Speed I/0 Bus A high bandwidth block .Differential signals.
transfer oriented bus .High bandwidth.
for high speed per- .Block transfer.
ipherals such as disk .Long latencies acceptable.
drives. .Moderate length.(> 30M).

.Strongly pin limited.

-767-



ccc

0

U)U

z -C

9.- 0 a.

a w
w w w

U.U

-C 0. L

> 3
0. 0:

uLu
0--

U)

u 1-

Lu
> EE4

wI
Ir CD.o
0 04

Uo Lu

Lu L

- 'm L.4

I(D U) 9- w

CO U) 2: 2: Uf

-768-



co.

z-:

-J-

-j L.)

Occc
LU-C

ca < i CuJ
< cnw

0-/

:0 CD
to I-

Ln-

tL)

U-

F--

CCz

LIJ 8

D U) D
-79-



z zz:

LU~~L Luc;L

LLU

-i C- ui -i -J _

_U LU

U CL C

t-770-



c'J

LI

Cni

-j -I

a- C-

Lii

IL-

Ul-

UCL M

-771-



rr

CQC

I ~~~JLJ I

sna- IVH~ 33SH

snaJu IV M d0ISF0

-772-



REFERENCES

(AERO74) AERONAUTICAL RADIO, INC. "Air Transport Equipment Case and Racking,"
ARINC Specification No. 404A, Anapolis, Md., Mar. 15, 1974.

(BORI74) Boring, G. and B. Retterer, "Form, Fit, and Function Specifications,"
TECHNICAL PERSPECTIVE, No. 16, 1974, ARINC Research Corp.,
Annapo is,Md.

(BURR77) Burr, W., A. Coleman, and W. Smith, "Overview of the Military
Computer Family Selection," AFIPS Conference Proceedings, Vol. 46,
1977 NCC, pp. 131-137.

(CASS76) Cassarino, Jr. et. al., "Data Processing System Providing Split Bus
Cycle Operation," UNITED STATES PATENT NO. 3,997.896, Dec. 14, 1976.

(CONW77) Conway, J. "Approach to Unified Bus Architecture Sidesteps Inherent
Drawbacks," COMPUTER DESIGN, Jan. 1977.

(FORC78) Force, G., "Microprocessor Bus Standard Could Cure Designers Woes,"
ELECTRONICS, Vol. 51, No. 15, July 20, 1978, p. 113.

(GRAH75) Grahm, L. J., "Application of the Commercial Airline Acquisition
Methodology to Department of the Navy Electronic Equipment
Acquisitions," ARINC Research Corp. Report, 15 Oct. 1975, Publication
No. 1313-01-1-1447.

(INTE76) INTEL Corp., "Intel Multibus Interfacing'", Applications Note, 1976.

(ISAA78) Isaacon, Portia, "Personal Computers for Small Business
Applications," POPULAR ELECTRONICS, Vol 14, No. 2, Aug 1978, p. 53.

(MORR78) Morrow, G and H. Fullmer, "Proposed Standard for the S-100 Bus,"
COMPUTER, Vol. 11, No. 5, May 1978, pp. 84-90.

(MUDG77) Mudge, J. C., "Design Decisions Achieve Price/Performance Balance in
Midrange Minicomputers," COMPUTER DESIGN, vol. 16, no. 8, pp. 87-95,
Aug. 1977.

(ODG178) Ogdin, Carol, "Microcomputer Buses," MINI MICRO SYSTEMS, Vol 11, No.
5, June 1978, p97-104.

(ROBE77) Robertson, J., "Government Closeup," ELECTRONICS NEWS, Monday Aug. 1,
1977, p. 12.

(SMIT76) Smith, Noel, "A Marketplace Approach to Military Avionics
Standardization," 1976 National Aerospace Conference, Dayton, Oh.,
May 1976, ARINC Research Corp Publication 6405-1487.

(SNOV78) Snow, E. A. and D. P. Siewiorek, "Impact of Implementation Design
Tradeoffs on Performance: the PDP-11, A Case Study," Carnegie-Mellon
University Report, CMU-CS-78-104, Feb. 19, 1978.

-773-



LWJ

LU
C,,

LU

C/) L

C/)

LU

LL -

LU

LiL

LUU

- LUJ

LLJ >- L-

C)J LU

C')-

Li J C)

mm

0

-774-



w I
Cl-)

LU-

LUU

w V) w U C)

w LU C)

<c - L

CD w
1= LLU uj

L6~~~(' LUW c /) u -
L.Ui C/) LU CD ~

09 uC-) LU LU c-L

uj ab m 404

CAL.L C

0- I ~ ~
u

-7 5



U
C/)

LUJ

LUI
(.:) wt:

C/) NLUI
C/) C)

C/)

C) / LUJ

H-J F- C

LUf L- P-
C/Cl <C ) - '

- Cl) n

cn Cl) CL
-n Li- r

- l C)
cn L >H

- V l) LU -

C/ LU J

-LU :3

I I

CCl)

Cl) CCD

LL.U

-4-

LUJ

-j -~j LUJ LU

VL LU
i-)

-< CD

4w w

-776-



Evaluation of Alternative Computer Architectures
An Overview of Three Studies

William Dietz

Department of Computer Science

Carnegie Mellon University

This paper summarized the results of three evaluations of
computer architectures conducted by Carneigie Mellon University. As part
of the Military Computer Family (MCF) program, methods of measurement were
given for program size, memory activity, and processor activity. A des-
cription of the statistical design and analysis methods for the experiments
was given. Results were summarized for the three evaluations.

-777-



EVALUATION OF ALTERNATIVE COMPUTER ARCHITECTURES:

AN OVERVIEW OF THREE STUDIES

William B. Dietz

1. Introduction

Until recently, decisions concerning the choice of alternative
commercial computer systems were rather straightforward. The list of
possible candidates was narrowed down based on questions about the
suitability of the system:

- Does it have a compiler for the high order language we are
using?

- Does the system have the capacity for the primary and
secondary memory required?

- Do necessary tools such as editors and file systems exist?

- Does it have a usable operating system which will support the
application?

- Does the system meet any size constraints which may apply?

After the list of candidates has been pruned based on questions
such as these, the final selection is usually made based on the time
which the system requires to perform either some portion of the
application program or a set of "standard" benchmark programs (provided
the cost difference between candidates is not too great).

In the last few years a new wrinkle has been added to the scenario
described above. We have entered the era of the Computer Family. Now
when the salesman from XYZ Computer Systems comes to call, he may not
describe just one system he sells which will meet your needs. Instead
he may extol the virtues of the XYZ 1000 computer system and how it will
meet your current needs, and follow that with a discussion of the XYZ
1000 +1 processor - "Your credibility gap filler". The XYZ 1000 +1
processor can be substituted for the XYZ 1000 processor if you find you
need more processing "power" in the future. This substitution can be
made, he will assure you, without any changes to time-independent
software developed on the XYZ 1000 processor. This creates a dilemma.
Which processor do you measure, the XYZ 1000 or the 1000 +1 ? And then
the salesman throws in the clincher. He explains that the XYZ 1000 +2
processor is scheduled to be available soon. It will run faster than
the XYZ 1000 +1 and will cost less. At this point, the procedure for
choosing a computer system must be re-evaluated. The idea and value of
a computer family must be considered in the decision-making process.

A computer family is based on relatively simple, yet very important
abstract concept, the COMPUTER ARCHITECTURE. The architecture of a
computer is defined here to be the structure of the computer that a
programmer needs to know in order to write any time-independent machine-
language program that will run correctly on the computer. Things like
instruction operation descriptions, addressing modes, and data types
form a part of the architecture of a computer. However, things like
cache memories, pipelining, or parallel data paths are NOT part of the
architecture. These ideas belong to the implementation of the
architecture.

-7 78-



It is this separation of' architecture from implementation that
allows a family of computers with varying cost/performance ratios to be
built.

The reasons for the interest in computer families are very clear.
As the demand for more sophisticated "state of the art" software systems
and tools increases, it becomes more difficult (in terms of time and
money) to supply this software with new computers designed to take
advantage of the rapid advances in hardware technology. If a
manufacturer uses an existing architecture for a new hardware
implementation most of the existing software can be captured. Also, all
of the programmers who are trained and proficient in the use of the
existing architecture will be able to generate code for the new hardware
without any retraining. Many commercial manufacturers have seen these
advantages and have been heading toward compatible computer families for
the past several years.

The same forces which cause many original equipment manufacturers
to begin using computer families in their systems also affect military
systems builders. However, because the suppliers of military computer
hardware (and the management of military systems production) are often
driven by different forces than the commercial market, a different route
had to be taken to try to establish a family of military computers
suitable for use in a wide range of applications. The ARMY/NAVY
Computer Family Architecture (CFA) committee was formed in 1975 to try
and select a single computer architecture which could be used in a wide
range of tactical systems. By developing a set of absolute and
quantitative criteria, the CFA committee was able to narrowq an initial
group of nine architectures down to three final candidates. The desire
to compare these three candidate architectures lead to the development
of the computer architecture evaluation methodology described below.
This methodology has also been refined and applied to two other groups
of architectures.

The evaluation yields a ranking of the overall relative
efficiencies of the architectures as well as some information about
their performance in certain subareas. This information along with
other factors such as support software availability and applicability
was used by Harold Stone to derive a life cycle cost ranking for the
architectures. When an architecture is to be chosen for a family of
computers that will be used in a wide range of applications, the life
cycle cost ranking should be weighed heavily. The architectures being
considered must also be examined carefully for deficiencies that could
make even a high ranking architecture a liability in specific
applications.

2. Architecture comparison method

Three computer architecture comparison studies have been performed
at Carnegie -Mellon University. The basic approach which evolved is
this. A set of 16 "test program specifications" were developed.
Programs from this set were assigned to a group of test programmers tc
be coded in assembly language for the architectures being compared. The
assignments were made based on a statistical design which permits

-77 9-



FIRST STUDY
IBM S/370
INTERDATA 8/32
DEC PDP 11

SECOND STUDY
AN/UYK-7
AN/GYK-I 2
AN/UYK-l 9
AN/UYK-2 0
AN/UYK-41 (POP-Il1)

THIRD STUDY
AN/AYK-14

AN/AYK-15A
AN/UYK-41 (PDP-1 1)

DATA GENERAL ECLIPSE C/330

Figure 1: Architectures Evaluated

-780-



separation of programmer effects from architecture effects in the
analysis. After the test programs were coded and debugged using a
specified test data set, they were evaluated using -three measures of
architecture performance: S, M and R.

2.1. The Test Programs

A representative set of benchmark or "test" programs was selected
for the evaluation. Small test programs of about 100-500 machine
instructions were used due to limitations of budget and manpower. Test
programs written in a high-order language were ruled out due to our
inability to separate compiler effects from architecture effects.
Instead, the algorithms for the test programs were specified as
structured programs in a high-order PL/I-like program definition
language. The test programmers were instructed to "hand translate"
these algorithms into the assembly language of the respective
architectures. The programmers were not permitted to make algorithmic
improvements or modifications, however, they were free to optimize their
code to the extent possible with highly optimizing compilers. Using
this method, we hoped to reduce the variations due to programmer skill.

The test program algorithms chosen were intended to be broadly
representative of the basic types of operations performed by military
computer systems. For the first study 12 test programs were specified.
The refined analysis used in the second and third studies called for 16
test programs. The sixteen test programs were divided into four
categories for subgroup analysis. These four groups are:

- Interrupts and Traps

- Address Manipulation

- Character and Bit Manipulation

- Miscellaneous

2.2. Assignment of Test Programs

The assignment of test programs was done in accordance with the
statistical design of the studies. Each test programmer coded two
programs on each of the architectures in the study. The suggested order
of writing was different for each test programmer to avoid
algorithm/machine familiarity.

2.3. Debugging and Execution Testing

An ISP description was developed for each architecture under study.
This description was used to generate a simulator for each architecture.
The test programmers used the simulation facility to debug and test
their programs. A set of test data was supplied for each of the test
programs. A program was defined to be debugged when it properly
executed using the test data. This provided reasonable assurance of the
applicability of the measures obtained without requiring proofs of the

-781 -



correctness of' each program. A subset of' the test data was used for
evaluation of execution efficiency. The ISP simulator facility
maintains counters of memory accesses as well as frequency of execution
of each part of the simulator. These counters provided the execution
statistics used in computing the architecture measures.

2.4I. Measures of an Architecture's Performance

The performance of an architecture on the test programs is measured
by the relative efficiency of the test programs written for' that
particular architecture. An efficient architecture is one which
requires a small amount of storage for a test program and executes the
test program in a short amount of time. Three types of' measures were
developed to capture this concept. The S measure is a measure of, the
storage requirements for a program. The M and R measures are measures
of execution eff'i~iency. See Figure 2.

2.4.1. Program Size Measure

The S measure is defined as the number of bytes of memory required-
by the test program. This includes stack and local variables but
excludes any parameters passed and any global data structures accesse..
by the test program.

2.4.2. Execution Efficiency Measures

The time required for a computer to execute a given program is
clearly dependent upon the hardware implementation of the machine. -An
arbitrary architecture may be implemented to execute its instructions
more or less quickly dependent upon the technology used. The executio~n
time of a program is determined by two factors; the amount of processing
required, and the rate at which the processing is done. The rate of
processing is determined by the hardware implementation. However, the
amount of processing is dependent upon the program and the architecture.
An efficient architecture will minimize the processing required thereby
allowing the most efficient implementations. Two factors contribute to
the processing required by a program: memory activity and processor
activity.

The M and R measures defined below were developed to measure those
aspects of a computer architecture that would most directly affect the
performance of its implementations.

M- Measure of Memory Activity

The most direct measure of memory activity is a count of the number
of bytes read from or written into the main memory during the execution
of a test program. This is precisely the definition of the M measure.
In order to understand this measure, consider two diffogent
architectures which are implemented with the same processor! mem~ory
bandwidth and memory speed. The architecture with the higher M measure
for a test program would take more time to move the bytes necessary to
execute the test program.

One M measure was computed for the first study. In the second

-782-



Measures of Performance of an Architecture

Memory

Processor
S measure

M mesureR measure
How much

memory9
How much traffic? How much

computation?

S is a measure of the efficiency with which a program can be represented,

M and R are measures of the execution time of such a program.

Figure 2: The S, M and R measures

-783-



DEFINITIONS

MEASURE OF SPACE

S: Number of bytes used to represent a test program.

MEASURES OF EXECUTION TIME

M: Number of bytes transfered between primary memory
and the processor during the execution of a test program.

R: Number of processor cycles required to execute a test

program using the canonical processor.

Figure 3: Definitions of S, M and R

-784-



study, three M measures were computed to reflect the use of an 8 bit

bus, a 16 bit bus, and a 32 bit bus.

R- Measure of Processor Activity

The R measure for a program is defined as the sum of the R measures
for each instruction executed. The R measure of an instruction is
defined as the number of processor cycles required to execute it using a
canonical processor which was chosen to be representative of a typical
medium performance implementation. See Figure 4. For simple
instructions, the microcode was generated and the R measure was
calculated directly. For more complex instructions such as integer
multiply and divide and floating point operations, the R measure was
established by a survey of implementation on current computers.
Relative execution times were used to establish an approximate number of
processor cycles required to execute the instruction. This computation
cost was then added to an operand fetch cost and an instruction fetch
cost to determine the R measure for the instruction.

2.5. The Statistical Design

The method used to design and analyze the experiments was based on
the analysis of Variance (ANOVA) technique. ANOVA is a statistical
technique for analyzing measurements which depend on several kinds of
effects simultaneously, to decide which kinds of effects are important
and to estimate these effects. This technique was used to identify the
significant factors which influence the S, M, and R measures with
emphasis on the significance of the architecture factor. Quantitative
measures were associated with each architecture and confidence intervals
at the .05 level of statistical significance were obtained for these
measures. These were used to obtain statistically valid rankings of the
architectures.

2.6. The Results

The results of the first study can be summarized as follows (see
figure 5):

- The Interdata 8/32 architecture is significantly better than
the IBM S/370 for the set of 12 test programs across all three
measures of performance.

- Differences in performance between the PDP-11 and the
Interdata 8/32 detected in this study are not statistically
significant.

- While the PDP-11 is not shown to be superior to the IBM S/370
architecture at the .05 level, the data is skewed strongly in
favor of the PDP-11.

The results of the second evaluation are summarized in figure 6.
Looking at the S measure we find the 16 bit architectures make up the
best group, with the PDP-11 significantly better than the AN/UYK-19.
The AN/GYK-12 and AN/UYK-7, in that order, make up the worst group. In

-785-



Select Operands

MM

COSTN Control

RO Unit

TEMPORA~RY ----- --

0eration,

ALU &-;Yjs

Control Memory Operations
S-------------------------------------------------------------------------

Figure 4: Canonical Processor

-786-



.6
1.8-

-. 5

-. 4

1.4- --

I I
1.2 -]BM60 BM36-

I I .

1.2 -- 1832 18/3 ,
II )

S Si RS

II ~IS II

Fi 5t -PDPII I 87-
II ISI

0.9OPI I
I I I I-o i :1832-.

' ' 118/32
:18132 : :83 .

III
0.78-.

I
I - .

Clustering based on 957. confidence intervals
-. o5

Figure 5: Results of the First Study

-787-



the M measure the AN/UYK-20 and the AN/GYK-12 both move up in the
rankings relative to the others. The PDP-11 drops significantly behind
the AN/UYK-20 and the AN/UYK-19 drops into the last group with the
AN/UYK-7. The R measure shows the AN/UYK-20 and AN/GYK-12 clustered at
the top.

While the full results for the third study are not ready at this

time, it is clear from the preliminary analysis that the architectures
which are similar between the second and third studies do not change
their relative rankings.

3. Conclusions

In performing the three computer architecture evaluations we have

devised and improved a methodology which allows the relative ranking of

computer architectures based on the efficiency measures S, M and

R. However, the architectures being studied in these evaluations

comprise a very narrow subset of all computer architectures and the

evaluations were very costly. While we have learned a great deal about

comparing computer architectures we have a long way to go before we have
a practical, inexpensive and effective method for evaluating computer

architectures.

REFERENCES

1. Burr, William E. and Samuel H. Fuller et. al., Computer
Family Architecture Selection Committee Final Report, Volume

III - Evaluation of Computer Architecture via Test Programs,

ECOM Research and Development Technical Report # 4528,

September 1977

2. Fuller, Samuel H. and William E. Burr, Measurement and
Evaluation of Alternative Computer Architectures, Computer,
Volume 10 Number 10, October 1977

3. Fuller, Samuel H., G. Mathew and L. Szewerenko, Phase II

Comparative Evaluation of the MCF Computer Architectures,
CORADCOM Research and Development Report # 79-9, July 1978

-788-



.6
1.8 ---

1.6-

-. 4

UJYK7 -1.4 -- UYK7 Ki
-- UYK19 -.3

UYK7 I "UY rI

1.2- .2UYKI9 UYK19 _ UY._ _, UYKI9
GYK12 PDPI I

I2 UYK7

1.1 -- ---------. --.

iPPDP

I PDPII f
09 UY ' G'2 GYK12 GYK12

I------------ g I -.

UYKU19Y O .. ..

0.89rK2

09- UYK20 ,_D I1_' , PDPI . I ------ -o

I I

POPI I GYK12,,' _ .2

0.8-- UNK20 ,GYKI 2 -
UrYK20

-. 3
UYK20 UYK20

0.7- -.4

Clustering based on 95% confidence intervals -

S M M M R R
1 I8 32 6 32

Figure 6: Results of the Second Study

-789-



RELIABILITY/SURVIVABILITY

D7an Hocking

AIRMICS



RELIABILITY/SURVIVABILITY

SESSION CHAIRPERSON: Dan Hocking

AIRMICS

SESSION SUMMARY

The reliability/survivability session consisted of a pair of
presentations focused on improving the ability to demonstrate software
reliability or survivability. Ray Stone of General Research Corporation
presented their work on "Adaptive Testing" which is a means of auto-
matically determining a real-time software package "performance boundary"
or performance under load. Dr. Richard DeMillo, School of Information
and Computer Science, Georgia Institute of Technology presented the work
currently being supported under grant from AIRMICS on "Mutation Analysis"
which is a means of assessing the value of test data used to verify the
functions of the program. The above presentations were followed by a
question and answer session led by Dan Hocking of AIRMICS.

-790-



Adaptive Testing

R. L. Stone

General Research Corporation

Adaptive Testing provides a means for automatically and efficiently
determining a software package's "performance boundary". This boundary
is a surface in the space of permissible input values which separates the
regions of acceptable and unacceptable program performance. The Tester
embodies a comprehensive way of establishing initial input values using an
interactive data base construction program, data reduction programs which
reduce the large quantity of performance data collected to a manageable
subset and a heuristic search algorithm that determines a minimal sequence
of test cases to carry out to locate the boundary. An extensive graphical
aids package displays tables, graphs and surfaces on an interactive color
display system under control of the user.

-791-



ADAPTIVE TESTING

R. L. Stone

Adaptive Testing addresses the problem of locating the performance
limits of data processing subsystems. Past research has been carried
out in the context of Ballistic Missile Defense dp systems; the main
thrust of AV&V research is to develop a tool that will identify the
permissible set of attack scenarios that give rise to a high level of
stress in the BMD dp system and to unacceptable performance in the
total system sense.

The division in attack scenario space between those attacks that
are handled successfully and those that are not is referred to as the
performance boundary. The primary goal of the Adaptive Tester is to
delineate the performance boundary. Adaptive techniques are used to
improve the efficiency of the search process carried out over attack
scenario space.

In our development of an automated test facility we have included
a number of computer aids which simplify the process of assembling the
initial attack scenarios, specifying the test conditions, carrying out
the analysis of performance data and generating the next in the sequence
of test cases. Once an adaptive test is initiated the tester proceeds
in automatic closed loop mode until a scenario is found that causes the
BMD test object to yield a given value for the objective function,
generally the number of penetrators. The four major functions in closed
loop mode are 1) generation of scenario tables from input specifications
2) execution of the simulation of the BMD process by the test object
3) evaluation of the performance of the test object and 4) perturbation
of the scenario parameters by the search or Parameter Perturbation
Algorithm (PPA).

-792-



I- F. U0 L

L M C L i

o- LLiL i

>-- I- c

I.-J

-
tn

LIi LiJ

L-~

CD I LLI LULii

0-

CKA I -0L
cci U LLI

o LL>. 00
LA -j

0 ~ ~ ~ ~ ~ L L ______i. UL

LCD cr F- - L.Jtz

E - I-- I-

m- 0r -O C iJLL C

(A1=- C =-
LLJ LJ r LLJw -2: V

IL) uL F ILLI
C)LLJ C) 0

L iLU F - C) -)atC.
u0iLij

( J OCA

~~C 0 Li J

(n - 00
cci I.-V

0jU)Q

LU ~~ ~ - 93- C=1 -u



Our work, carried out for the data processing directorate of BMDATC,
can be broken into 6 main categories.

1. The Automated Scenario generator simplifies the often arduous task
of assembling the many parameters needed to complete the definition
of an attack scenario. This sub-system to the Adaptive Tester pro-
vides for a global data base of threat information (complete
scenario booster descriptions, object definitions) to ease the
attack scenario assembly process. The program can be used with
any test object since data definition templates are also maintained
on the global data base.

2. Test Objects have been built according to the objectives of the
research. A large effort has gone into developing test objects
suitable for deterministic system-level, stochastic and algorith-
mic-level testing.

3. Performance evaluation research has addressed the problem of iden-
tifying those recorded parameters which can be used to best deter-
mine the next test case. Redundancy analysis, correlation, factor
analysis, clustering, surface fitting have all been successfully
used.

4. The heart of the tester is the adaptive search algorithm. This
process decides the next test case to use based on observed past
performance and a set of heuristics, either manually or automatic-
ally derived. A number of search techniques have been tried in
the tester and a later slide shows their relative merit.

5. The proper use of the tester is a major concern of ours. We like
to think of the tester being available during a hierarchical soft-
ware development cycle. Questions arising here concern the appli-
cability of heuristics generated for use at one level, for use
with more detailed software; what is the meaning of the term "per-
formance boundary" if the test object embodies stochastic processes;
how good and complete must heuristics be to enable the tester to
efficiently find a performance boundary.

6. The Adaptive tester can readily be turned into a system design aid
when the input parameters are held fixed and system definition
parameters modified to find an optimal configuration.

-794-



CATEGORIES OF ADAPTIVE TESTING WORK

1. AUTOMATED SCENARIO GENERATION

2. ADAPTIVE TESTER TEST OBJECTS

3. TEST OBJECT PERFORMANCE EVALUATION

4. ADAPTIVE SEARCH ALGORITHM

5. ADAPTIVE TESTING METHODOLOGY

6. OTHER APPLICATIONS OF ADAPTIVE

TESTI14G CNCEPTS

-795-



Of course, our most concentrated efforts have gone into devising
a successful, efficient adaptive search technique, for without this,
adaptive testing has no chance of achieving its goals. The search
algorithm must transform its view of system stress into a set of per-
turbations of input parameters designed to increase stress even more.

A serious research issue revolves around the impact of stochastic
threat, environment or system effects on adaptive testing methodology.
With a stochastic model the boundary is no longer a simple surface but
must be defined in probabilistic terms. Also a number of simulation
runs must be made before "average" performance against a single scen-
ario can be ascertained.

A less esoteric but still important research issue is concerned
with the design of the human interface so that maximal information
about tester operation, test object behavior and test progress can be
obtained with a minimum of user input.

Also, the reduction of massive recorded performance data to the
minimal amount needed by the search algorithm has been a major study
of the performance evaluation task. The methcdology surrounding use
of the tester is of equal importance to the details of the tester
itself.

-796-



LUJ

-

C)-

F- -i

C3 LL- C LUJ
LU LU

cm LJ

C.) C) I.- LU

cn ce V) -

S LIJ >-LJC
0 A u (

(A -
= LU JL

V) >- LLJ

(A - M >-c . LU-

(D LUI C-) 0. DL
M- F- C, < V)U -

0 LJ <. co L. U- LI..

LU co LU 0) Ix "
(Ac ex ~LU LUJ F-

I.-- =) = C- I-

LU .LLU < .. LU

LU LUI w I-- -4 "

>. LU LUJ (A V (A L F-

(.- D LU m. <~ w LUJ
0.. LX: z J

(A < n <~ C LI LU I ..j
LUJ C w~ - C im =

VI = . = M m C 

= ~CD 0) - < LU) CD

= M LL.

W.. C-) C - (. CD -
< LL.. I- . IL (A LU m LU
LU IL. LULU uj LU LUJ -j (A
(A LU c w C c IL
LLJ

CL)

-7 97-



Our Adaptive Testing research has been carried out according to
a four-year plan of which we are currently finishing the third year.
During the first year we concentrated on proving the feasibility of
adaptive testing against deterministic high level system-level models.
In the second year we addressed the major problems of testing stochastic
models: how much testing does one need to establish that a given scen-
ario point lies on the performance boundary, and how can one reduce the
number of engagement runs needed to approach the boundary.

During the third year we are testing a detailed BMD algorithm (a
midcourse optical discrimination process) running on a (simulated)
data processing system. We hope that we will be able to show how to
"break" a dp system and thus cause the BMD system to fail in its defense
objectives. In year four we intend to test some portion of real-time
BMD software and demonstrate the utility of adaptive testing in deter-

mining the performance limits of a "finished" product.

-798-



AV&V FOUR YEAR PLAN

YEAR 1

* IDENTIFY COMPONENTS OF ADAPTIVE TESTER

* DEVELOP PROTOTYPE ADAPTIVE TESTER AND DEMONSTRATE ADAPTIVE
TESTING OF DETERMINISTIC TEST OBJECTS

0 DEMONSTRATE MACHINE AIDED SCENARIO CONSTRUCTION

* INVESTIGATE METHODS FOR REDUCING PERFORMANCE DATA

YEAR 2

* DEVELOP AND TEST STOCHASTIC BMD MODEL(S), SYSTEM LEVEL
0 DETERMINE EFFECTS OF STOCHASTIC PARAMETERS ON PERFORMANCE

BOUNDARY

0 SELECT AND REFINE MOST EFFICIENT SEARCH ALGORITHM

* DEVISE METHODS FOR AUTOMATING GENERATION OF HEURISTICS

* INVESTIGATE USE OF ADAPTIVE TESTER FOR VALIDATING PERFOR-
MANCE REQUIREMENTS

YEAR 3

0 DEMONSTRATE TESTING OF ALGORITHMIC-LEVEL BMD TEST OBJECT
WHICH INCLUDES DP MODEL

0 ADAPTIVELY TEST ACALP PROGRAM

0 DEVELOP TECHNIQUES FOR AUTOMATIC SELECTION OF INITIAL TEST
POINT IN A TEST SEQUENCE

0 INVESTIGATE TRANSFERRABILITY PROPERTY OF HEURISTICS

* PREPARE FOR TESTING OF RTSW MODULE(S)

YEAR 4

0 DEMONSTRATE TESTING OF RTSW

0 INVESTIGATE TECHNIQUES FOR LOCATING SMALL REGIONS OF
UNACCEPTABLE PERFORMANCE ("HOLES") WITHIN PERFORMANCE
BOUNDARY

0 FORMALIZE ADAPTIVE TESTING METHODOLOGY

0 DEMONSTRATE USE OF ADAPTIVE TESTER AS A DESIGN AID

-799-



This graph shows an example of a performance surface of one of our
BMD test objects. The X-direction represents the re-entry time of the
first light decoy in a near-pancake attack and the Y dimension the re-
entry time of the first RV. The Z-axis shows leakage (number of RV
penetrations) ranging from 0-6. The remaining 7 scenario parameters
were held constant (numbers of RVs, heavy decoys, light decoys; rela-
tive spacing of RVs, heavy decoys, light decoys, re-entry time of first
heavy decoy.)

-800-



TO-IM PERFORMANCE SURFACE

X Re-entry time of first light decoy in attack

Y Re-entry time of first RV in attack

Z Number of penetrators (Max = 6)

-801-

L, . .. : - . - ' I I i



To be a good search algorithm (or PPA, Parameter Perturbation
Algorithm) the method must be 1) Successful in that it reaches the
boundary most of the time; 2) Efficient, only a small number of tests
should be required; 3) Proximate, a boundary point when reached should
be near the starting point; 4) Immune, not sensitive to performance
surface granularities; 5) Global, global extrema are located rather
than local.

We researched the properties of 4 candidate algorithms and coh-
cluded that heuristic search performed the best and had the greatest

potential for overcoming its deficiencies. In the table opposite a
grade of 1 indicates the best, 4 the worst.

-802-



PARAMETER PERT__ ATION ALGORITHM RESULTS

PPA
TYPE

GRADIENT RANDOM COMPLEX HEURISTIC

PROPERTY

SUCCESSFUL 3 1 2 2

EFFICIENT 1 2 3 1

PROXIMATE 2 4 3 1

IMUNE 4 1 3 2

GLOBAL 4 1 2 3

0 RANDOM AND COMPLEX SEARCH PROVED BEST WHEN LITTLE

WAS KNOWN ABOUT THE PERFORMANCE CHARACTERISTICS

OF THE TEST OBJECT

0 GRADIENT SEARCH PERFORMANCE IS STRONGLY DEPENDENT

ON THE REGULARITY OF THE PERFORMANCE SURFACE

* HEURISTIC SEARCH WAS MOST EFFICIENT AND SUCCESSFUL

o HEURISTIC SEARCH LACKS "GLOBAL" PROPERTY

0 HEURISTIC SEARCH PERFORMANCE IS STRONGLY DEPENDENT

ON "GOOD" HEURISTICS (COMPLETE AND CORRECT)

0 NO ONE SEARCH TECHNIQUE PROVED TO BE BEST IN ALL

CASES

-803-



We built an expected value analog to our TO-2M stochastic test
object to demonstrate the cost reduction possible in testing sto-
chastic models if such a deterministic model were available. Thie
next two slides show the agreement between the expected value analog
and its stochastic model and the effectiveness of using such an
analog in testing stochastic models. The reduction in the number of
test runs required of the stochastic model dropped dramatically when
the expected value analog was used to approach the boundary before
the stochastic model was used to verify that the boundary had indeed
been reached.

-804-



COMPARISON OF EXPECTED PENETRATION IN TO-2M AND ITS ANALOG, CASE I

0.8
(RVs, HDs, LDs) =

(1, 0, 700) TO-2M
ANALOG

0.7-

0.6-

10 KILL VEHICLES PER INTERCEPTOR

0.5 - LAUNCH REL. = 0.9874 (ASSESSABLE)

S04CONDITIONAL KILL PROBABILITY = 0.9874

Lu

0. 0.4

(2, 40, 200)

0.3

0.2

(6, 20, 0)

0.1

0I I I I I I I
1000 3000 5000 7000

DATA PROCESSING RESOURCE UNITS

-805-



EFFECTIVNESS OF TO-2M ANALOG

50 THREAT = 400 BOOSTERS

LEAKAGE = 120

TOLERANCE = + 6
V) CONFIDENCE =85%

40

TO-2M

30

00

0-

0 200152

-8-6



SUPPORTING VUGRAPHS FOR

ADAPTIVE TESTING PRESENTATION

-807-



ADAPTIVE TESTING RATIONALE

TESTING SHOULD BE:

0 EFFICIENT: MINIMIZE COST

MEET SCHEDULE

0 INFORMATIVE: FIND WHICH ALLOWED INPUTS

(THREATS) CAUSE FAILURE

LOCALIZE DESIGN DEFICIENCIES

TEST OBJECTIVES SHOULD BE CAREFULLY DEFINED:

0 "100% GUARANTEES" INFEASIBLE FOR LARGE PROGRAMS

0 TEST EFFORT DEPENDS STRONGLY ON NATURE OF OBJECTIVES

AND CONFIDENCE LEVELS DEMANDED

-808-



ADAPTIVE VERSUS HUMAN TESTING

0 ADAPTIVE TESTER IMPLEMENTS A FULLY SPECIFIED TEST

PROCEDURE MUCH MORE EFFICIENTLY THAN A HUMAN

0 ADAPTIVE SELECTION OF TEST CASES CAN BE EITHER BETTER

OR WORSE THAN A HUMAN SELECTION (IN ANY EVENT, TESTER

DOES NOT GET TIRED OR BORED)

0 NO DIRECT COMPARISON OF ADAPTIVE VERSUS HUMAN TESTING

FOR THE SAME TEST OBJECT IS CURRENTLY AVAILABLE

BUT

* IT IS POSSIBLE TO MEASURE IMPROVEMENTS IN ADAPTIVE

TESTER CAPABILITY AND DESIGN:

- TEST STRATEGIES AND ALGORITHMS

- ACCESS AND DISPLAY OF ARCHIVED

PERFORMANCE DATA

-809-



CONCEPTS AND PROBLEMS IN ADAPTIVE TESTING

1. THE TEST OBJECTIVE FUNCTION AND THE "PERFORMANCE BOUNDARY" CONCEPT

0 FOR WHAT THREATS IS THE OBJECTIVE ONLY JUST MET?

HOW DO THEY RELATE TO THE DESIGN THREATS?

a WHERE IS DP THE LIMITING FACTOR?

HOW SEVERE IS THE LIMITATION?

CRITICAL THREATS DEFINE A SURFACE IN "THREAT SPACE." WE CALL IT

THE "PERFORMANCE BOUNDARY."

PERFORMANCE BOUNDARY OF TEST OBJECT

DESIGN THREAT BOUNDARY

MODIFICATIONS TO BOUNDARY WHEN DP CAPABILITIES UNLIMITED

OBSERVATIONS:

0 DP IS LIMITING FACTOR FOR THREATS ON AB AND CD,

BUT NOT ELSEWHERE ON THE BOUNDARY

0 DP IMPROVEMENTS CAN ENABLE SYSTEM TO MEET DESIGN

OBJECTIVE

-810-



CONCEPTS AND PROBLEMS IN ADAPTIVE TESTING

2. STOCHASTIC TEST OBJECTS

0 STOCHASTIC EFFECTS ARE A PROBLEM FOR BOTH HUMAN AND

ADAPTIVE TEST SELECTION AND EVALUATION

0 TEST REPETITIONS TO ESTABLISH AVERAGE PERFORMANCE

VERSUS GIVEN THREAT MUST BE SUFFICIENT TO BOTH:

(1) ENABLE GOOD SELECTION OF NEXT TEST CASE

(2) DETERMINE WHETHER OR NOT TEST OBJECTIVE HAS

BEEN REACHED

FOR (1):

NUMBER OF REPETITIONS DEPENDS ON SEARCH HEURISTICS:

* -50 FOR GOOD HEURISTICS SET

* ? FOR HUMAN

FOR (2):

NUMBER OF REPETITIONS DEPENDS ON:

* PERFORMANCE BOUNDARY DEFINITION; E.G., EXPECTED

VALUE OF OBJECTIVE FUNCTION LIES IN

V - 1/2 6 , V + 1/2 6

WITH C% CONFIDENCE

RATIO OF STANDARD DEVIATION TO MEAN VALUE OF

OBJECTIVE FUNCTION AT THE TEST POINT

-811-



CONCEPTS AND PROBLEMS IN ADAPTIVE TESTING

3. APPROACHES TO TESTING STOCHASTIC MODELS

0 IF POSSIBLE, DEVELOP A DETERMINISTIC MODEL ABLE TO GIVE

A GOOD FORECAST OF EXPECTED VALUES OF THE STOCHASTIC

OBJECTIVE FUNCTION ("DETERMINISTIC ANALOG"):

* MINIMIZES OFF-BOUNDARY TESTING

* DOES NOT AFFECT BOUNDARY POINT CONFIRMATION

TESTING

* IMPROVE HEURISTIC SET:

* REDUCES REPETITIONS PER TEST POINT AT NON-BOUNDARY

POINTS, AND NUMBER OF TEST POINTS NEEDED TO REACH

BOUNDARY

* DOES NOT AFFECT BOUNDARY POINT CONFIRMATION TESTING

-8 12-



CONCEPTS AND PROBLEMS IN ADAPTIVE TESTING

4. SOURCES OF HEURISTICS

* DESIGNER KNOWLEDGE OR BELIEF ABOUT TEST OBJECT BEHAVIOR

& PATTERNS OF TEST OBJECT BEHAVIOR REVEALED BY AUTOMATED

PROCESSING OF PERFORMANCE DATA. TECHNIQUES INCLUDE:

• DIMENSION REDUCTION

• CLUSTER FORMATION

"STRESS MEASURES" ARE PRODUCED.

NOTE: THIS SUBSTITUTES FOR HUMAN ASSESSMENT OF "WHAT

TO DO NEXT"

STATUS. TECHNIQUES HAVE BEEN IMPLEMENTED TO BE APPLIED

TO TO-3, WHICH INCLUDES DETAILED DP MODEL

-813-



MAJOR TECHNICAL QUESTIONS

1. CAN WE DERIVE GOOD SETS OF SEARCH HEURISTICS FOR BMD SYSTEMS

AT ALL LEVELS OF REPRESENTATION? TO WHAT EXTENT ARE THE

HEURISTICS TRANSFERABLE:

* FROM ONE LEVEL TO THE NEXT

* BETWEEN SIMILAR BMD CONSTRUCTS

2. (a) CAN STRESS MEASURES BE DEVELOPED THAT RELATE DIRECTLY TO

THOSE PARTS OF THE PERFORMANCE BOUNDARY WHERE DP IS THE LIMITING

FACTOR?

(b) DO THESE STRESS MEASURES INDICATE WHY OP IS LIMITING?

3. HOW CAN WE ESTABLISH THAT THERE ARE NO "HOLES" INSIDE A NOMINAL

PERFORMANCE BOUNDARY?

-814-



A HEURISTIC IN PRODUCTION RULE FORM

* JUSTIFICATION- ACTION -- RESULT

JUSTIFICATION TELLS UNDER

WHAT CONDITIONS THE HEURISTIC

CAN BE USED

ACTION TELLS HOW THE THREAT

VARIABLES ARE TO BE PERTURBED

RESULT TELLS WHAT KIND OF

CHANGE IN PERFORMANCE IS

EXP ECT ED

-8ll- Jt



EXAMPLE OF TO-IM HEURISTIC TEST SET

NO. OF HEURISTICS 7

HEURISTIC J1: A]

J2: Al, A2

J2: A3, A4
" J3: A3, AS
" 34: A6
It J5, J6: A5, A6

7: A7, A8, A9

NO. OF JUSTIFICATIONS 7

JUSTIFICATION JI: 13/11 .GT. 400
I J2: 13/11 .LE. 400
f J3: 12/11 .LE. 20/6.

J4: 12/11 .GE. 30

J5: 12/11 ,LT. 30

J6: 12/11 .GT. 20/6.

J7: .TRUE.

NO. OF ACTIONS 9

ACTION Al: 13 = 13 + 50
Is A2: 12 = 12 - 5
it A3:11 = I - I

A4: 13 = 13 + 100
A5: 12 = 12 + 10

A6: II = II + 1
"t A7: 11 = II + RNV(1,1)
It A8: 12 = 12 + RNV(lO,lO)

A9: 13 = 13 + RNV(IO0,100)

-816-



ADAOM *5 INTERtNATIONdAL BU SINESS SERVICES INC WASHINGTON DC F/6 9/2US ARMY SOFTWARE SYMPOSIUM (2NO) HELD AT WILLIAMSBURG, VIRGINIA"-ETCUl
1978 S m TAYLOR OAAK7-78--0030

UNCLASSIFIED

NDI



AV&V ONGOING ISSUES

0 AVAILABILITY OF TEST OBJECTS

0 COST OF RUNNING TEST OBJECTS

0 QUANTIFYING PAYOFFS OF ADAPTIVE TESTING

* GRAPHICAL, FUNCTIONAL REPRESENTATION OF PERFORMANCE

BOUNDARY

* DP MODELS SUFFICIENTLY DETAILED AND REALISTIC TO

PRODUCE MEANINGFUL PERFORMANCE MEASURES

0 SHOWING TRANSFERRABILITY PROPERTY OF HEURISTICS

0 DEALING WITH HIGH DIMENSIONALITY IN THREAT SPACE

-817-



ADAPTIVE VERIFICATION AND VALIDATION DOCUMENTS

NUMBER TITLE AUTHOR DATE

CR-1-708 RESEARCH PLAN FOR ADAPTIVE E. BULEY, et al. 5/76
V&V

CR-2-708 ADAPTIVE V&V RESEARCH E. BULEY, et al. 6/76
EVALUATION PLAN

CR-3-708 AUTOMATED SCENARIO GENERATOR, J. LINDER, R. STONE 7/76
SOFTWARE DESIGN DOCUMENT

CR-4-708 ADAPTIVE LEARNING REQUIRE- D. COOPER 1/77
MENTS AND CRITICAL ISSUES

CR-5-708 ADAPTIVE V&V FINAL REPORT E. BULEY, et al. 1/77

CR-1-767 REQUIREMENTS DEFINITION FOR R. UTTLEY 3/77
THE TEST OBJECT 2 MODEL

CR-2-767 AUTOMATED SCENARIO GENERATOR, R. STONE 2/77

SOFTWARE TEST DEFINITION

CR-3-767 ASG ACCEPTANCE TEST REPORT R. STONE 6/77

CR-4-767 AV&V RESEARCH PLAN UPDATE R. UTTLEY, D. COOPER 6/77

CR-5-767 ISC USER'S MANUAL R. STONE 6/77

CR-6-767 ADAPTIVE V&V MID-YEAR R. UTTLEY, et al. 7/77
REPORT

CR-7-767 ADAPTIVE V&V RESEARCH R. UTTLEY 9/77
EVALUATION PLAN UPDATE

CR-8-767 AV&V RESEARCH PROGRESS R. STONE, et al. 12/77
EVALUATION REPORT

CR-9-767 AV&V FINAL REPORT-II R. STONE, et al. 1/78

-818-



NUMBER TITLE AUTHOR DATE

CR-1-826 TO-3 ALGORITHM LEVEL TEST
OBJECT DEFINITION H. F. GILMORE, et. al. 7/78

CR-2-826 PERFORMANCE MEASURES
VALIDATION TECHNIQUES E. R. BULEY 9/78

CR-3-826 ADAPTIVE TESTER
DEMONSTRATION PLAN R. STONE 10/78

CR-4-.826 ADAPTIVE TESTING
METHODOLOGY R. UTTLEY 11/78

CR-5-826 ADAPTIVE V&V FINAL REPORT
YEAR 3 R. STONE, et. al 1/79

-8r19

-819- I



APPENDIX



US ARMY SECOND SOFTWARE SYMPOSIUM

ATTENDEE LIST

Mack Alford Merton J. Batchelder
TRW USACSC-CSCS-POP
7702 W. Governors Drive Ft. Belvoir, VA 22060
Huntsville, ALA. 35805

Edward J. Beach

Serafino Amoroso CENTACS, CORADCOM
CORADCOM DRDCO-TCS-BK
ATTN: TCS-BG Ft. Monmouth, N.J. 07703
Ft. Monmouth, N.J. 07703

Howard F. Bleakney
Paul Applin HQ-USACC
SDC HQ US Communications Command
P.O. Box 157 AMG-MISR
Ft. Monroe, VA 23651 Ft. Huachuca, AZ 85613

Wallace C. Arnold E. G. Bourlas
ODCSAC USACSC
H&PA Fort Belvoir, VA 22060
DAAC-SIF
Washington, D.C. 20310 Jerry R. Brookshire

USAMIRADCOM
George Ashendorf DRMI-TGG
TRI-TAC Redstone Arsenal, AL 35809
VomTTacTical Communications
Office R. Peyton Brown

TT-LD-ILS USACSC
Ft. Monmouth, N.J. 07703 Ft. Belvoir, VA 22060

J. C. Ashlock MG. Clay T. Buckingham
JPL Commander, U.S. Army Computer
4800 Oak Grove Dr. Systems Command
Pasadena, CALIF. 91103 Washington, D.C. 20310

Steven A. Austin William E. Burr
US Army CENTACS
COARDCOM Institute for Computer Science
CDR, CORADCOM & Technology
ATTN: DRDCO-SEI-I National Bureau of Standards
Ft. Monmouth, N.J. 07703 Washington, D.C. 20234

Bob Barrier LTC Roy Busdiecker
Raven Systems & Research HQDA
225 Peachtree Street HQDA (DAAC-PE)
Suite 225 Washington, D.C. 20310
Atlanta, Georgia 30303

Leslie G. Callahan Jr.

Victor Basili GA. Institute of Technology
University of Maryland Atlanta, Georgia 30332
Dept. of Computer Science
College Park, MD 20742

L 1-



LTC Robert P. Campbell Joseph W. D'Oria
HQDA (DAMI-AMP) CORADCOM
Pentagon ATTN: DRDCO-PT
Washington, D.C. 20310 Ft. Monmouth, NJ 07703

John Clark Dr. Thomas G. DeLutis
USACSC, SpGp The Ohio State University
Ft. Lee, VA 23801 Dept. of Computer & Info. Sci.

2036 Neil Avenue Mall
James Clary Columbus, Ohio 43210
Research Triangle Inst.
P. 0. Box 12194 Richard DeMillo
Research Triangle Park, NC 27709 Georgie Institute of Technology

Dept. of Computer Science
John M. Cole Atlanta, GA 30332
COARDCOM
Ft. Monmouth, NJ 07703 Mr. Barry DeRoze

TRW Systems Group
W. A. Coleman 1 Space Park
USACSC Bldg R 2/1086
Ft. Belvoir, VA 22060 Redondo Beach, CA 90278

lLT Richard Conn Thomas Dames
US Army Satellite Comm. Agcy CORADCOM
USA SATCOM A (DRCPM-SC-4G) DRDCO-AM
Ft. Monmouth, NJ 07703 Ft. Monmouth, NJ 07793

A. B. Connelly Carl G. Davis
USACC BMDATC
HQ USACC, CC-OPS-TC P. 0. Box 1500
Ft. Huachuca, AZ 85613 Huntsville, ALA 35803

ATTN: ATC-P

Robert L. Cooper

OASC (C) DDA J. G. Demko
Room/A658 DMIS-CERCOM
Peatagon Ft. Monmouth, NJ 07703
Washington, D.C. 20301

William Dietz
J. Mike Coward Carnegie-Mellon University
Teledyne Brown Computer Science Dept.
300 Sparkman Dr. MS 212 Pittsburgh, PA 15213
Huntsville, ALA. 35807

Anthony Digiorgio
Allan H. Curry CORADCOM
AIRMICS CDR, CORADCOM
313 Calculator Bldg. ATTN: DRDCO-SEI-I
Georgie Institute of Technology Ft. Monmouth, NJ 07703
Atlanta, GA 30332

Timothy A. Dreisbach
Fred J. D'Ascoli SofTech
USACSC 460 Totten Pond Rd.
Fort Belvoir, VA 22060 Waltham, MA 02154

Lorraine Duvall
IITRI
P. 0. Box 1355 Branch P. 0.
Rome, N. Y. 13440



David Egli Russell Green, Dir.

CORADCOM USAMSSA

CENTACS ATTN: ACAM-DPD-E-BD969
Ft. Monmouth, NJ 07703 Pentagon

Washington, D.C. 20301

Ingrid Eldridge
CENTACS H. Mark Grove

COARDCOM DRDCO-TCS-BK OUSA (R&E) AP
Ft. Monmouth, NJ 07703 Rm. 2A318

Pentagon
Edward H. Ely Washington, D.C. 20301
AIRMICS
313 Calculator Bldg. Margaret Hamilton
Georgia Institute of Technology Higher Order Software Inc.
Atlanta, GA 30332 806 Mass. Avenue

Cambridge, MA 02139

CPT Edward Errickson
USAIL;S Harry F. Hardin
P. 0. Box 11472 US Army Corps of Engrs.
Phoenix, AZ. 85061 HQDA (DAEN-CWE-BA)

1000 Independence Avenue
Bill Fallon Forrestal Bldg. Rm. 5H088
HQTRADOC (ATCD-C-D) Washington, D.C. 20314
Ft. Monroe, VA 23651

James H. Herd
Gilbert M. Fariss Doty Associates
USACSC 416 Hungerford Dr.
US Army Computer Systems CMD. Rockville, MD 20850
ATTN: CSCS-ACC (STOP 110)
Ft. Belvoir, VA 22060 L. T. Herrmann

Shell Oil Co.
Kurt Fischer P. 0. Box 20127
CSC Houston, Texas 77025

6565 Arlington Blvd.
Falls Church, VA 22046 Bertram Herzog

University Computing Center
W. C. Frey University of Colorado
JPL Boulder, CO 80309

4800 Oak Grove Dr.
Pasadena, CALIF 91103 B. J. Hill (PM-ARTADS, TSSG)

Box 3045
J. A. Garretson Ft. Sill, OK 73503

McDonnel Douglas
5301 Bolsa Avenue Edward B. Hirsch
Huntington Beach, CALIF 92647 US Army CERCOM-DRSEL-ME-SC
MS 11-3 Ft. Monmouth, NJ 07703

James W. Gault Morton A. Hirschberg
NC State University US Army ARRADCOM
Dept. of EE, NCSU Ballistic Research Lab

Raleigh, N. C. 27650 DRDAR-BLB
Aberdeen Proving Ground, MD 21005

Susan Gerhart
USA/ISI Carl Hitchon
4676 Admiralty Way SofTech
Marina del Ray, CALIF 90291 460 Totten Pond Rd.

Waltham, MA 02154

ii



Dan Hocking James M. Jones II
AIRMICS USAEWES
313 Calculator Bldg. ADP Center
Georgia Institute of Technology Waterways Experiment Station
Atlanta, CA 30332 P. 0. Box. 631

Vicksburg, MS 39180
Jean N. Hooper
ARI Dr. Larry A. Johnson
USARI LOGICON
PERI-OS 18 Hartwell Avenue
5001 Eisenhower Avenue Lexington, MA 02173
Alexandria, VA 22333

Philip Johnson
Pei Hsia USA CORADCOM CENSEI
UAH Ft. Monmouth, NJ 07703
Computer Science Dept., USH
P. 0. Box 1247 Helmuth Kaunzinger
Huntsville, AL 34807 US Army

CORADCOOR
Dwain B. Huewe DRDCO-TCS-BG
CENSEI CORADCOM Ft. Monmouth, NJ 07703
DCRDO-SE
Ft. Monmouth, NJ 07703 Klaus P. Koschewa

AIRMICS, GIT
Lee Hughey 313 Calculator Bldg.
Raven Systems & Research Atlanta, GA 30332
225 Peachtree Street
Suite 225 R. M. Lamb
Atlanta, GA 30303 USAICS/ATSI-CD-CS

Ft. Huachuca, AZ 85613
Windell F. Ingram
USAE Waterways Experiment Station Doug Langley
P. 0. Box 631 USACSC
Vicksburgh, MS 39056 Ft. Belvoir, VA 22060

Atul R. Jai Ed Lee
Research Triangle Institute Raytheon Company
Box 12194 Hartwell Road
Research Triangle Park, NC 27709 Bedford, MA 01780

James R. Jancaitis Dr. E. Lieblein
USAETL CENTACS, CORADCOM
Bldg. 2592 HQ CORADCOM
Ft.Belvoir, VA 22060 ATTN: DRDCO-TSC-BH

Ft. Monmouth, NJ 07703
Medhi Jazayeri
University of NC COL James E. Love
Computer Science Dept. USACSC STOP-C-170
Chapel Hill, NJ 27514 Ft. Belvoir, VA 22060

Jerry R. Jeffrey G. A. Mackay
USA ADMINCEN Commander
US Army Administration Center USACEEIA
ATTN: ATZI-S CC-TAD-TST
Ft. Harrison, IN 46216 Ft. Huachuca, AZ 85613

Jon C. Jervert
CORADCOM
CENTACS
Ft. Monmouth, NJ 07703

iv



G. Scott Mackay Derek S. Morris
Commander CENTACS, CORADCOM
HQ USACESSIA, CCC-TAD-TJD ATTN: TCS-BG
Ft. Huachuca, AZ. 85613 Ft. Monmouth, NJ 07703

E. J. McCauley MAJ Albert A. Mullin
Ford Aerospace & Comm. Corp. USABMD ATC
FACC P. 0. Box 1500
Mail Stop V-02 Huntsville, ALA. 35808
3937 Fabian Way
Palo Alto, CALIF. 94303 J. David Naumann
(netmail McCauley @SRI-KL) University of Minnesota

271-19th Avenue, South
D. R. McClung Minneapolis, MN 55455
Patriot Project Office
DRCPM-MD-T-S J. Gary Nelson
Redstone Arsenal, ALA. 35809 TECOM, APG-Md

USA TECOM
Robert A. McMurrer ATTN: DRSTE-AD-S
USA Corps of Engineers Aberdeen PG. MD. 21015
HQDA (DAEN-DSE)
Washington, D.C. 20314 John A. Nicholas

HQDARCOM (DRCDE-C)
MAJ Robert W. Mace 5001 Eisenhower Avenue
Commander Alexandria, VA 22333
USASC & FG
ATTN: ATZHTD-P (MAJ Mace) MAJ Marlan L. Nienhuis
Fort Gordon, CA 30905 USACSCSPTGP

Ft. Lee, VA 23801
Dennis P. Mahoney

USACACDA-ATCA-BA Donald B. Nowaskoski
Ft. Leavenworth, KS. 66027 Western Union

7916 Westpark Dr.
John R. Mitchell McLean, VA 22102
AIRMICS
313 Calculator Bld. Edward J. O'Connor
Georgia Tech. 30332 USATCOMA

DRCPM-SC-IE
Roy Mattson Ft. Monmouth, NJ 07703
CORADCOM, CENTACS
Ft. Monmouth, NJ 07703 John J. O'Hare

ONR
George Mikula 800 N. Quincy Street
HQDARCOM Alexandria, VA 22217
5001 Eisenhower Avenue
Alexandria, VA 22333 LTC Donald E. Painter

ACSAC, HQDA
Clair R. Miller ATTN: DAAC-SIF (LTC. D. Painter)
Honeywell Washington, D.C. 20310
7900 West Park Drive
McLean, VA 22309 Gary L. Peckham

Engineering Experiment Station
Georgia Institute of Technology
Atlanta, GA 30332

V



Sil Pelosi Thomas A. Rorro
CENTACS BETA JPO
HQ CORADCOM DRC-TDS-B BETA-SE
Ft. Monmouth, NJ 07703 Harry Diamond Labs

Adelphi, MD 20783
G. Perrone
USACEEIA Charles W. Rose

CCC-SEO Case Western Reserve U.
Rm. 3501 Greecy Hall Crawford Hall
Ft. Huachua, AZ. 85613 Cleveland, OH 44106

J. Petterson Robert Rosen
USACSC RDL,DELHD-IR

7203 Waiwick Drive 2800 Powder Mill Road

Camp Springs, MD 20031 Adelphi, MD 20783

Donald L. Phillips Ingo E. Rucker

US Army Engr. Dist. Jacksonville US Army
P. 0. Box 4970 ARRADCOM/MISD B/350
Jacksonville, FLA 32201 Dover, N.J. 07801

John N. Postak Myron S. Samuel
Doty Associates, Inc. US Army Satellite Comm. Agcy.
416 Hungerford Drive USASATCOMA (DRCPM-SC-4G)
Rockville, MD 20850 Ft. Monmouth, NJ 07703

Dr. Lawrence M. Potash A. Saucier

US Army Research Instutute DARCOM
5001 Eisenhower Avenue 5001 Eisenhower Avenue
Alexandria, VA 22333 Alexandria, VA 22333

Lawrence Putnam Samuel H. Scalzo
Quantitative Software Mgt. Commander
1057 Waverley Way USAARRCOM HQ
McLean, VA 22101 ATTN: DRSAR-MAG-I

Bldg #9/S. Scalzo
Dr. N. Radhakrishnan Dover, NJ 07801

USAEWES
Special Technical Asst. MAJ J. H. Schroeder
ADP Center USAADS/DCD
Waterways Experiment Station Ft. Bliss, TX 79916
P. 0. Box 631
Vicksburg, MS. 39180 Marvin Schwartz

CORADCOM CENTACS DRDCO-TCS-BK

CAP John T. Ratzenberger Ft. Monmouth, NJ 07703

USACACDA
ATTN: ATCA-BAI-M James E. Scott
Ft. Leavenworth, KS 66027 USAMIRADCOM

DRMI-TGG
B. G. Leonard Riley Redstone Arsenal, ALA 35809

Deputy Commander,
US Army Computer Systems
Command

Ft. Belvoir, VA 22060

Vi-



John W. Severin Dr. John Staudhammer
USACSC-SCL ARO
US Army Computer System Command P. 0. Box 12211
Ft. Lee, VA 23894 Research Triangle Park, NC 27709

Hugh H. Sharp, III D. W. Stewart
Huntsville Division USACSC
Corps of Engineers Ft. Belvoir, VA 22060
P. 0. Box 1600
Huntsville, ALA 35807 Gaye Stewart

Raven Systems & Research
Alan Sherer 225 Peachtree
CSC Suite 715
6022 Technology Dr. Atlanta, GA 30303
Huntsville, ALA. 35803

R. R. Stillwagon

LTC Joseph P. Shine HQ DA (CDAAC-SIF)
AIRMICS Washington, D.C. 20310
313 Calculator Bldg.
Atlanta, GA 30332 Harold Stone, Prof.

University of Massachusetts
Raymond C. Sidorsky Dept. of Electrical and Computer Eng.
USARI Amherst, MA. 01003
PERI-OS
5001 Eisenhower Avenue Ray L. Stone
Alexandria, VA 22314 GRC

P. 0. Box 6770
A. P. Simkus Santa Barbara, CALIF. 93111
ARO
P. 0. Box 12211 Leon C. Stucki
Research Triangle Park, NC 27709 BCS

P. 0. Box 24346
Bobby B. Simmons Seattle, WA 98124
USACSC
Ft. Belvoir, VA 22060 James E. Studer

DAMI-AM
Daniel G. Smith HQDA (DAMI-AM)
LOGICON Pentagon
18 Hartwell Avenue Washington, D.C. 20310
Lexington, MA 02173

Mary A. Tate
Wesley E. Snyder CENSEI
N.C. State University CORADCOM
Eletrical Engineering Dept., NCSU DRDCO-SEI-V
Raleigh, NC 27650 Ft. Monmouth, NJ 07703

Wayne Spruell Norman J. Taupeka
USAMIRCOM CORADCOM
DRSMI-WSP Ft. Monmouth, NJ 07703
Redstone Arsenal, ALA. 35802

Vii 



Dr. Stanley M. Taylor Ellwood H. Witt Jr.

USA/BRL/ARRADCOM USAEDPC-IS

USA Ballistic Research Lab. US Army Engineer Data Processing

Aberdeen Proving Ground, MD. 21005 Center

P. 0. Box 2828

Milton Tenzer Washington, D.C. 20013

CENTACS

CORADCOM Donovan Young
Ft. Monmouth, NJ 07703 AIRMICS

Georgia Tech. ISYE

Robert Thibodeau Atlanta, GA 30332

GRC

307 Wynn Dr., N.W. Jeffrey S. Yohay

Huntsville, ALA. 35805 USACORADCOM
ATTN: DRDCO-TCS-BG

Robert E. Thurber Ft. Monmouth, NJ 07703

USAETL

ATTN: ETL-GS-A (Mr. Thurber) Saydean Zeldin

Ft. Belvoir, VA 22060 HOS

Higer Order Software, Inc.

Pierce Tolson 806 Mass. Avenue
CSC-SGL Cambridge, MA. 02139

Ft. Lee, VA 23801

Fred T. Tracy

Waterways Experiment Station

P. 0. Box 631

Vicksburg, MS 39180

LTC. W. Trueheart

USACACDA/TSM-TOS

Ft. Leavenworth, KS 66027

Lawrence A. Tubbs

BMDATC

Ballistic Missile Defense ATC

P. 0. Box 1500

ATTN: BMDATC-I
Huntsvile, ALA. 35807

ILT Joseph B. Urban
USASCEFG
DTD-PMD, USASCERG

Ft. Gordon, GA. 30908

Frank E. Ward Jr.

USACORADCOM

ATTN: DRDCO-TCS-BC

Ft. Monmouth, NJ 07703

Viii



Egli=:


